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Abstract

In this paper, a constitutive law is presented to model the mechanical behaviour of ceramic matrix composites. It allows
matrix-cracking, interfacial debonding, sliding and wear to be accounted for in the framework of continuum mechanics. Based
upon micromechanical studies, a 1D and 2D model was derived. An application was performed on a [0,90] SiC/SiC composite.
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1. Introduction

Matrix-cracking and subsequent matrix—fibre inter-
face debonding and sliding are the cause of a non-
linear stress—strain behaviour observed when loading
ceramic matrix composites (CMCs). These basic
mechanisms are the source of a reduction of the tan-
gent Young's modulus, the presence of inelastic
strain and hysteresis loop [1,2]. Furthermore, cycling
under constant stress amplitude causes the total
strain to increase with the number of cycles. This
phenomenon is usually attributed to interfacial wear
[3]. It is proposed to study these mechanisms in the
framework of continuum mechanics and to derive
constitutive laws suited for structural applications. In
this connection, an attempt is made to base the for-
mulation on the results of studies of the microstruc-
tural degradation mechanisms.

A continuum mechanics formulation applied to
CMCs is written within the framework of the ther-
modynamics of irreversible processes [4,5]. The first
step in establishing such a model is to identify the
state variables which define the state of the material.
The second step is to derive the expression of the

state potential 1/ in terms of the state variables and
the third one is to determine the evolution laws of
the internal variables. The state potential i is made
up of the sum of two terms: viz. the elastic energy
density iy, and the stored energy density i, The
elastic part is directly related to the applied load.
The stored energy density is concerned with residual
stress fields giving rise to macroscopic (or inelastic)
strains with no applied load. The stored energy den-
sity is expressed as the total elastic energy density
associated with the residual stress field. Therefore by
considering two celastic steps, the total free energy
density can be evaluated following a so-called ‘cut
and paste’ technique introduced by Volterra [6]. This
approach will be used to model the behaviour of
unidirectional as well as [0,90] layered fibre-rein-
forced CMCs.

In Section 2, the relevant microscopic quantities
are introduced to analyse the above-described degra-
dation mechanisms of CMCs. Based upon the results
of Section 2, Section 3 deals with a macroscopic de-
scription of constitutive laws applicable to unidirec-
tional CMCs. Section 4 is devoted to the extension
of the results derived in Sections 2 and 3 to model
the mechanical behaviour of [0,90] layered and wo-
ven composites. In Section 5, the previous results are
applied to analyse a [0,90] fibre-reinforced SiC/SiC
composite.



2. Microscopic description of the degradation
mechanisms

The matrix cracks, which are assumed to be perpen-
dicular to the fibre direction, cause a stiffness reduction
when the stress is tensile. In the following, it was
assumed that the whole matrix-cracking process occurs
at load levels lower than the fibre breakage mechanism,
and therefore only the former mechanism will be
analysed, By using the same framework, the analysis of
fibre breakage and pull-out can be found in Refs. [7,8].
Let us consider an elementary cell of length 2L, equal
to the average crack spacing, consisting of two different
materials (m) and (f) as shown in Fig. 1 [9], where E is
the Young’s modulus of the unbroken composite, £,
that of part (m), and E; that of part (f). There is a
matrix crack at the centre of the cell. The presence of a
matrix crack implies a potential energy density change
A@, given by

A@e:fa)c (1)

where w, is dependent on the crack density (i.e. (R —
R)/L, see Fig. 1) as well as on the fact whether cracks
interact with each other or not. This first basic mecha-
nism does not allow the storage of energy and therefore
only influences the reversible (or clastic) part of the free
energy density ..
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Fig. 1. Elementary cell with crack spacing 2L and debond length 2/,.

