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Abstract—Toubkal is a new hardware architecture which
provides secure, efficient and flexible hardware isolation. It is a
modular system that offers strong separation of different hard-
ware modules within a system. Lightweight devices use mainly
a Memory Protection Unit (MPU) to protect the memory and
create an isolation architecture. However, the MPU offers only a
memory control access for the software running on the system.
This scheme does not prevent other hardware components from
accessing system memories. Toubkal aims to enhance these MPU
architectures by adding a new hardware layer to create different
access environments for different hardware components.

Toubkal has been designed in such a way that it can easily
be adapted to the system needs in terms of security, safety
and performances. It does not require any change in the
existing hardware modules. We present a detailed description
of the architecture, then we compare and discuss run-time, area
overhead as well as security limitations using different policies
and options. The first experimental hardware module increases
between 0.08% and 8.5% a single core Rocket Chip cells area.

Index Terms—Isolation, Hardware Security, Trusted Comput-
ing

I. INTRODUCTION

With the rise of lightweight devices use in health-
care, autonomous vehicles and smart factories, protection of
lightweight devices must be strengthened while offering good
performances. Memory isolation could be a good solution to
add more resilience to an embedded system. Memory isolation
is based on the principal of least privilege and privilege
separation. It can create different execution contexts, so each
program can be executed safely in its context. The industry
proposes solutions for lightweight devices to achieve such
security protection. One of the most known is the Arm MPU
[1].

A lightweight device is a low-cost device that does not need
complex memory management. Therefore, it lacks a Memory
Management Unit (MMU), and its memory model is referred
to as a flat memory model because its memory appears as one
contiguous address space.

Modern lightweight embedded systems have become more
complex and contain different hardware components with
access to a system memories. The Arm MPU and the likes
[2]–[4] are optional hardware components in some cores used
to protect the memory in lightweight devices. These MPUs

are less complex than the MMUs and have security and
safety limitations. First, the privileged modes have access
to the whole memory mapping which can be critical to the
system security and dependability. Many researchers [5]–[7]
have shown flaws in Operating Systems (OS) and how an
attacker can escalate the privileges, and so, they can access
all secrets stored in memories, change the MPU configuration,
etc. Second, they only offer controlled memory accesses to the
Control Processing Unit (CPU). Unfortunately, the CPU is not
the only hardware component connected to memories. In this
paper, we refer such components as Masters. Other Masters,
such as the Direct Memory Access (DMA) peripheral, can
access memory too. Neither MPUs nor MMUs can protect the
memory from such accesses. Therefore, an additional layer of
isolation is needed.

Interesting solutions [8]–[13] have been proposed by some
academic papers and patents to add a special MMU for
peripherals such as DMA. The so called In Out MMUs
(IOMMU) or System MMU (SMMU) offer solutions similar
to the traditional MMU. They add address translation and
permissions for IO components.

However, these solutions are subject to a major limitation
in this paper context. They are destined to high performance
computer systems and require lots of cells area and memories
as they use page tables and caches. Moreover, the IOMMUs
and SMMUs are interfaced with one IO component (such
as DMA). Therefore, if there are two IO components of
which accesses must be controlled, the device will need two
IOMMUs or SMMUs.

Another limitation they suffer from in this context, is the
latency introduced into the devices. According to [14], they
impose an extra performance penalty. This penalty is caused
by the frequent mapping and un-mapping calls to create
translation entries in the IO component address space.

Contrary to high performance systems, lightweight devices
have strong power consumption and size constraints, and most
of their applications are time critical. The use of any cited
solution will add very high overheads, power consumption,
cells area and run-time.

Others [11], [15]–[17] offer a DMA transfer filter where
they define a safe region in the memory controller for the
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DMA. The DMA can only access the defined region. However,
this solution does not offer a real and complete separation. It
limits the DMA access to a contiguous memory space.

While the need of a strong spacial separation becomes
clear, we observe this level of isolation has been neglected
in modern lightweight devices. We present Toubkal, a novel
hardware module which overcomes previous work limitations
to create low-cost and efficient spacial separation between
Masters. Toubkal is an experimental parameterizable block
with multiple-ready policies. This hardware block is responsi-
ble of controlling memory accesses of different IO components
within the device to create a strong isolation between these
components. Toubkal is compatible with existing Arm and
RISC-V based Instruction Set Architectures (ISA) with an
Advanced High-performance Bus (AHB) without changing the
existing Masters.

