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RECURRENT NEURAL NETWORKS FOR COMPRESSIVE VIDEO RECONSTRUCTION

Antonio Lorente Mur, Françoise Peyrin, Nicolas Ducros
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ABSTRACT

Single-pixel imaging allows low cost cameras to be built for
imaging modalities where a conventional camera would either
be too expensive or too cumbersome. This is very attractive
for biomedical imaging applications based on hyperspectral
measurements, such as image-guided surgery, which requires
the full spectrum of fluorescence.

A single-pixel camera essentially measures the inner
product of the scene and a set of patterns. An inverse problem
has to be solved to recover the original image from the raw
measurement. The challenge in single-pixel imaging is to re-
construct the video sequence in real time from under-sampled
data.

Previous approaches have focused on the reconstruction
of each frame independently, which fails to exploit the nat-
ural temporal redundancy in a video sequence. In this study,
we propose a fast deep-learning reconstructor that exploits the
spatio-temporal features in a video. In particular, we consider
convolutional gated recurrent units that have low memory re-
quirements. Our simulation shows than the proposed recur-
rent network improves the reconstruction quality compared
to static approaches that reconstruct the video frames inde-
pendently.

Index Terms— Computational optics, video reconstruc-
tion, single-pixel camera, recurrent neural networks, image-
guided surgery.

1. INTRODUCTION

Traditional imaging approaches based on arrays of sensors
are ill-suited to imaging modalities where each detector is ei-
ther too expensive or too cumbersome to be arranged as an
array. Single-pixel imaging is a computational imaging strat-
egy that relies on only a single point detector. Therefore, un-
like conventional cameras, single-pixel cameras (SPCs) are
suited to imaging at wavebands where silicon-based detec-
tors are blind [1] or to hyperspectral imaging [2] where each
pixel is a spectrometer. This makes SPCs very attractive for
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biomedical imaging applications based on hyperspectral mea-
surements. In particular, we are interested in fluorescence-
guided neurosurgery where exploitation of the full spectrum
of fluorescence allows tumours to be detected that would have
otherwise gone undetected [3].

A SPC measures the inner product of the image of a scene
with a set of user-defined patterns [4], through a spatial light
modulator and a set of lenses. As the measurements are per-
formed sequentially, it is usually necessary to keep the num-
ber of patterns small for real-time applications. Therefore, the
reconstruction problem in single-pixel imaging is typically
under-determined, with more unknowns than measurements.

Traditional reconstruction strategies for single-pixel imag-
ing can be categorized into two groups. The `2-regularized
approaches [5], and the `1- (or total variation-) regularized
algorithms [4, 6]. On the one hand, `2 approaches are fast,
but they lead to reduced image quality. On the other hand,
while `1 regularization leads to improved image quality, the
resulting iterative algorithms are too slow to be implemented
in real time. Recently, deep neural networks have been used
successfully in medical image reconstruction problems, such
as computed tomography [7, 8] and magnetic resonance
imaging [9]. In [10], they proposed an auto-encoder network
for single-pixel image reconstruction. Although this repre-
sents a useful step towards real-time imaging, the network
in [10] reconstructs every frame independently, and cannot
exploit the temporal redundancy of video sequences.

In the present study, we propose a fast deep-learning
reconstructor that exploits the spatio-temporal features in a
video. In particular, we consider a recurrent neural network
(RNN) that is suited to handling image sequences through its
internal state that memorizes previous inputs. Among recur-
rent neural networks, the long short-term memory cells are
probably the most popular deep-learning variant [11]. Here,
we consider gated recurrent units (GRUs), which have been
shown to have similar performance to long short-term mem-
ory cells [12], although they have less memory requirements.

This paper is organized as follows. In section 2, we in-
troduce the mathematical framework of single-pixel imaging
alongside the classic single-pixel reconstruction approaches.
In Section 3, we present our proposed RNN for solving the
single-pixel video problem. Section 4 describes our numeri-
cal experiments, and our findings are reported and discussed
in Section 5.



