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ABSTRACT
Feature models are recognized as a de facto standard for variability
modeling. Presented almost three decades ago, dozens of different
variations and extensions to the original feature-modeling notation
have been proposed, together with hundreds of variability man-
agement techniques building upon feature models. Unfortunately,
despite several attempts to establish a unified language, there is still
no emerging consensus on a feature-modeling language that is both
intuitive and simple, but also expressive enough to cover a range
of important usage scenarios. There is not even a documented and
commonly agreed set of such scenarios.

Following an initiative among product-line engineering researchers
in September 2018, we present 14 usage scenarios together with
examples and requirements detailing each scenario. The scenario
descriptions are the result of a systematic process, where members
of the initiative authored original descriptions, which received feed-
back via a survey, and which we then refined and extended based
on the survey results, reviewers’ comments, and our own expertise.
We also report the relevance of supporting each usage scenario for
the language, as perceived by the initiative’s members, prioritizing
each scenario. We present a roadmap to build and implement a first
version of the envisaged common language.

CCS CONCEPTS
• Software and its engineering→ Software product lines.
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1 INTRODUCTION
Feature models can arguably be seen as the most successful nota-
tion to model the common and variable characteristics of products
in a software product line [11]. Proposed almost three decades ago,
as part of the feature-oriented domain analyis (FODA) method [35],
hundreds of variability management methods and tools have been
built upon featuremodels. Of 91 variabilitymanagement approaches
introduced until 2011 [19], 33 have used feature models to spec-
ify variability information. The reported use of feature-modeling
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Figure 1: Feature model example (from [10])

concepts in large commercial [9, 11] and open-source systems that
have to manage different forms of variability, such as the Linux
kernel [12, 13, 51] further witnesses their relevance. As an illustra-
tion, Fig. 1 shows an excerpt of the Linux kernel’s model in a visual
feature-modeling notation (explained in more detail in Sec. 2).

Since the proposal of feature modeling in 1990, dozens of exten-
sions and modifications have been proposed for feature models,
often with the goal in mind to build a general feature modeling
language, gradually extending the expressiveness of feature models.
Examples are cardinality-based feature models [23], which support
the multiple instantiation of features; attributed (a.k.a., extended)
feature models [6], which allow features to have non-Boolean at-
tributes (carrying, for instance, non-functional properties); more
expressive (i.e., non-Boolean) constraint languages [46]; or even
more radical approaches that combine feature and class modeling
in one language [5]. Furthermore, while most academic feature-
modeling notations are visual, many languages exhibiting a textual
syntax have been developed for feature modeling [13, 14, 20, 27, 28].

Tooling or API-based support also emerged with the success of
feature modeling in practice and research. The commercial product-
line engineering tools pure::variants [17] and Gears [38], as well as
the open-source tool FeatureIDE [55], are built upon feature models.
In addition, many different feature-model analysis techniques and
tools have been proposed [6, 42, 57]. Recent work also addressed
the relative absence of processes for feature modeling by proposing
modeling principles for engineers creating feature models [44].

However, despite this recognition of feature modeling in research
and practice, there is still no emerging consensus on a language
that would enable variability modeling in a simple and common
way, while covering different possible usage scenarios. The attempt
to build a standard for a common variability language, namely
CVL [31], was dropped due to legal, patent-related issues. The lan-
guage and its infrastructure is still available, however [58]. Estab-
lishing a standard would facilitate the interoperability of tools and
would ease the sharing of feature models. Recognizing this pressur-
ing need, a recent initiative among product-line researchers, driven
by David Benavides, attempts to establish a common and simple,
yet reasonably expressive feature-modeling language.

This paper summarizes one of the follow-up actions that were
discussed at ameeting during the Software Product Line Conference
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(SPLC) in September 2018 in Gothenburg. There, after a brainstorm-
ing, a set of general usage scenarios of the prospective language
was elicited. After a vote, 15 main scenarios of usage were extracted,
and typically two researchers, one writing, another proofreading,
were assigned to detail each scenario through a common template.
Each scenario has a name, a small description, an example, and
some additional notes with requirements or open questions related
to it. These scenarios were then described during a one-month pe-
riod from mid September to mid October 2018. A survey was then
built to evaluate both the clarity and the usefulness (i.e., priority)
of each scenario. It was distributed on the mailing list created for
the initiative at the end of October 2018. Analyzing the results, we
refined and extended the scenario descriptions according to the
results, as well as we removed and added a few scenarios.