The contributions of this paper are summarized as follows:
• We present an overview of MPUs limitations and the

motivations behind designing Toubkal.
• We present Toubkal design and implementation. We

implement Toubkal in Chisel3 [18] and offer a flexible
design with multiple ready options to generate the right
block for a given device.

• We evaluate Toubkal run-time performances, cells area
and its own resiliency. We compare the impact of each
option on Toubkal design and system security.

The rest of the paper is structured as follows. In section II,
we give an example to motivate our solution and discuss lim-
itations of the existing MPUs. Then, in section III we present
Toubkal, a description of its major components, the way it
communicates with the software, and different parameters and
policies included in the package. We evaluate the overheads of
Toubkal in section IV, execution time, cells area and security,
and we draw a comparison of the impact of each parameter
and policy on Toubkal design and behavior. In section V, we
discuss related work. Finally, in section VI, we conclude this
paper.

II. TOUBKAL USE CASE AND MOTIVATIONS

This section presents a brief Use Case and the requirements
for an ideal protection system. Note that the use of Toubkal
is not limited to this example. Consider a device with three
Masters: a CPU, a DMA and a Cryptography Engine (CE).
The CE can access the SRAM to read/write values for inter-
mediate cryptographic operations. While usually the Keys are
protected, an attacker can take advantage of a vulnerability
like a buffer overflow or uses the DMA [19], [20] to access
the intermediate cryptographic results. This way, the attacker
can find the values of the keys from intermediate operations.
Toubkal prevents the CPU and the DMA from reading the
concerned memory region while the CE is processing its
cryptographic operations.

To implement the protection system in such a way, Toubkal
requires to be:

• Flexible: Toubkal has to be flexible. Flexibility in this
paper means that the solution has to offer different strate-

gies and options to achieve hardware separation. In the
previous example, designers can opt for different policies
depending on the existing tools and device constraints.
Some would prefer to forbid all the time the region for
all other masters. Others would prefer to forbid the access
temporarily and then clean and re-use the same region for
other operations by other Masters because of memory
area constraints. For example, we can imagine a CPU
writes in that region a plain text. This plain text will be
read by the CE. Toubkal then forbids the access of the
CPU and DMA to this region while the CE is cyphering
the data, and then in the same region, the CE cleans
intermediate values and writes the resulting encrypted
data. Finally, Toubkal grants access again to the CPU
to read the result.

• Efficient: Toubkal must be transparent but also small.
Transparent, because Toubkal will catch all communi-
cations between the concerned Masters and memories,
therefore the latency inside Toubkal must be negligible,
and does not affect device timing. Small, because we are
targeting principally lightweight embedded systems.

• Resilient: A protection domain guarantees a certain pro-
tection. Therefore, it must be itself resilient. Toubkal has
to be configured at some point. Different approaches
could be in place. Some approaches guarantee more
resiliency than others, like for example hardware-only so-
lutions are usually more resilient than hardware-software
or software-only solutions. The chosen approach has to
take in consideration the chosen policy and make sure
not to weaken Toubkal.

Previous works [8]–[13], [15], [16] fail in flexibility and
efficiency requirements. They add high overheads in terms
of power consumption, hardware cells area and run-time
execution and they control access to a specific IO component.

Previous MPUs such as ARM MPU, Intel EA-MPU, Rocket
Chip Physical Memory Protection (PMP) and Mondrian are
limited, and fail in one or more of these requirements. All
the cited MPUs are interfaced with the core. This results
in controlling memory accesses of the core alone. All other
memory accesses are not controlled.

Another limitation of these MPUs is that the OSes, even
if not trusted, they run in privileged mode, and thus have
access to the whole memory space even MPUs memory
mapped registers. [5], [6] depict weaknesses in OSes. Some
of these vulnerabilities lead to privilege escalation. Therefore,
an attacker can access any memory address, or, sometimes,
completely turn off the protection of the MPU.

The aim of Toubkal is not to replace these MPUs but
to enhance them. It offers a new layer of security and can
work with any cited MPU. It is expected to overcome the
above limitations while guaranteeing good performances and
acceptable hardware cost.