Debonding followed by sliding gives rise to inelastic
strains and hysteresis loops. To describe these phenom-
ena, different models have been proposed [9-11]. They
all consider a friction length 2/, here assumed to be
equal to the debond length 2J; (Fig. 1). Similarly to
cracking, which is a mode I mechanism, debonding per
se cannot storc energy. When debonding and slip occur
simultaneously, a self-balanced microscopic stress field
is involved. The corresponding strains in the matrix and
in the fibre are denoted by Ae,(z, L) and Aefz, L),
respectively, where z is the current coordinate. These
strain differences result from the ‘cut and paste’ proce-
dure alluded to in Section 1. By application of the
principle of virtual work [12], the overall inelastic strain
€, 1s expressed as
_ 1t
€= | i Aedx, L)dz. 2)

Since the additional stress field is self-balanced, the
debonding and sliding processes are able to store en-
ergy. To fully characterise both mechanisms the knowl-
edge of the corresponding stored energy density i, is
crucial. It is expressed as the total elastic energy density
associated with the residual stress field due to debond-
ing and sliding

7 =i r {[EA€}(z, L) + (1 — HE,Del(z, L)}dz

3
where f is the fibre volume fraction. It is worth noting
that the expression of the stored energy is a priori only
valid if the residual stress field is associated with
debonding and sliding.

Under cyclic loading, wear may take place at the
fibre—matrix interface because of sliding reversals [3].
An estimate of the effect of cyclic loading on the
mechanical behaviour is possible when the influence of
interfacial wear is included in the model. The effect of
wear is a change of the residual stress field induced by
debonding and sliding. Therefore as the number of
cycles N increases, there is a variation of the associated
additional strains Aedz, L, N) so that the inelastic

strain becomes a function of the number of cycles N
i

& (N) = i f Aedz, L, N)dz. @)

Similarly, there is a variation of the additional strains
A€, (z ,L ,N ) so that the corresponding stress fields are
still self-balanced. Therefore the total stored energy
density is also dependent on the number of cycles N
Yo(N)
1 'L
g f {fEAeX(z, L, N) + (1 — f)E,,Ae%(z, L, N)}dz.
—L
®)
From the present analysis, three different quantities
are obtained. A potential energy density change due to



matrix-cracking A@,, inelastic strains €,(N) and a cor-
responding stored energy related to debonding, sliding

and wear ¥ (N). These results are now used to model
macroscopically the degradation mechanisms.

3. Macroscopic description of the degradation
mechanisms

Matrix-cracking can be described by an internal
damage variable D to comply with the requirement of a
fully dissipative mechanism (i.e. no energy can be
stored), In a continuum mechanics framework, the
presence of a crack results in a stiffness reduction
defined by an internal damage variable D [13,14]. The
Gibbs’ elastic energy density of a damaged material is
written as [15]

D) = ©)

2E(1 - D)
so that the potential energy density change can be
written as

> D
Ap.=p(D)— ¢ (D =0)=r—=——.

Pe = Pe(D) — )=351"D (N
To fully characterise debonding and sliding two vari-
ables are needed. The first one is the inelastic strain g,
and the second one, denoted by d, is introduced to
define the stored energy density level ¥, associated with
debonding and sliding alone
£,

ws_zg'

The expression of i, can be found in Refs. [16,17] to
model concrete and rocks for which there is one dam-
age variable modelling the stiffness reduction when the
crack is open, and sliding in mode II when the same
crack is closed. However, in the study of CMCs there is
a mode I matrix crack as well as a mode II debond
crack (Fig. 1), therefore two damage variables are
needed. Furthermore, there is a non-uniform stress field
along the debond crack, thus Eq. (8) does not necessar-
ily allow the damage variable d to be related to a
debond crack density.

In addition to the total strain €, the total free energy
density  is dependent on three internal variables: one
damage variable D modelling matrix-cracking and re-
lated to the crack spacing, two variables €, and d
describing debonding and sliding, and related to the
debond length

®)
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The associated forces are defined as

i= _E1-D)e-z), (10)
0€

__ W _Se -y

Y= —E=sE—a)p (11)
“_ -.

g= W _ s g (12)
d€;, d
o E[E,)
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Eq. (10) defines the macroscopic stress ¢. The following
equations define the associated forces to each dissipa-
tive mechanism studied previously. Eq. (11) defines the
energy release rate density Y playing a similar role as
the energy release rate ¢ in linear elastic fracture me-
chanics. By combining Egs. (10) and (11), one shows
that the energy release rate density Y is proportional to
the square of the ‘effective stress’ ¢/(1 — D) [15]. Eq.
(12) defines the back stress X related to debonding and
sliding. Its exact value depends upon the interfacial
behaviour. Eq. (13) defines the stored energy density y
released during debonding and sliding. Since the vari-
able d depends upon the details of the interfacial be-
haviour, the definition of its associated force is also
dependent upon the interfacial behaviour, The damage
variable d and its associated force y are not important
in terms of overall composite behaviour. However in
terms of energy contributions these variables are
relevant.