2 BACKGROUND
We provide an introduction into feature-modeling concepts as well
as a brief recap on the history of feature-modeling languages.

2.1 Feature Models
Figure 1 shows a small feature model describing the configurable
filesystem JFFS (Journalling Flash File System) in the Linux kernel.
Feature models are tree-like structures of features organized in a
hierarchy together with constraints among the features. While the
feature hierarchy is one of the most important benefits of feature
models (called ontological semantics), allowing engineers to keep
an overview understanding of a product line, the primary semantics
(called configuration space semantics) of feature models is to rep-
resent the valid combinations and values of features in a concrete
product of a product line, restricted by constraints as follows.

In our example, the feature Debug Level is a mandatory feature
(filled circle) with the value type integer; Compress Data is an op-
tional feature (hollow circle) of type Boolean with the optional sub-
features Support ZLIB and Default Compression. The latter is a fea-
ture group of type XOR, allowing to select exactly one sub-feature.
Other typical kinds of feature groups are OR and MUTEX groups
(not shown). These constructs express constraints, in addition to the
hierarchy constraints (a sub-feature always implies its parent fea-
ture). Further constraints, named cross-tree constraints, can be ex-
pressed separately to fully capture the configuration space—shown
to the right of the diagram in our example (note that ZLIB Inflate
is a feature that is defined outside our excerpt of the Linux kernel
model, which has grown to around 15,000 features nowadays).

2.2 Feature Modeling Extensions
The original FODA feature models have been extended in many
ways. Partly inspired by a genealogy of feature-modeling successors
from Kang [34], the following major extensions have been proposed.

FORM feature models [36] were introduced as part of the feature-
oriented reuse method (FORM) and sub-divided models into four
layers, from abstract on top to very concrete implementation-orien-
ted features at the bottom.

FeatuRSEB feature models [30] were introduced with the Fea-
tuRSEB methodology, aiming at an integration with use case dia-
grams and similar models. They are mostly equivalent to FODA
models.

Hein et al. feature models [32] introduced typed relationships
and binding times for features, based on industrial experience that
FODA “does not provide the necessary expressiveness to represent
the different types of crosslinks” in their domain. Typed relation-
ships give rise to alternative hierarchical structures in one model,
so the diagram is a directed acyclic graph, not a tree anymore.

Generative Programming feature models [21] introduced the cur-
rent notation and OR groups. This notation was later extended
with typed attributes and feature cardinalities [25]. Furthermore,
Riebisch et al. [47] introduced arbitrary group cardinalities and
constraint notations. The most significant extension were feature
cardinalities [23, 24], where features, and their whole subtrees, can
have more than one instance in a configuration, which has consid-
erable impact on reasoning operations and tooling.

Clafer [5, 33] is one of the most expressive feature-modeling lan-
guages, unifying feature and class modeling. The notion of feature
and that of a class is unified into a Clafer, which has a name, types,
constraints, and perhaps attributes. Clafer supports multi-level mod-
eling [18] and has a well-sepcified semantics as well as rich tooling,
including instance generation, configuration, and visualization. In
addition, as a textual language, it has one of the simplest and most
intuitive syntaxes. Developers can use a text editor and define a
feature by writing its name into a line. Hierarchy is realized by
indentation (similar to Haskell and Python). Making a feature op-
tional amounts to adding a ’?’ character. Feature types can also be
added in a simple way.

Kconfig and CDL [13, 14] are languages to describe the variability
of systems. They are developed fully independently of the research
community, by practitioners who were likely not aware of the ex-
isting feature-modeling languages from researchers. Kconfig and
CDL are two of the most successful languages, primarily used in the
systems software domain. Kconfig [51] is used in systems such as
the Linux kernel, the Busybox project, and embedded libraries (e.g.,
uClibc). CDL [12] is used in eCos (embedded configurable operating
system). The languages in fact use concepts known from feature
modeling, including Boolean, int, and string features; a hierarchy;
feature groups; and cross-tree constraints. However, the languages
also bring additional concepts, mainly to scale feature modeling.
Specifically, they provide: visibility conditions, modularization con-
cepts, derived defaults / derived features, and hierarchy manipu-
lation. In addition, they provide expressive constraint languages
with three-state logics for binding modes, as well as comparison,
arithmetic, and string operators. Finally, all use domain-specific vo-
cabulary, enhancing their comprehension for the developers of the
systems. Details are found in Berger et al. [13, 14]. Extracted models
and an infrastructure to analyze them is also available online.1

In addition to extensions brought by these languages (e.g., dia-
gram shapes, layers, binding modes, expressive constraints, cardi-
nalities, and typed edges) we find some further concepts in the litera-
ture. Among these are defaults [21, 48] and visibility conditions [26].
The latter are usually part of decision modeling languages, which
share many commonalities with feature models [22].