Figure 1 illustrates a visual of the memory protection. Each
column represents a protection domain. Here the protection
domain is a given Master. Each Master can be prohibited or
not from accessing memory regions. There can be different
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policies to manage protection domains. Therefore, an ideal
system would allow flexibility for both designers to generate
the hardware block with the right size and policy, and devel-
opers to use it easily statically or dynamically.

Fig. 1. A visual of how a single contiguous memory space is segmented
between different Masters.

Toubkal is a parameterizable block written in Chisel3. It
generates a block design in Verilog ready to include in a given
system design. This block is responsible of creating a spacial
separation between Masters. The size of Toubkal depends on
the needs and policies. Designers can choose between three
policies, static, semi-static and dynamic policies. They can also
choose, among many other parameters, the address space (32-
bits or 64-bits etc.) and the granularity of memory regions
(size of each region is a power of two or a multiple of 32
bytes).

The next section presents in detail the design of Toubkal. We
describe Toubkal major components and the different options
and policies to choose to generate the tailored design.

III. TOUBKAL DESIGN

The major challenge of Toubkal is to develop a flexible de-
sign and to keep it small with a negligible run-time overhead.
This section starts with describing our initial analysis of the
design, then presents our proof-of-concept implementation.

A. Toubkal Requirements

Toubkal needs to control all memory accesses of the con-
cerned Masters. Therefore, the position choice of Toubkal is
crucial. Communication between Masters and Memories is
done via a communication bus. In this paper, we focus on
systems with an Advanced High-performance Bus(AHB). The
AHB [21] is a bus that connects hardware components with
high bandwidth speed needs. Such components are Masters,
Interconnect interfaces and Slaves. For example, CPUs, DMAs
and Memories (external or internal) are connected with an
AHB. The AHB looks like the perfect spot to catch commu-
nication between Masters and memories. Although, working
in this spot requires Toubkal to control the access instantly,
within the clock cycle. The design has to avoid any sequential
processing.

The second requirement is the flexibility of the design.
We suppose that depending on the application field, size and
policies may vary. This is why Toubkal was designed as
parameterizable design. In the design’s top, designers choose
the compatible configuration such as the address width, the
granularity and the policy. Then they can generate the cor-
responding Verilog code to embed it in their design. To do

so, we write our block in Chisel3, which is a new hardware
description language that supports advanced hardware design.
Chisel is embedded in Scala programming language and takes
advantage of it to offer a high level hardware description
language with concepts like object-oriented programming,
polymorphism and functional programming.

The third requirement is resiliency. This point depends on
the chosen policy. For a static policy, there is no need for
Toubkal to include a software part. However, for a semi-static
or dynamic policy, Toubkal must include a micro-code to
manage configurations. This introduces a new attack surface
to Toubkal. Section IV discusses in details this aspect.

B. Toubkal Major Components
Toubkal is composed mainly of the Master Look-aside

Buffer (MLB) the uCode block, in addition to some logic
for the look-up and match, security checks and Toubkal
configuration (see figure 2). In this work, Toubkal is interfaced
with the AHB but it can be positioned in any other position that
catches communication between Masters and memories. The
abstraction layer aims to facilitate the integration of Toubkal
in different systems and positions.

Toubkal is composed of uCode which is responsible
of memory mapping all Toubkal registers and configuring
Toubkal. uCode can be configured from a software called
micro-code. The MLB is a set of registers to store regions
configurations or look-up&match some address. This paper
presents and discusses two different implementations of the
MLB. uCode is connected to MLB registers to store regions
configurations. And then, there is the abstraction layer. This
layer is customizable and aims to facilitate the integration of
Toubkal in different systems and spots.

Fig. 2. Major components of hardware block of Toubkal: The uCode module
contains information to recognize the micro-code which is responsible of
configuring Toubkal. This module is linked to the MLB. The MLB is a set of
registers to store regions configurations. The abstraction layer is customizable
and aims to facilitate the integration of Toubkal in different systems and at
different spots.