Under cyclic load histories, there is an evolution of
the inelastic strains &_,(N) and the stored energy ¥(N).
By inspection of Eqs. (4), (5) and (8), there is a direct
influence of wear on the inelastic strain as well as on
the damage variable d(N). Thus to write the evolution
laws during fatigue, one needs to model the evolution
of wear as a function of the number of cycles N. When
a constant stress amplitude is applied, the evolution of
the interfacial shear strength t is written as a function
N: t(N)=1,®(N) [18], where @ is a decreasing func-
tion with the number of cycles (®(0) =1). The evolu-
tion of the variables €,(N) and d(N) can be related to
their monotonic values €;, and 4 reached during the first
loading (N =0) by

Ein d

vy ‘M=z (14)

and the corresponding stored energy density ¥ (N) can
be written as

GW) = g a3

where ¥, is the initial value of the stored energy. Eq.
(15) shows that the stored energy density increases as
do the inelastic strains and the damage variable (see Eq.

(14)).
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Fig. 2. Schematic stress—strain curve.

To determine the evolution laws of the internal vari-
ables, two methods can be followed. The first one is
using simulations of the complete micromechanical
model along the lines developed for instance by Feillard
et al. [19] to get the evolutions of the crack spacing 2L
and the debond length 2/;, and then the state potential.
The second one is by performing experiments. The
damage variable D is obtained by measuring the initial
unloading modulus and the corresponding inelastic
strain is €, (Fig. 2). To measure the variable d, the
stored energy i/, has to be evaluated, for instance by
using methods developed by Chrysochoos [20] or Cho
et al. [21].

4. Generalisation to [0,90] composites

A 3D formulation of matrix-cracking requires an
anisotropic damage description [12]. In the case of
cracking perpendicular to the fibre direction in a unidi-
rectional composite, the generalisation is straightfor-
ward since the only compliance change is given in the
fibre direction, and therefore only one scalar an-
isotropic damage variable is needed and the previous
1D analysis is still relevant. For a [0,90] layered com-
posite, the reversible part of the Helmholtz free energy
density, which is the Legendre transformation of the
corresponding Gibbs’ specific enthalpy, depends upon
the damage variables modelling matrix-cracking in the
0 and 90° layers

Ve =75 EE(DS, DY)E, (16)

4

where €, denotes the elastic strain tensor, .’ the con-
traction with respect to two indices,E the clastic stift-
ness tensor which is a function of the matrix-cracking
damage variables in the 0° ply (i.e. DY) and the 90° ply
(i.e. DI [12].

In a 3D formulation of interfacial debonding and
sliding, a second-order tensor is nceded to model the

inelastic strains. In the case of a unidirectional com-
posite, when cracking occurs perpendicularly to the
fibre direction, only one inelastic strain component is
different from zero, viz. the normal component along
the fibre direction. Similarly, only one scalar debond
damage variable is needed. For a layered [0,90] com-
posite, a first-order approximation requires only the
in-plane components (€;,1, €22 and €,) of the inelas-
tic strain tensor E,,. Since each operative slip system can
be integrated separately in terms of energetic contribu-
tions, the internal damage variables can be defined
separately for each inelastic strain term. Therefore there
are as many debond damage terms as non-vanishing
inelastic strain components [12] to define the stored
energy density

s 2 d” 2 (!22 2 -‘.'4’12

where E;,, E,,, are the Young’s moduli along the
1-direction and the 2-direction, respectively, and G, is
the shear modulus in the 1-2 plane. The state potential
Y is the sum of the two previous energy densities

(17)
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and the associated forces are defined as follows
.
g= 7 (19)
o o
0 _ __ 0 __ =¥
Y= aDy’ m aD® 20)
W
X=—
= a.._(:;in, (21)
o 2 2
Ju= ad,,’ Yar = odyy’ Y12 = ad
(22)

Eqgs. (19)-(22) are the generalisation of Eqgs. (10)—(13)
in the case of a [0,90] composite.