1https://bitbucket.org/tberger/variability-models
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Table 1: Refined scenarios descriptions: modified slightly (#) or substantially (G#) by us; or is completely new ( ).

scenario description example details

Ch
ris

to
ph

Se
id
l

ExchangeG# The language should support the bidi-
rectional exchange of feature models be-
tween different tools. Tool vendors use
the language documentation and/or ex-
isting serializers/deserializers to create
important and expert functionality. Users
of the tools can then leverage this func-
tionality to export a feature model from
one tool and import it in the other tool.

A feature model is created in the
source tool FeatureIDE [55] and
then exported into a file with the
concrete syntax of the language.
The file can then be imported into
the FAMA framework [57] for spe-
cialized feature-model analyses.

Requirements:
• The language should have a serializable concrete syntax.
• The language should come with sufficient documentation about its ab-

stract and concrete syntax to realize importers and exporters.
• Ideally, serializers and deserializers are provided for the language in the

form of a library (in common programming languages, especially Java)
that can be used by tool vendors.

• The language may be extensible and an instance may describe the level
of extensions that is used.

• The language may provide concepts to store tool-specific data.
• Storing tool-specific data should not require changing the language or

provided serializers and deserializers.
Open questions:
• Should tool-specific data be kept in specific language concepts or should

there be tool-independent concepts to store any kind of tool-specific data?
Finding a middle ground might be necessary.

Th
or
st
en

Be
rg
er

Storage The language should allow tools to ef-
ficiently store and load feature models.
Tools can use the language and its con-
crete syntax as the primary means to
store models. Tool vendors leverage the
language specification to realize fast stor-
age and loading of models. Two sub-
scenarios are possible: (i) the model is
stored in a database, and (ii) the model is
stored in a textual representation.

Consider a new product line tool
that needs to store feature models.
The tool vendor can develop its per-
sistence layer by creating leverag-
ing the language specification (i.e.,
the abstract syntax definition) to de-
rive a database schema and gener-
ate CRUD functionality as well as
initialize the database.

Requirements:
• The language should come with an abstract syntax definition in a meta-

modeling notation that can be used for automated processing (e.g., gener-
ate database schemas).

• The language should come with a concise and succinct [49] textual syntax.
• The textual syntax should be defined in a common technology for defining

concrete syntaxes, such as an ANTLR or an Xtext grammar, both of which
can be used for automated processing.

Open questions:
• Select a language workbench (e.g., Xtext [16], MPS [15], EMF [53]) or a

parser-generator technology (e.g., ANTLR [45])?

Kl
au
sS

ch
m
id
,

Ri
ck

Ra
bi
se
r

Teaching and
learningG#

The language should be easily usable
for teaching. Specifically, it should be
possible to describe the language within
a few slides, using concepts typically
taught in computer science education
(e.g., types, grammars, meta-modeling).
Furthermore, the language’s concepts
should align well with the typical and
established concepts (cf. Sec. 2) that have
been introduced in the product-line com-
munity and are typically taught in SPL
courses (features, attributes, constraints).

The teacher describes the language
with fewer than a dozen slides, and
the students are able to read and
write simple examples afterwards.

Requirements:
• The language should have the typical visual concrete syntax of feature

models.
• The language should come with realistic examples (ideally extracted from

real-world models, such as the Linux kernel models [13], but toy models
can also be provided for simplicity, such as from SPLOT [39].

• Ideally, the language also has a concrete textual notation to illustrate how
to scale models.

Open questions:
• Teach the textual or graphical notation?
• How to keep the language simple, while being expressive?
• There is a need to understand the specific examples to be provided.
• Should there be different levels to be taught? (corresponding to different

levels in teaching)
• When teaching, can we easily relate the key concepts of the language

with standard concepts taught in computer science such as requirements,
components, modules (e.g., “a feature can represent a requirement”)

Ri
ck

Ra
bi
se
r,

Ph
ili
pp

e
Co

lle
t

Writing, read-
ing, and edit-
ing#

The language should support users in
writing, reading, and editing featuremod-
els in a standard text editor, targeting
developers or modelers with basic pro-
gramming language knowlege. Tool ven-
dors should be able to use the language
specification with automated tooling to
generate an infrastructure for using the
language, with typical software language
engineering or transformation technol-
ogy (e.g., XText, XTend or Coco/R [41]).