C. Master Look-aside Buffer
The MLB is designed to store memory regions configura-

tions, it looks-up&matches addresses. To store configurations,
Toubkal uses registers, which are costly, but guarantee rapid
access. Toubkal proposes different ways to store configura-
tions. As shown in figure 3, designers can choose the number
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of memory region slots, the granularity, the address width, the
number of concerned Masters and the method to attribute slots
to Masters.

Fig. 3. MLB slots: The figure presents the different ways to store config-
urations in the MLB for a 32 bits address space. N represents the number
of masters. The first method, called UMLB (U for Unique) stores one
configuration per Master per slot, while the second method, called SMLB
(S for Shared), stores one configuration per slot but for multiple masters. In
the SMLB, there is no need for a valid bit as each Master has a corresponding
bit in the first column from the left. The value 0 means the configuration is
not valid for that master and vice versa. The third column from the left refers
to size in case of coarse-grained granularity, and to end address in case of
fine-grained one.

The first important decision to make in Toubkal is to choose
between configuring memory regions white-list or memory
regions black-list. This choice is strategic and depends on
which case would lead to fewer slots to configure. We added
this option as we believe for isolation at this level, contrary to
MPUs and MMUs, it is more interesting to create a black-list
rather than a white-list. It is more likely to prohibit a memory
region rather than allowing it. Indeed, the way of thinking
at this level is different compared to the application level.
Thus, in the rest of the paper we will be more talking about
prohibiting memory regions to Masters rather than allowing
them.

Toubkal offers two ways to organize slots (see figure 3).
The first method is called Unique MLB (UMLB) because
each slot is unique to a Master, and the second method is
called Shared MLB (SMLB) because a slot can be shared
between multiple Masters. The UMLB consists in storing in
each slot a memory region configuration for a specific Master.
While the SMLB consists in storing in each slot a memory
region configuration for multiple Masters. Each way has its
advantages and its drawbacks, and each is more suitable to
specific use cases. While the UMLB requires less logic to
match or insert the Master Id, the SMLB can require fewer
slots (therefore fewer cells area) in case some Masters share
some common permissions. In the SMLB, there is a bit for
each Master. When the bit is up, it means that the configuration
is valid for the corresponding Master and vice-versa.

Concerning the number of slots, Toubkal accepts up to 16
slots. Because of the high cost of registers, we limited the
number of slots to 16 slots. Designers can choose between 4,
8, 12 or 16 slots. The size of Toubkal grows proportionally to
this number. Section IV-B shows how the area is impacted by
the number of slots.

The other parameter is the granularity of Toubkal. This
paper proposes two granularities. For fine-grained granular-
ity, Toubkal proposes regions multiple to 32 bytes and the
region address start is aligned to 32 bytes. And for coarse-
grained granularity, Toubkal proposes regions power of two
and the region address start is aligned to its size. The second
granularity is more constraining in comparison to the first one.
However, as figure 4 shows, the coarse-grained requires less
logic than the fine-grained to match addresses.

To configure memory regions in Toubkal, MLB registers
can be hard-coded for more resiliency and less flexibility, or
memory mapped and then the uCode is responsible in con-
figuring them during software execution for more flexibility
and dynamism. Making Toubkal accessible from the running
software adds its attack surface. We discuss this point in the
next section.

Fig. 4. A fine grained match is more complex than a coarse grained match.
The second one compares the address with the base address and the limit
address, while the first one compares the logical combination of the address
and the mask corresponding to the size of the region with the base address.

D. uCode and Toubkal configuration

The uCode permits to a certain part of the software (micro-
code) to configure Toubkal. uCode contains registers to store
the start address and the end address of the micro-code in the
memory, as well as the Id of the Master allowed to run this
code. Once Toubkal is enabled, these registers have to be set
and then locked until system reset. The micro-code is the only
software part that can configure Toubkal MLB. Toubkal saves
the Program Counter (PC) and whenever a read/write of MLB
registers occurs, it checks if the PC is inside the micro-code
region.

To make sure the micro-code is running in privileged mode
without changing the CPU, we propose to map the MLB
registers to the system memory region. In our case, as we
are working on RISC-V and Arm cores, there are memory
spaces [22], [23] for each core that can only be accessed by
program code running in privileged mode. We take advantage
of these spaces to memory map the uCode and MLB registers.