The remaining part of the model is concerned with
the evolution laws. The evolution law for matrix-crack-
ing damage (D, = D% or D) is expressed as a func-
tion of the associated force (Y, = Y% or Y¥). It is
obtained by analysing tensile tests at 45° on a [0,90]
composite (for which D% = D29%). A suitable expression
is given by

D= Dm<1 _ exp[ _ <;/—m>mmD 23)

where D, is the saturation value of the damage
parameter modelling matrix-cracking, Y., a scale
parameter and m,, a shape parameter.

The evolution law of the inelastic strain is written as



€in11 = Ms €inz2 = <022 Jth) (24)
To Oo
where ( ) denotes the positive part of the considered
quantity, g, a threshold stress below which no inelastic
strains are observed and o, a scale parameter.
The evolution law of the inelastic strain €, is
expressed as

_ (g =)

€ini2 =

- Sign(d,,) (25)
where 7, is a threshold stress and 7, a scale parameter.
The introduction of the equivalent shear stress 7.
comes from the fact that the stress—strain curve in
tension at 45° is usually very close to that in shear for
most CMCs [22]. The following expression complies
with the previous requirement

.= \/(&,2)[(&[2> + %{5“ + &22>]. (26)

This equivalent stress can also be used in the study of
geomaterials for which the inelastic strains are driven
by the shear stress as well as the hydrostatic stress [23].

When the cyclic stress amplitude does not vary sig-
nificantly, the evolution of the inelastic strain is mod-
elled by a function ® introduced in the 1D analysis.
The result is generalised so that the evolution of the
inelastic strain is given by

m"’"

|||1]
lnll(N)_ |(N} m22(N) d) (N)
Eu) = 22 @

The functions @, are modelled by

o,(N)=1- Vf[l == CXP{[IH<N;.I>]W}] with i=1,2
0/ (28)

where «;, y; and N,; are material parameters. The iden-
tification is performed by using one experiment at 0° (to
determine ®,) and another one at 45° (to get @,). In the
following section the model will be applied to a [0,90]
SiC/SiC composite.

5. Application to a [0,90] SiC/SiC composite

The identification is performed on a [0,90]s layered
SiC/SiC composite by using the experimental data of
Pluvinage [24]. To identify the material parameters, two
tensile tests at 0 and 45° are used. The material parame-
ters modelling matrix-cracking are obtained by
analysing sequences of loading—partial unloading (see
Fig. 2). The measure of the initial unloading modulus
of a tensile test at 45° allows the evolution law of the
damage variables (D% =D?%% to be determined. The
following parameters are obtained

[ . :
g 250 F Ch 1
e 200 F 2 ° .
2 150} ]
% 100 ¢ Experiments .
E 50 _ Identification ]

0 Al " sl T
0 0.002 0.004 0.006

Tensile strain

Fig. 3. Stress—strain curve at 0° for a SiC/SiC composite.

D, =10, Y,o=060 MPa, m_=12. (29)

The evolution law of the inelastic strains in the fibre
directions are determined by considering the tensile test
at 0°. The knowledge of the damage evolution laws
enables us to identify the following parameters

0y =88 MPa,  o,=4.8 GPa. (30)

The analysis of the tensile test at 45° allows us to
identify the last parameters needed to model the inelas-
tic strain €,

1w =77 MPa,  1,=324 MPa. 31)

The experimental and identified stress—strain response
is plotted in Figs. 3 and 4. There is a good agreement
between experimental and identified stress—strain
curves. A validation on a Iosipescu experiment can be
found in Ref. [22].

To carry out structural calculations, the model pre-
sented here has been implemented in the industrial code
ABAQUS [25] via a user material UMAT subroutine.
The previous data are used to study a plate containing
a hole and loaded in remote tension. The composite is
oriented at 0° with respect to the loading direction. Fig.
5 shows the mesh used in the finite element analysis. In
Fig. 6 the stress profile along the ligament is plotted as

250 — —
< 200 F
By
)
2 150 .
g 100 | -
= ¢ Experiments
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< S0F B
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0 0.001 0.002 0.003
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Fig. 4. Stress—strain curve at 45° for a SiC/SiC composite.