The user opens an editor and, given
some basic knowledge about the
key constructs of the language, she
can instantly start writing feature
models. A domain expert can easily
edit feature models inside the same
kind of editor.
The generated language infrastruc-
ture contains a modern editor
with syntax formatting, highlight-
ing, code completion, and syntax
checking.

Requirements:
• The language should provide a simple and human-readable textual con-

crete syntax.
• The language definition should be independent of a particular generation

technology.
• The language should allow the use of standard text editors.
• Instances should be editable in standard IDEs, such as Eclipse, IntelliJ

IDEA or Microsoft Visual Studio.
• The language’s parser should be easy to integrate in other tool chains.
• Ideally, the requirements of the scenario Domain modeling apply.

D
av
id

Be
na
vi
de
s,

Jo
sé

Ga
lin

do

Model gener-
ationG#

Model generation (a.k.a., instance gen-
eration) automatically creates instances
(models) of the language, typically aim-
ing at instances with certain properties,
such as size, coverage of language con-
cepts, or other structural characteristics
(e.g., cross-tree constraints ratio [8, 40,
50]). Tool developers can use it to gener-
ate a set of models, useful for functional
testing and performance testing of the
different tools supporting the language.

A tool developer launches the in-
stance generation tool, inputs the
desired properties of the model to
be generated, and obtains the de-
sired model(s).

Requirements:
• The language specification (syntax and semantics) should allow for a

translation of the complete semantics into a representation in a formal
language.

• The formal language should allow instance generation (e.g., Alloy), with
instances that can be expressed in the original language’s syntax (so,
instantiated model in the formal lanugage should be structurally similar
to the target model in the new feature-modeling language).

• Ideally, the instance generation can be interactive, also showing conflict-
ing constraints and counter-examples.
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scenario description example details

Th
or
st
en

Be
rg
er

Domain mod-
eling#

The language should support early and
creative software-engineering phases by
allowing concept/domain modeling in
terms of features. Specifically, it should
allow creating features in a hierarchy,
without having to specify feature value
types, feature kinds (mandatory, op-
tional), feature cross-tree relationships,
or whether they belong to a feature
group. The model can be gradually re-
fined with those concepts later. Further-
more, if typed relationships are sup-
ported, hard and soft (e.g., recommends)
constraints could be distinguished, the
latter can be defined for each model.

A user creates an empty model
and in parallel adds features (that
are simply characterized by their
names) and organizes them in a hier-
archy. She adds cross-tree relation-
ships if she finds it useful and
quickly re-organizes the hierar-
chy when the domain model be-
comes more clear. Later, when the
structure is more stable, she de-
fines which features are mandatory,
which optional, as well as she de-
fines the other concepts.

Requirements:
• The language should provide a simple and human-readable textual con-

crete syntax.
• The language should have a concise and succinct textual syntax.
• The language should rely on conventions and defaults that allow omitting

the explicit instantiation of concepts (e.g., when not specific, the default
feature type should be Boolean).

• The textual syntax could be inspired by Clafer (cf. Sec. 2).
Open questions:
• Domain/concept modeling might require: multiple feature instantiation

(cardinality-based feature modeling, cf. Sec. 2) as well as multi-level model-
ing and ontological instantiation [18]. However, supporting these concepts
(as is supported by Clafer), could complicate the language.

• Support typed relationships?

Ch
ris

to
ph

Se
id
l,

Kl
au
sS

ch
m
id

Configuration
G#

The language should support the config-
uration activities of a feature model. It
should include respective constructs for
selection, de-selection, un-selection of
features in an featuremodel under config-
uration. Resolution of the resulting con-
figuration space after such configuration
operations should be supported by the
language.
The language should also support partial
configuration management.
The language should support default val-
ues as in product configurators. This
could be directly supported in the fea-
ture model (e.g., for alternatives).

A previously created feature model
is used to determine functionality
of a particular variant by selecting
individual features.
A partial configuration of a feature
model is done by several selections
and unselections. The resulting set
of configurations is available in the
language.
The absence of any resulting con-
figuration is detected after a con-
flicting set of selections (e.g., with
a cross-tree constraint being vio-
lated).

Requirements:
• Provide adequate syntax for configuration by non-technical stakeholders.
• A configuration comprises selected features but, with more elaborate

language constructs (e.g., attributes), should also include value selection.
• Default configurations or exemplary configurations may be sensible as

suggestions (e.g., “portfolios/profiles”).
• Support partial configuration.
• Support by inference engine requires different types of constraints: those

that can be violated temporarily and those that cannot—a typical distinc-
tion in practical languages used for configuration.