Toubkal is configurable either once or through a unique
trusted Master. For the second case, uCode is mandatory, and
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is the only one responsible in configuring Toubkal during run-
time. Each slot can be configured and locked independently. If
a slot is set locked, it can only be reconfigured after the system
reset. If the slot is not locked, then it can be reconfigured as
many time as needed by the micro-code.

Fig. 5. Toubkal example of memory mapped registers. The example corre-
sponds to a 32 bits address space with the UMLB configuration.

Toubkal is controlled by its own set of memory-mapped
registers. Figure 5 shows an example of memory-mapped
registers. The base address for these registers varies depending
on which core is used. For Arm for example, the base address
has to be between 0xE0000000 and 0xE003FFFF [22] to make
sure that they are accessible only by code running in privileged
mode. Toubkal mapped registers can change in terms of the
chosen options.

E. Toubkal Policies

We put in place different policies to generate different de-
signs of Toubkal. These choices impact the hardware area cost.
Section IV compares between all the options. We implement
three policies, static, semi-static and dynamic.

The static policy is a security policy that focuses on
resiliency rather than flexibility. In this policy, memory regions
configurations are hard-coded, or loaded using the Read Only
Memory (ROM) or a One Time Programmable (OTP).

The semi-static policy is a little more flexible than the
first one. Like the static policy, some configurations can be
fixed from the beginning, but it offers the possibility to add
other configurations during execution. To do so, we add a
uCode that has to be run in privileged mode and we memory
map some registers. These registers are only accessible from
privileged mode. The uCode must be a predefined memory
region, which means that outside this region Toubkal will not
configure itself. Once a configuration is added, it cannot be
modified or removed, although, this policy works only with
the SMLB configuration, therefore, it is possible to validate
or invalidate the configuration for each Master by flipping the
corresponding bit. This can be useful in the use case presented
in section II. It is also possible to lock a configuration so no
one can change it until system reset.

The dynamic policy is the most flexible but the less secure
of the three policies. From the uCode, it is possible to add,
remove or change all configurations. The uCode runs under
the same condition as in the semi-static policy. There is also a

lock bit to lock a configuration so it cannot be modified until
system reset.

In the next section, we evaluate Toubkal, compare and
discuss the differences between each policy in terms of per-
formances, cells area and security.

IV. TOUBKAL EVALUATION

Toubkal proposes different options and policies. Some op-
tions and policies offer more flexibility to developers than
other. For example, fine grained option is more flexible and
user-friendly for developers than the coarse grained one. But
it comes at a cost. The same observation can be done for
policies, the more a policy is flexible, the more the surface
area of Toubkal grows.

Policies can also impact the device security. For example,
the dynamic and semi-static policies introduce the micro-
code which is a software run to configure Toubkal. Adding a
software exposes Toubkal to software attacks such as Return
Oriented Programing (ROP) attacks. While the static one does
not need a software, it eliminates the risk of such attacks.

We realized Toubkal design in Chisel3. Toubkal is written
in around 480 Chisel3 lines of code and generates up to
3400 optimized and synthesizable Verilog lines of code. The
generated Verilog codes are then synthesized. Synthesizing
is compiling the Verilog code into a set of gates and wires
to build a block of an Application-Specific Integrated Circuit
(ASIC).

In this section we evaluate Toubkal from three different
aspects: performances, cells area and security. We compare
for each aspect the impact of each option and policy.

A. Run-time evaluation

To evaluate the run-time behavior, we evaluate the latency
inside Toubkal. As seen above, we have two main parts in
Toubkal, the uCode and the MLB. The uCode is responsible
of decoding the data sent from the micro-code and then
stores it into the right MLB slot. This operation is done in
one clock cycle. Concerning the look-up&match, the result
is instantly obtained for both granularities. Toubkal intercepts
communication in the AHB. Therefore, it requires a negligible
latency. The configuration of MLB is considered as read/write
in a Static Random Access Memory (SRAM). The address
checking must be done in less than a clock cycle. Toubkal uses
parallel look-up. The implementation for the coarse granularity
is less complex than the fine granularity. In the first one, only
a match of a logical combination of the address and a mask
is needed. While the second one needs more logical elements
as we compare the address with the base and the limit.