Fig. 5. Mesh of a plate with a hole made of a [0,90] SiC/SiC
composite loaded in remote tension at 0°.

a function of the applied load level. The stress redistri-
bution under monotonic loading is compared with an
elastic computation. One can observe that the stress
redistribution increases as the load level increases lead-
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Fig. 6. Tensile stress profile in the ligament of a plate with a hole
loaded in remote tension for an elastic computation, a non-linear
computation (Gp., = 325 MPa and Gpy,, = 265 MPa).

ing to a reduction of the stress concentration factor in
the vicinity of the hole. Fig. 7 shows the contours of the
damage variable DY, the normal stress along the load-
ing direction &,,, the in-plane shear stress &,,, and the
normal inelastic strain along the loading direction §,,.
The shear stresses are relatively small in comparison
with the normal stresses so that it is expected that the
failure mode will be tensile (mode I). The presence of
damage and inelastic strains induces the stress redistri-
bution shown in Fig, 6.

To identify interfacial wear, cyclic experiments are
needed. The only experiments available on the same
material were carried out in four-point bending (inner
span: 28 mm, outer span: 84 mm, beam height: 2.3 mm,
beam width: 10 mm). The measurements and the iden-
tification are plotted in Fig. 8 and correspond to fol-
lowing parameters

o= 1.6, Y = 098,

The maximum value of the inelastic strain is used for
the identification of the function ®,(N). The minimum
value of the inelastic strain is a prediction by assuming
that the interfacial behaviour is modelled by a constant
shear strength. In that case, the minimum value is halt
of the maximum value [26]. Fig. 8 shows that the
predictions agree well with the experimental measure-
ments of the minimum value of the inelastic strain.

In Fig. 9 the stress profile in the mid-section is
plotted as a function of the number of cycles. Again
there is a stress redistribution due to non-linearity
under monotonic loading condition (N =0). However
the stress redistribution is small enough to allow the
assumption of a constant stress amplitude for N> 0. In
the present case most of the stress redistribution is due
to the first cycle. This is due to the small level of
inelastic strains in the SiC/SiC composite studied in this
paper. Furthermore, the whole beam height is affected
by the stress distribution. This result distinguishes the
beam from the plate with a hole.

Lastly, to analyse a plate with a hole, the function
@,(N) is needed. A cyclic tensile at 45° test is needed to
identify the missing function. These data are not yet
available for the SiC/SiC composite analysed in this

paper.

Noy=T7. (32)

6. Conclusions

A continuum damage mechanics formulation has
been applied to unidirectional ceramic matrix com-
posites. The internal variables which define the state of
the material, in addition to the total strain, have been
identified. Matrix-cracking is described by one damage
variable, debonding and sliding are modelled by an
inelastic strain and by another damage variable measur-
ing the amount of stored energy. These variables are
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Fig. 7. Contours of damage variable modelling matrix-cracking (DQ), normal stress &,,, shear stress ¢;, and normal inelastic strain ;,,, in a plate

with a hole loaded in remote tension (6., = 265 MPa).

related to microscopic quantities introduced to analyse
the degradation mechanisms of ceramic matrix com-
posites. It is also shown that interfacial wear can be
modelled by using the above-mentioned variables.

The previous framework is then extended to model
layered as well as woven ceramic matrix composites.
The nature of the different internal variables is dis-
cussed. A state potential and the evolution laws are
introduced. It is shown that when fibre breakage is not
modelled, five internal variables are needed to describe

the stress—strain behaviour of [0,90] composites. Under
monotonic loading conditions, three different evolution
laws are identified. Under cyclic loading conditions,
two additional functions need to be determined.

The parameter identification is carried out on a SiC/
SiC [0,90] composite. Only two tensile tests are needed,
viz. one at 0° and one at 45°. The monotonic as well as
the cyclic behaviour are identified. The stress redistribu-
tion is analysed in bending as well as on a plate
containing a hole and loaded in remote tension. It is
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Fig. 9. Tensile stress profile at the mid-section of the beam loaded in

four-point bending when N = 0 (elastic computation), N = 0 (non-lin-
ear computation) and N =3 x 10° cycles (non-linear computation).

shown that the redistribution induced by ‘cyclic rachet-
ting’ is less significant than that caused by the non-lin-
ear monotonic behaviour in the case of beam bending.
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