Open questions:
• Should the configurations be persisted within a feature model or external

to it?
• Is there a unique name assumption so that features can be referenced

unambiguously by name?
• Are configurations first-class entities in the language?
• In the case of a partial configuration, should the resulting (refined) feature

model be available in the language together with the set of possible
configurations?

D
av
id

Be
na
vi
de
s,

M
at
hi
eu

Ac
he
r

Benchmarking
G#

The language should be designed for tool
support, and several implementations are
expected to be available. There should be
a well-defined set of indicators to mea-
sure the performance of the most rele-
vant operations (e.g., analysis, refactor-
ing, configuration completion), so to be
able to compare them.
The benchmarking setup would allow to
compare tool support execution times of
these operations in isolation (e.g., with-
out taking into account file loading or
feature model parsing times when focus-
ing on a reasoning operation).

The user loads the model with
FAMA [57], Familiar [4] or Feature
IDE [55] and executes the operation
’dead features,’ also measuring the
completion times. Then she knows
which is the best tool for that oper-
ation and model.
Each tool built upon the language
can run the common benchmark
and automatically produce an ex-
ploitable performance result.

Requirements:
• Well-engineered and specified syntax and semantics of the language.
• There should be an agreement on the specificatin of certain feature-model

operations.
• The availability of realistic models is important. Potentially, real-world

models from the systems software domain can be used (cf. Sec. 2)

Jo
sé

Ga
lin

do

TestingG# Feature models expressed in the lan-
guage should be usable as input for test-
ing, specifically, for configuration sam-
pling. Features and especially their con-
straints should be extractable in a form
that allows reducing the search space for
sampling techniques. Another strategy
to support testing would be to express
full or partial configurations (e.g., pairs
of features that are critical to test).

A software engineer creates test
cases that will run with configura-
tions that are recorded in the fea-
ture model. Furthermore, when an
unwanted feature interaction is de-
tected, the engineer will record the
feature pair, to be considered in fu-
ture regression testing.

Requirements:
• Language concepts to represent partial or complete configurations.
• Ideally, consistency checking by the language infrastructure for the con-

figuration information.
• Incorporating concepts capturing further testing-relevant information

(e.g., inputs for testing dedicated features) could be useful.
Open questions:
• Should testing-related configuration information be stored directly in the

model or in a separate kind of asset?

D
av
id

Be
na
vi
de
s,

Ph
ili
pp

e
Co

lle
t

AnalysesG# The language can be used in automated
analysis processes where the model is
used as input and an analysis result is
obtained. This can comprise analyses
confined to the feature model [6, 29] or
those that take other artifacts into ac-
count [42, 54].

Consider a Linux distribution, such
as Debian. Let us assume the pack-
ages (each representing a feature)
and their dependencies are de-
scribed using our language (or,
more realistically, are transformed
from Debian’s manifests into a fea-
ture model). An off-the shelf analy-
sis, such as “dead features” can then
be used to detect packages that are
not selectable.

Requirements:
• Community agreement on a core set (or class) of relevant analyses.
• Consider different solver strategies depending on the kinds of analyses

and the constructs of the language. For instance, if we allow attributes,
then, specific solver capabilities are needed.

• Well-specified language syntax and semantics, also with semantic abstrac-
tions into the different logical representations required by the solvers.

Open questions:
• Is the representation of correspondence (and maybe performance) of the

solving strategies to the different constructs and extensions part of the
language definition?

• Should analyses be confined to the feature model or also take other asset
types into account, such as the mapping to implementation assets?
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scenario description example details

Th
om

as
Th

üm

Mapping
to imple-
mentation
#

Feature models are often not only con-
sidered in isolation. Instead, features are
typically mapped to certain assets. De-
pending on the use case, features are
mapped to requirements, architecture,
design, models, source code, tests, and
documentation, among others. While the
actual mapping is largely independent of
the feature modeling language, it should
be possible to distinguish features that
are supposed to be mapped to artifacts
from those purely used to structure the
hierarchy (e.g., to group certain features
into an alternative group) or features that
are not yet implemented. So, the scenario
is to support developers mapping fea-
tures to the implementation.

Suppose we implement a product
line incrementally. That is, we have
done a domain analysis in which we
created a feature model and nowwe
implement more and more of those
features over time. Assumewewant
to derive a product or count the
number of possible products before
we are done with the implementa-
tion of all features. During config-
uration, we do not want to make
decisions that do not influence the
actual product. For counting, we are
not interested in the total number
of valid configurations, but only in
those that result in distinct prod-
ucts.