To make sure Toubkal runs in less than a clock cycle, we
synthesize the design with temporal constraints. The temporal
constraints consist in delaying the Input and Output ports.
Defining the input delay port value means that the data would
reach the input ports after the defined value. And defining the
output delay value means that the data should be present on
the output port before the specified clock edge.
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We synthesize our design in different clock periods up to
1GHz for a 90nm Low Power technology. The objective is to
determine the fastest clock speed within the defined temporal
constraints, which are 0.4 of clock period as an input delay
and as output delay, by determining delay of the critical path
inside Toubkal. If the delay is positive, then Toubkal assures
data at the output ports in time. Otherwise, there are cases,
e.g. the critical path, where Toubkal needs more than a clock
cycle to deliver data.

The result of synthesis differs from a policy to another. For
the static policy, even at 1GHz, the delay is always positive.
For the semi-static and dynamic policies, the delay equals 0 at
200 MHz, and for more than 200MHz, the delay is negative.
The critical path where the delay is negative matches the path
done to configure a slot in the MLB. Assuming that Toubkal
needs more than a clock cycle to configure the whole slot, we
can add a timing exception for uCode module. During Toubkal
configuration, the communication might be blocked for two or
three cycles for each slot, depending on the granularity of the
design as seen in section III.

As we target lightweight devices, a positive delay at
200MHz and less for 90nm Low Power technology is a good
result. For the rest of the paper, all our syntheses are done in
100MHz for a 90nm Low Power technology.

B. Cells area evaluation

In this section, we evaluate the cells area of Toubkal
targeting a 90nm Low Power technology for a clock frequency
of 100MHz and compare between the different options and
policies. In this experiment, tests are limited to a 32 bit address
space. Toubkal surface is stated in Gates Equivalents (GE).
kGE refers to thousands of GE. A GE is retrieved from the
surface of a NAND2 gate.

1) Comparison between configuration methods: Section
III-C presents two different configuration methods to store
Masters Id, UMLB where the slot is valid for one Master
and the SMLB where the slot is valid for multiple Masters.
Table I shows the impact of each method on Toubkal area.
In the UMLB, for n Masters, Toubkal needs log2Ceil(n) bits
to store all possible values of Masters Ids. While in the
SMLB, Toubkal needs n bits because it flips the p bit to
activate a region for Master number p (see section III-C).
However, n is greater than or equals to log2Ceil(n) for n
strictly positive, therefore Toubkal needs more registers for
SMLB comparing to UMLB. Here, the test was done for 2
Masters, and log2Ceil(2) equals 1.

Registers are not the only thing impacted. The combina-
tional logic is impacted too. In the SMLB, Toubkal needs more
logic than in the UMLB. To flip the p bit is more complex
than just writing the value p in a register. The same is correct
for the look-up&match. Toubkal has to look if the bit number
p is up or not.

The choice between the two possibilities is strategic. In case
there are more common regions between different Masters, it
is more interesting to use the SMLB rather than the UMLB.
This can save many slots. The use case presented in section

TABLE I
TOUBKAL CELLS AREA FOR A DYNAMIC POLICY. (IN KGE)

4 slots 8 slots 12 slots 16 slots

UMLB

SMLB

3,36

3,35

6,21

6,31

9,10

9,19

12,04

12,11

TABLE II
TOUBKAL CELLS AREA FOR A DYNAMIC POLICY. (IN KGE)

4 slots 8 slots 12 slots 16 slots

Coarse granularity

Fine granularity

3,36

4,84

6,21

8,90

9,10

13,49

12,04

17,76

II would work perfectly with the SMLB. Three Masters CPU,
DMA and CE share the same region. Here the SMLB saves
two slots. But in case Masters do not share regions, the UMLB
is suitable.

2) Comparison between coarse grained and fine grained
granularities: Table II shows results of different syntheses for
coarse and fine granularities. The fine grained option requires
more area than the coarse grained one. The gap between the
two is proportional to the number of available slots. This is
due to two factors that were discussed in section III-C. The
first factor is the growing size of the MLB registers. For the
coarse granularity, the size of a region is a power of two and
is on 5 bits. While for the fine grained granularity, instead of
the size of a region we have the limit of the region which is
on 27 bits for a 32 bit address space and an alignment to 32
bytes. Therefore for each slot, there are 22 additional bits in
the fine grained granularity. Added to this the logic behind the
look-up&match. The implementation of the parallel look-up in
this case is more complex and requires more logical elements
to correctly answer to the timing constraints.