2. RELATED WORK

2.1. Single-pixel acquisition

We consider here a video sequence (ft)t∈N ∈RN×1, where ft is
the t-th frame in the sequence. A single-pixel camera provides
access to the measurement sequence (mt)t∈N ∈ RK×1, which
is given by [4]

mt = Pt ft∆t, ∀t, (1)

where (Pt)t∈N ∈ RK×N is the sequence of patterns that are
uploaded to the spatial light modulator, and ∆t is the inte-
gration time for each single pattern. At each time frame,
Pt = (pt,1, . . . ,pt,K)

> ∈ RK×N
+ is a matrix that contains a se-

quence of K patterns. Patterns are typically chosen on an or-
thogonal basis (e.g., Hadamard, Fourier, wavelets [5]). For
simplicity, the same patterns are usually chosen for measur-
ing each frame; i.e., Pt = P,∀t.

We assume that ft is constant for a time period of K∆t,
which corresponds to the acquisition of each measurement
frame mt .

2.2. Single-pixel image reconstruction

2.2.1. Static reconstruction

Static reconstruction recovers f∗t ≈ ft by designing an inverse
mapping Φ that relies solely on the current measurements mt ;
i.e.,

f∗t = Φ(mt), ∀t, (2)

Traditional static approaches solve a sequence of optimization
problems of the form

f∗t ∈ argmin R(ft) s.t. Pt ft∆t = mt (3)

where R is typically the `2 norm [5]), the `1 norm [4], or the
total variation norm [13].

In [10], they proposed the use of an auto-encoder that pro-
cesses each measurement frame independently

f∗t = Φθθθ
∗(mt), ∀t, (4)

where θθθ
∗ represents the weights of the networks that are com-

puted during a training phase. Although the training phase is
time consuming, evaluation of (4) is fast. However, this ap-
proach fails to exploit the spatio-temporal redundancy within
video sequences, as the same network Φθθθ

∗ is used for all of
the time frames and it has no feedback mechanism.

2.2.2. Dynamic reconstruction

Dynamic reconstructions exploit temporal features by design-
ing inverse mapping that takes into account the measurements
of previous frames (mt ′)0≤t ′≤t for the reconstruction of the
current frame ft :

f∗t = Φ(mt , . . . ,m0) (5)
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Fig. 1: Proposed recurrent neural network for single-pixel
video reconstruction. The design is inspired by [10], but the
convolutional layers are replaced by convolutional gated re-
current units (ConvGRUs) that maintain the long-term tem-
poral dependency. ConvGRU(Ks,Fm) designates a ConvGRU
cell with convolutional kernels of size Ks×Ks and Fm output
feature maps.

In particular, sparsity promoting solutions that rely on
minimizing a problem of the form

f∗t ∈ argmin R(ft , . . . , f0) s.t. Pt ′ ft ′∆t ′ = mt ′ , 0≤ t ′ ≤ t
(6)

have been proposed by different authors [6]. Despite their
elegance, such approaches require iterative schemes that lead
to reconstruction times (∼min) that are too long for real-time
applications.

3. PROPOSED RECURRENT NETWORK FOR
DYNAMIC RECONSTRUCTION

We propose to reconstruct a video sequence using a RNN that
makes use of a hidden memory state. The current frame f∗t
is estimated from the current measurement vector mt and the
previous hidden state ht−1:

(f∗t ,ht) = Ψθθθ
∗(mt ,ht−1) (7)

where Ψ represents the RNN and θθθ
∗ are the parameters of the

RNN obtained after training. Note that the hidden state is also
updated so as to maintain long-term dependency.

We consider the four-layer network depicted in Fig. 1.
The first layer is a fully connected layer that projects the mea-
surement frame mt to the image domain through the statisti-
cal completion presented in [14]. The next two layers are two
ConvGRUs, followed by a (regular) convolutional layer.