Requirements:
• A single modifier/keyword to be assigned to every feature could be suffi-

cient (e.g., abstract/concrete as in FeatureIDE)
• A well-defined mapping language might be necessary.
• Avoid common limitations. For instance, a simple language rule as applied

in GUIDSL, such that every feature without child features in concrete
and all others are abstract, would result in unintuitive editors and overly
complex feature models if a feature with child features is supposed to be
mapped to artifacts.

• A challenge is that this property is not be supported in many tools. Fall-
back could always be tomark all features as concrete during import/export
(could be default).

Open questions:
• Should the mapping be part of the language or realized in a separate one?

Th
om

as
Th

üm

Decomposition
and composi-
tionG#

Industrial models tend to have thousands
of features. Clearly, those models are cre-
ated by numerous stakeholders that may
even originate from different divisions
or even institutions. Models can also be
built according to specific separated con-
cerns. The language should be able to
compose several feature models accord-
ing to different semantics (e.g., aggrega-
tion, configuration merging).
It is often necessary to decompose such
a large model into smaller pieces to im-
prove the overview and facilitate collab-
orative development.

The Linux kernel is defined in the
Kconfig [51] language but not in a
single file. The knowledge is dis-
tributed over several files accord-
ing to the structure of the code
base. For analyses it is typically nec-
essary to compose them all prior
to feeding them into solvers. The
largest known feature model (Au-
tomotive2 [37]) was developed in
terms of 40 small models that have
even used different modeling lan-
guages.

Requirements:
• Prioritized list of composition mechanisms from the literature (e.g., ag-

gregation, inheritance, superimposition, configuration merging).
• Simple mechanism that is easy to implement.
• Perhaps dedicated support for interface feature models (cf. principle MO3

among common feature modeling principles [44])
Open questions:
• Should all the composition mechanisms that have been discussed in the

literature be supported in the language?
• How should the language handle the fact that depending on the composi-

tion operator, it could be possible or not to add the same model several
times within another model?

• Is it sufficient to have support for composition in the language, whereas
decomposition is up to the users?

Model weav-
ingG#

The language should be able to be easily
integrated with other programming lan-
guages for supporting variability model-
ing at design and implementation levels.
Several integration levels could be con-
sidered depending on the host language’s
capabilities and engineering needed to
provide such integration in the language.
A shallow form of integration could be a
simple interpreter available in the host
language, exchanging input and output
as strings and basic types. A deeper form
of integration could be an API enabling
to manipulate the high-level concepts of
the language in the host language (e.g.,
features, feature models, configurations).

Currently there are different strate-
gies for imposing variability in
other modeling formalisms such
as business processes or object-
oriented design. An ideal scenario
would be to use our language to inte-
grate variability in other languages,
such as BPMN.

Requirements:
• Depending on the depth of the integration, static design-time or dynamic

run-time model weaving might need to be considered.
• List of variability mechanisms from the literature.
• Understanding of the effort for realizing the mechanism for different

types of assets.
Open questions:
• Separation of concerns is an issue to consider (support developers to

separate problem and solution space).
• The necessary extent of embedding of information from the feature model

into other assets needs to be investigated, making realistic assumptions
about the actual need.
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Reverse engi-
neering and
composition
 

It should be possible to use the lan-
guage to represent reverse-engineered
or composed feature models. The for-
mer can originate from typical reverse-
engineering techniques that rely on ex-
tracted variability information [2, 3, 43,
52], the latter can originate frommultiple
existing feature models.

Reverse-engineering examples:
Synthesize a feature model from
command-line parameters and the
respective source-code in which
they are used, from configuration
files or from product comparison
matrices; re-engineer web config-
urators [1]; extraction of feature
models and reusable assets from
clone& own-based systems.
Composition examples: Combine
multiple product lines; or use of
composition and slicing operations
over feature models to build a spe-
cific viewpoint on the variability.

Requirements:
• The language should be sufficiently expressive to model real-world vari-

ability and configuration spaces that are reverse-engineered (these often
have non-Boolean and complex constraints).

• Perhaps some traceability (e.g., the artifacts from which certain con-
straints stem from) or debugging information (e.g., how the constraint
was calculated or whether it is abstracted by weakening a constraint to
make it processable).

Open questions:
• How to deal with constraints among features or other information ex-

tracted that is not expressible in the language (e.g., child features that
exclude their parents in the Linux kernel model [13].