Nevertheless, the coarse grained option is constrained. The
user needs to configure regions with a size power of two, and
the base address is aligned with the size. While the fine grained
requires only that the size is multiple of 32 bytes and the base
address is aligned to 32 bytes.

At this level of isolation, we believe that the coarse grained
option would not be very constraining for developers. Depend-
ing on the device resources, some designers would opt for the
coarse grained option to save some hardware area, other would
opt for the fine grained one for more user-friendliness and less
engineering. However, such advantage comes with a surface
cost.

3) Comparison between policies: Here, we compare be-
tween the three policies, static, semi-static and dynamic. We
fix granularity into the coarse one, configuration method into
the second method, then for each policy we vary the number
of slots.

Table III shows the results of our syntheses. Static policy
results catch our eyes immediately because of the huge gap
between this policy and the others. In fact, static policy results
are normal. As seen in section III-E, the MLB configuration is
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TABLE III
TOUBKAL CELLS AREA FOR A DIFFERENT POLICIES . (IN KGE)

4 slots 8 slots 12 slots 16 slots

Static

Semi-Static

Dynamic

0,15

3,45

3,35

0,16

6,45

6,31

0,18

9,49

9,19

0,21

12,31

12,11

TABLE IV
TOUBKAL CELLS AREA FOR SEMI-STATIC POLICY. (IN KGE)

Hard-coded slots 4 slots 8 slots

0 slots

1 slots

2 slots

3,45

2,74

2,01

6,45

5,85

5,16

hard-coded. Therefore, when Chisel3 generates the optimized
and synthesizable Verilog code, it transforms all registers into
simple wires and assigns values. And there is less and less
combinational logic in Toubkal. Chisel3 compiler also removes
all redundant values. For example if some regions have the
same size value, it will just assign the value once, and use it
for all the concerned regions while looking-up&matching.

Meanwhile, the gap is smaller between the semi-static and
dynamic policies. The semi-static policy cells area is a little
bigger than the dynamic one because Toubkal needs more
combinational logic. In semi-static policy, slots cannot be
fully modified. Developers can only modify the Masters Ids
registers, and activate or deactivate the configuration for a
specific Master.

For the semi-static policy, some slots can be hard-coded.
For each hard-coded slot, the reduction of Toubkal cells area
is not negligible at all. Table IV shows some results. The size
of Toubkal is reduced proportionally to the number of hard-
coded slots. This reminds us of the static policy. The hard-
coded slots are not stored in registers anymore. Hence, the
surface area is reduced.

C. Security evaluation

In this part, we discuss how Toubkal helps protecting
the device from a variety of attacks as well as its security
limitations.

1) Direct Memory Access (DMA): Until today, the DMA
has been a very serious weakness for many devices that
make use of it. For example, the Nintendo switch attack was
performed [24], [25] by taking advantage of a buffer overflow
vulnerability found in the USB stack. This allowed an attacker,
using the DMA, to extract secrets from memory or to execute
arbitrary code. Toubkal can stop the DMA from accessing
certain memory regions.

2) Heterogeneous systems: Considering a system with two
different cores. An attacker can make use of a vulnerability to
access data processed by the other core. An MMU can be a
solution here, but it has a real impact on time critical devices.
Toubkal can create a real separation between the two cores so

each core cannot access the other core memory space without
impacting run-time execution.

3) Hardware interrupts limitation: An application code can
be interrupted by a certain interrupt. The CPU elevates the
privilege. An attacker could take advantage of a vulnerability
and attempt a code reuse attack to divert the control path and
execute the micro-code. Therefore, the attacker can modify
non locked regions. This is a current limitation that concerns
the semi-static and dynamic policies.

To mitigate this weakness, some security development
habits or the use of a security hypervisor such as uVisor [6]
and the likes [26]–[28] could make it harder for an attacker to
break into the micro-code. One way to make sure the micro-
code is run according to the initial program flow is to add
a Control Flow Integer (CFI). The CFI will not only make
sure that the micro-code is run properly but the whole device.
There are lots of works in this area, but there is still room for
improvement, especially for lightweight devices.