The output of a ConvGRU given an input xt is the same



as its memory state ht and can be computed as follows [15]:
zt = σ(Wz ∗xt +Uz ∗ht−1 +bz) (8a)
rt = σ(Wr ∗xt +Ur ∗ht−1 +br) (8b)
h̃t = tanh(Wh ∗xt +Uh ∗ (rt �ht−1)+bh) (8c)
ht = (1− zt)�ht−1 + zt � h̃t (8d)

where σ is the sigmod function,� is the Hadamard product of
two vectors, ∗ is a convolution operator, and (Wr,Wz,Wh,Ur,
Uz,Uh,br,bz,bh) are the parameters of the unit. The update
gate zl

t defines how much information from the memory state
we want to keep, and the reset gate rl

t decides if we want to
forget our previous memory state.

Given a training set {(fq
{1,...,T},m

q
{1,...,T})}1≤q≤Q, where

mq
t = Pfq

t ∆ according to (1), we trained our network using the
following loss function:

θθθ
∗ ∈ arg min

Q

∑
q=1

T

∑
t=1

‖fq
t −Ψθθθ (m

q
t ,h

q
t−1)‖2

2

2QT
+λ‖θθθ‖2

2 (9)

where λ is the weight decay parameter.

4. NUMERICAL SIMULATIONS

In our experiments, we chose M = 333 Hadamard patterns of
size N = 64× 64. The size of the convolutional kernels and
number of feature maps of our RNN were chosen to mimic
those in [10].

4.1. Training dataset

We use the UCF-101 [16] dataset to train and test our net-
work. The UCF-101 dataset is an action recognition dataset
consisting of 13320 videos from 101 action categories. Each
video has a different number of frames and a different resolu-
tion. Therefore we down-sample all of the frames to 64×64.

4.2. Training procedure

We train our RNN using Pytorch [17]. For training, we con-
sider the ADAM optimiser for 150 epochs. The step size is
initialized to 10−3 and divided by 5 every 40 epochs. At each
epoch, we randomly extract 10 consecutive frames from each
video. The weight decay regularization parameter λ is set to
10−6. The number of learned parameters is 1033601. Note
that the fully connected layer is computed beforehand [14],
so that our network does not need to learn it.

5. RESULTS AND DISCUSSION

We compare our dynamic reconstruction method with three
static approaches. We consider the pseudo inverse solution,
the total variation solution, and a deep-learning approach.
More precisely, the pseudo inverse and the total variation

Table 1: Average peak signal-to-noise ratio (PSNR) and aver-
age structural similarity (SSIM) over the UCF-101 test dataset
for the three different methods

Method PSNR SSIM

Pseudo-inverse 22.05 0.9278
Static network [10] 23.63 0.9479
Proposed dynamic network 23.92 0.9508

solutions correspond to choosing R as the `2-norm and as
the total variation in (3), respectively. The deep-learning ap-
proach is the network proposed in [10]. As reported in Table
1, our proposed dynamic reconstruction method yields better
average peak signal-to-noise ratio (PSNR) and structural sim-
ilarity (SSIM) results than the other two static reconstruction
methods.

We also compare our proposed method using a real
fluorescence-guided neurosurgery video. From the original
video, we consider the fluorescence signal from protopor-
phyrin IX within the tumours. We consider 20 frames that
we reshape to 64× 64 pixels. Fig. 2 shows the fluorescence
ground-truth and reconstruction for two frames. Although
our network is trained on an action recognition dataset, it
provides better reconstruction results than the other three
methods, both visually and it terms of PSNR and SSIM.

6. CONCLUSION AND PERSPECTIVES

We propose a RNN to solve the single-pixel video problem.
We use ConvGRUs that enable the spatio-temporal redun-
dancy within natural videos to be exploited. Compared to
strategies based on static reconstructions, the reconstruction
error is decreased and the reconstruction quality is visually
improved. In future, we will evaluate this method on ex-
perimental data. Although this study focuses on single-pixel
videos, our method can be adapted for similar problems that
incompletely sample the Fourier domain, such as magnetic
resonance imaging.