• As such, ground truth models may not be expressible in our language.
• Empirical validation of the language: How to validate that our language

is sufficient for reverse-engineering variability, especially from legacy
systems?

• Could round-trip engineering (which is a hard problem) be supported?
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3 EMERGING USAGE SCENARIOS
As explained above (Sec. 1), the participants of the initiative’s first
meeting during SPLC 2018 in Gothenburg authored an original set
of usage scenarios, each of which having a name, a description, an
example, requirements, and potentially open questions for discus-
sion. These were then evaluated in an online survey, created by
David Benavides, targeting participants of the initiative—also those
who did not attend the Gothenburg meeting, but are registered on
the respective mailing list (featuremodellanguage@listas.us.es).

The survey elicited the perceived clarity of the scenario and the
perceived usefulness. The original formulations of the scenarios are
available in our online appendix [7], together with more detailed
survey data. Specifically, using Likert-scale questions, for each
scenario it asked:

(1) What is the clarity of the scenario? Either: 1 (not clear at all),
2 (not clear), 3 (more or less), 4 (clear), 5 (very clear).

(2) What is the usefulness/priority of the scenario? Either: 1 (not
useful at all), 2 (not useful), 3 (more or less), 4 (useful), 5
(very useful).

The survey was distributed among the mailing list of 25 inter-
ested persons in the building of the common language at the end
of October 2018 for a period of 7 weeks. 15 answers were collected.

3.1 Survey Analysis and Scenario Refinement
The results of the survey corresponded to 14 to 15 answers on each
scenario, as one participant did not evaluate all scenarios. With
respect to the clarity of each scenario, the results were very diverse,
with some scenarios being mainly viewed as clear, while some oth-
ers were not considered as clear enough. Consequently, we decided
to improve the descriptions, as mentioned above (Sec. 1), to provide
a better set of descriptions. Table 1 shows our final set of scenarios,
refined and extended compared to those formulated after the initia-
tive’s first meeting. The table acknowledges the original authors,
but we indicate whether we havemodified the scenario only slightly
(#), whether we did substantial changes (G#), or whether the sce-
nario is completely anew ( ). For the latter, the stated authors are
also those of the new formulation.

Specifically, compared to the original set (cf. appendix [7]), we
removed the scenarios Language-Specific Characteristics (since
it was a design recommendation instead of a usage scenario or a re-
quirement), Storage (since the text primarily described the sharing
of models, which is covered by scenario Exchange), and Transla-
tion to logics (since it is not a prime usage scenario performed by a
language user or tool developer as such, but represents a design deci-
sion and technicalities necessary to realize the majority of the other
scenarios). We added the scenarioReverse engineering and com-
position, which was not formulated out by the time of the survey.

Figure 2 shows violin plots about the survey’s answers with
respect to the usefulness, indicating the scenario’s relevance. A
similar violin plot for clarity is available in our appendix [7]. Given
the change, the result for Storage should be taken with care.

3.2 Design Recommendations
To some extent, the original usage scenario descriptions contained
information about the realization of the language, which was out
of the scope of this early phase of collecting usage scenarios for

Analyses

Benchmarking

Configuration

Decomposition and composition

Exchange

Model generation

Mapping to implementation

Domain modeling

Model weaving

Storage

Teaching and Learning

Testing

Writing, reading, and editing

1 2 3 4 5

value

Legend.
1: not useful at all
2: not useful
3: more or less
4: useful
5: very useful

Figure 2: Perceived usefulness of the scenarios (without sce-
nario reverse engineering and composition, cf. Sec. 3.1)

users and tool developers. The removed scenario Translation to
logics is such a case, which provides valuable implementation rec-
ommendations by Thomas Thüm and Maurice ter Beek, further
detailed in a separate paper [56]. Specifically, they argue that a key
enabling technology for feature modeling is the ability to translate
the semantics of feature models to a logical representation that can
serve as an input to off-the-shelf constraint solvers. To this end, the
expressiveness of the language should ideally align with relevant
solvers, such as SAT, BDD, SMT or CSP solvers. To remain flexible,
the language could offer different levels that classify the language
concepts into different levels of expressiveness, each of which align-
ing with a specific class of solvers. Specifically, levels representing
higher expressiveness allow more language concepts, but limit
which solvers are applicable. For instance, if the language would
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have a level that allows specifying non-Boolean feature attributes
(representing, for instance, cost or performance properties) and
quantitative constraints among them, this would exclude the use of
solvers relying on propositional logics (e.g., SAT and BDD solvers).