V. RELATED WORK

In this section we compare Toubkal to related existing work.
There has been several works, academic and industrial, that
have explored this problematic. Some works have tried to solve
the issue for all Masters. Others just tried to solve the DMA
issue.

In the first category, such works are IOMMUs and the
IOMPU. Several works have been published about the
IOMMU. For example, [8] presents a solution that offers an
MMU-like for peripherals. Therefore, addresses for compo-
nents such as DMA are translated too and controlled. In this
work, the IOMMU is embodied in a processor which connects
the IOMMU with memories and peripherals using bridges.
The IOMPU [12] takes advantage of the Non-Transparent
Bridge (NTB) which isolates two hosts or memory domains
yet allowing the exchange of data. Using the NTB, IOMPU
can offer spacial isolation for I/O devices.

Arm proposes System Memory Management Unit [13]
(SMMU) to complement its MMU. The SMMU is Arm
version of the IOMMU. It works based on the same principles
of the IOMMU.

The IOMMUs, the IOMPUs and the likes [8]–[11] in-
tercept IO communications and perform address translation
from device addresses to machine’s physical addresses. They
are similar to a classic MMU. They have page tables to
translate addresses and caches frequent entries in a Translation
Look-aside Buffer (TLB). However, this is unsuitable with
lightweight devices as they have resources constraints and are
time critical.

Moreover, the above solutions are only interfaced with the
concerned components. For example, if there are two IO
components, the device will need two IOMMUs or SMMUs to
control accesses of each component. In the mean time, Toubkal
controls accesses of multiple IO components.

[29] offers a solution to protect communication between
a secure Master and a secure Slave. They propose to add
two hardware blocks, one in front of the secure Master and
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the other in front of the Secure Slave. We call the block
in front of the secure Master MB and the block in front
of the secure Slave SB. The SB defines a protected region.
When the secure Master tries to access the protected region,
the MB sends a signal to the SB to let the secure Master
access the protected memory. If the SB does not receive a
signal from an MB, it blocks the access for the protected
memory region. This is limited comparing to Toubkal. First,
each concerned Master and for each Slave need MBs and SBs
respectively, and for each Slave, the SB protects only one
memory space. Second, once the Master has an MB, it can
access all the protected memory regions, while Toubkal offers
a real separation between all Masters.

In the second category, there are works such as Intel
SGX [16], Sanctum [15]. The two solutions tackle the DMA
problem. Intel SGX for example offers a DMA filtering based
on black-list approach. This joins Toubkal idea in proposing a
black-list, except that Toubkal offers a black-list for different
IO Masters and not only the DMA. Sanctum proposes a simple
DMA filtering where there are two additional registers in the
DMA arbiter (memory controller) to define the start address
of a DMA safe region and end address.

TrustZone by Arm can also join the list of related work,
as their Secure/NonSecure bit propagates to all hardware
modules. TrustZone proposes a binary protection where there
are two worlds, secure world and non secure world. We believe
that Security in general is not binary, especially in isolation. A
flaw in the secure world can lead to serious damages. Added
to this, this paper [30] presents relevant attack scenarios in
heterogeneous systems where a third-party hardware module
exploits some failures of the TrustZone technology. First,
Toubkal offers different protection domains for each Master.
And second, Toubkal can help mitigate these attack scenarios.
It provides memory protection to isolate Masters from each
other and limit their address space.

VI. CONCLUSION

In this paper we emphasized on the need of a strong
hardware isolation in lightweight devices. Traditional MPUs
offers limited isolation that will become dangerous when an
attacker escalates a privilege or succeeds in making use of a
peripheral that accesses memory. Related work requires lots
of resources and processing time. Furthermore, most of them
are limited to DMA issue and need to be cloned for each
concerned Master. For this purpose, we presented Toubkal, a
first experimental hardware isolation module for lightweight
devices. Toubkal is written in Chisel3 and provides a Ver-
ilog generator of hardware isolation modules. It offers many
options and policies to generate the right design. Regarding
the evaluation, Toubkal achieves a spacial separation with
inexistent run-time overhead and tailored hardware area, from
0.08% to 8.5% of a single core Rocket Chip total area.
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