References
[1] Jaewook Shin et al., “Single-pixel imaging using compressed

sensing and wavelength-dependent scattering,” Opt. Lett., vol.
41, no. 5, pp. 886–889, Mar 2016.

[2] Florian Rousset, Nicolas Ducros, Françoise Peyrin, Gianluca
Valentini, Cosimo D’Andrea, and Andrea Farina, “Time-
resolved multispectral imaging based on an adaptive single-
pixel camera,” Opt. Express, vol. 26, no. 8, pp. 10550–10558,
Apr 2018.

[3] Pablo A Valdés et al., “Quantitative fluorescence using 5-
aminolevulinic acid-induced protoporphyrin ix biomarker as a



(a) Ground Truth (b) (c) (d)

(e) Ground Truth (f) (g) (h)

Fig. 2: Reconstruction through different methods of a frame of a fluorecence-guided neurosurgery video. (a) Ground truth
frame 10. (b) Proposed recurrent network; peak signal-to-noise ratio (PSNR) = 24.50, structural similarity (SSIM) = 0.86. (c)
Static network proposed in [10]; PSNR = 24.06; SSIM = 0.84; (d) Total Variation [13]; PSNR = 24.35, SSIM = 0.85. (e)
Ground truth frame 10. (f) Proposed recurrent network; peak signal-to-noise ratio (PSNR) = 24.64; SSIM = 0.87. (g) Static
network proposed in [10]; PSNR = 24.35; SSIM = 0.86; (h) Total Variation [13]; PSNR = 24.16, SSIM = 0.85.

surgical adjunct in low-grade glioma surgery,” Journal of neu-
rosurgery, vol. 123, no. 3, pp. 771–780, 2015.

[4] M.F. Duarte, M.A. Davenport, D. Takhar, J.N. Laska, Ting
Sun, K.F. Kelly, and R.G. Baraniuk, “Single-pixel imaging via
compressive sampling,” Signal Processing Magazine, IEEE,
vol. 25, no. 2, pp. 83–91, March 2008.

[5] Florian Rousset, Nicolas Ducros, Andrea Farina, Gianluca
Valentini, Cosimo D’Andrea, and Françoise Peyrin, “Adaptive
Basis Scan by Wavelet Prediction for Single-pixel Imaging,”
IEEE Transactions on Computational Imaging, 2016.

[6] R. G. Baraniuk, T. Goldstein, A. C. Sankaranarayanan,
C. Studer, A. Veeraraghavan, and M. B. Wakin, “Compressive
video sensing: Algorithms, architectures, and applications,”
IEEE Signal Processing Magazine, vol. 34, no. 1, pp. 52–66,
Jan 2017.

[7] H. Gupta, K. H. Jin, H. Q. Nguyen, M. T. McCann, and
M. Unser, “Cnn-based projected gradient descent for consis-
tent ct image reconstruction,” IEEE Transactions on Medical
Imaging, vol. 37, no. 6, pp. 1440–1453, June 2018.

[8] Il Yong Chun, Xuehang Zheng, Yong Long, and Jeffrey A.
Fessler, “Bcd-net for low-dose ct reconstruction: Acceleration,
convergence, and generalization,” 2019.

[9] Kerstin Hammernik et al., “Learning a variational network for
reconstruction of accelerated mri data,” Magnetic resonance in
medicine, vol. 79 6, pp. 3055–3071, 2017.

[10] Catherine Higham, Roderick Murray-Smith, Miles Padgett,
and Matthew. Edgar, “Deep learning for real-time single-pixel
video,” Scientific Reports., , no. 8, Feb 2018.

[11] Sepp Hochreiter and Jrgen Schmidhuber, “Long short-term
memory,” Neural computation, vol. 9, pp. 1735–80, 12 1997.
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