To obtain language levels, Thüm and ter Beek propose mapping
language concepts to levels of expressiveness, followed by iden-
tifying the priority of supporting each level based on the usage
scenarios. For instance, a language level that allows quantitative
modeling could support modeling (at least parts) of continuous be-
havior in cyber-physical systems. Thüm and ter Beek also note that
language concepts might interact with respect to expressiveness,
which needs to be taken into account when designing the language.

4 A PRELIMINARY ROADMAP
Our results suggest the following aspects to be considered in speci-
fying the future language and in the workshop.

As we believe that we need to incrementally build the language
features to make progress, a first set of features can be devised from
the scenarios that are perceived primarily useful. According to the
median value of the distribution shown in Fig. 2, this set would then
comprise the following scenarios: Exchange, Storage, Domain
Modeling, Teaching and Learning, Mapping to implementa-
tion,Model generation, Benchmarking, and Analyses.

From these scenarios, we can imagine some design decisions to
be discussed and validated to get to a first version of the language:

• A simple textual language seems to meet the challenges from
the scenario Exchange.

• Realization of the language’s abstract and concrete syntax
using a common language workbench (e.g., Eclipse EMFwith
Xtext) can support the scenario Storage.

• Incremental and partial creation of a feature model is needed
for Domain Modeling. It directly affects the scope of what
we could put inside the first set of functionalities.

• For a first set of functionalitiesmeetingTeaching andLearn-
ing, simplicity of the language for writing, editing, and con-
figuring, should be kept in mind.

• The scenariosModel generation,Benchmarking, andAnal-
yses could be easy to meet in a first version if propositional
feature models are chosen as a first level of expressiveness.

• Mapping to implementation is not an easy scenario to meet,
as it is an open problem depending on the artifacts and
variability realization technique.

Considering the current set of feature-modeling languages that
are available, Clafer appears to meet most of the requirements. As
described in Sec. 2, it is one of the most expressive languages while
having a concise and succinct textual syntax, accompanied with
formally defined semantics, and coming with substantial tooling.
On the negative side, however, is the complexity and richness of the
language, which might be problematic, but could be addressed by
specifying a subset language level to accommodate certain subsets
of usage scenarios.

With these aspects in mind, some open questions arise, as a basis
for discussion during the workshop:

• Would the first kernel of functionalities of the language be de-
signed and implemented at the same time? Implementation

would enable to validate scenarios automatically through a
continuous integration pipeline.

• Once the implementation subject is raised, the textual lan-
guage implementation choices are raising at well: it could
be a fluent API, an external or internal DSL, or a clever com-
bination.

• Could the scenario Analyses be used with its first exam-
ple, i.e., running a dead-feature analysis, as a validation sce-
nario for the implementation part of the language? Still,
what analyses are useful and how their scenarios should be
made clearer must be discussed. Similarly, could the Bench-
marking scenario be also added in the same way, as its first
example is a benchmark over the dead-feature computation?

• Could the language Clafer provide a reasonable basis for
realizing the desired language, potentially by introducing
language levels into Clafer, reducing its complexity for many
scenarios?

For the workshop, we suggest to conduct a second evaluation
of the refined and extended usage scenarios we presented in this
paper. We plan to update our appendix [7] with the new results. The
survey should again elicit clarity and usefulness, to increase our
confidence in the scenarios. It should also re-open the discussion
about further scenarios that need to be realized. For instance, a
scenario that was briefly discussed during the first workshop was
the collaborative creation of feature models, but not formulated
out. Collaborative creation of feature models might be relevant for
domain modeling; however, common wisdom on the processes and
organizational aspects of feature modeling suggests that the distri-
bution of the brittle variability information, and the maintenance of
feature models by more than a small core group, is not feasible [10].

5 CONCLUSION
In this paper we contributed 14 usage scenarios for a simple and
common feature-modeling language, to be finally established as a
standard for feature modeling. We refined and extended formula-
tions for a set of scenarios originally formulated by members of
the initiative—experienced researchers from the product-line com-
munity that have some expertise in several facets of the creation
and maintenance of important functionalities of such a language.
We relied on a survey that was created for eliciting the clarity and
relevance (i.e., usefulness or priority) of each scenario. We reported
the survey results, presented the scenarios, and proposed a roadmap
to support the next steps of the initiative. From these results, we
observed the emergence of a smaller set of scenarios, seen as clearer
and most useful, which could make a first kernel of the targeted
language. We expect these insights to help in driving discussions
and making decisions during the workshop.
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