
HAL Id: hal-02342730
https://hal.science/hal-02342730v1

Submitted on 1 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

symfinder: A Toolchain for the Identification and
Visualization of Object-Oriented Variability

Implementations
Johann Mortara, Xhevahire Tërnava, Philippe Collet

To cite this version:
Johann Mortara, Xhevahire Tërnava, Philippe Collet. symfinder: A Toolchain for the Identification
and Visualization of Object-Oriented Variability Implementations. the 23rd International Systems
and Software Product Line Conference, Sep 2019, Paris, France. pp.5-8, �10.1145/3307630.3342394�.
�hal-02342730�

https://hal.science/hal-02342730v1
https://hal.archives-ouvertes.fr

symfinder: A Toolchain for the Identification and Visualization
of Object-Oriented Variability Implementations

Johann Mortara
johann.mortara@univ-cotedazur.fr
Université Côte d’Azur, CNRS, I3S,

Sophia Antipolis, France

Xhevahire Tërnava
xhevahire.ternava@lip6.fr

Sorbonne Université, UPMC, LIP6,
Paris, France

Philippe Collet
philippe.collet@univ-cotedazur.fr
Université Côte d’Azur, CNRS, I3S,

Sophia Antipolis, France

ABSTRACT
When variability is implemented into a single variability-rich sys-
tem with object-oriented techniques (e.g., inheritance, overload-
ing, design patterns), the variation points and variants usually do
not align with the domain features. It is then very hard and time
consuming to manually identify these variation points to manage
variability at the implementation level. symfinder is a toolchain
to automatically identify and visualize these variability implemen-
tation locations inside a single object-oriented code base. For the
identification part, it relies on the notion of symmetry between
classes or methods to characterize uniformly some implementation
techniques such as inheritance, overloading, or design patterns like
Factory. The toolchain also generates an interactive Web-based
visualization in which classes that are variation points are nodes
linked together through their inheritance relationships, while the
size, color, and texture of the nodes are used to represent some
metrics on the number of overloaded constructors or methods. As
a result, the visualization enables one to discern zones of interest
where variation points are strongly present and to get relevant in-
formation over concerned classes. The toolchain, publicly available
with its source code and an online demo, has been applied to several
large open source projects.

CCS CONCEPTS
• Software and its engineering→ Software product lines; Ob-
ject oriented development; Reusability.

KEYWORDS
Identifying software variability, visualizing software variability,
object-oriented variability-rich systems, tool support for under-
standing software variability, software product line engineering

1 INTRODUCTION
At the domain level of a Software Product Line (SPL), variability of
products is usually captured through common and variable domain
features, these features being realized in software assets, such as
code, at the implementation level. From the many existing vari-
ability implementation techniques, annotation-based ones, such as
condition compilation with preprocessors [12], have been heavily
used in embedded systems, but they tend to pollute code with a low
abstraction level [11] and to produce errors at derivation time [9].
Furthermore, feature modules is a specific technique that structures
all lines of code corresponding to a domain feature into a coding
unit called feature [2]. While it looks preferable, it does not support
well cross-cutting variability [8], and it implies code refactoring
that may be completely unfeasible in practice for many systems.

This is typically the case in variability-rich systems that have pro-
gressively introduced variability into object-oriented code, using
many different traditional techniques, such as inheritance, over-
loading, and design patterns [4, 17]. Variability implementations
then do not align well with domain features and identifying where
these implementations are precisely located is crucial to manage
this kind of variability [15].

While approaches and techniques have been proposed to par-
tially locate domain features at the code level [3, 16], there is no
work dealing with the identification of object-oriented variability
implementations at the structural level, namely at the level of varia-
tion points (vp-s) and variants [14, 17]. Contrary to a feature related
to the variability domain, a variation point represents one or more
locations in code at which variation will occur, while the way that
a variation point is going to vary is defined by its variants [7].

This paper introduces symfinder , a toolchain to automatically
identify and visualize these variability implementation locations
inside the code base of a single variability-rich Java system. For
the identification part, it relies on the notion of symmetry (defined
in Section 2) [5, 20] between classes or methods to characterize uni-
formly variation points and variants from several implementation
techniques, such as inheritance, overloading, or design patterns.
Identified variation points and variants are stored into a graph data-
base and reused to generate an interactive web-based visualization.
This visualization enables one to discern zones of interest where
variation points are strongly present and to get relevant informa-
tion over concerned classes. Details about the usage of symmetry,
the identification approach, and its validation over a set of large
projects are available in [18].

External information about the symfinder toolchain to be demon-
strated are as follows:

• symfinder source code is publicly available at https://github.
com/DeathStar3/symfinder, including some usage guide-
lines;

• a video demonstrating the visualization part is available at
https://www.youtube.com/watch?v=wb3U6MJ7nAM;

• experimental results from [18] and an online demo are avail-
able at https://deathstar3.github.io/symfinder-demo/.

In the remainder of this paper, we first give some background on
variation points and symmetry in object-oriented code (Section 2).
Next, we describe symfinder , giving details on the identification and
visualization parts, as well as on the portability and performance
of the toolchain (Section 3). We summarize current applications
(Section 4) and finally, we conclude the paper by briefly discussing
future work (Section 5).

https://github.com/DeathStar3/symfinder
https://github.com/DeathStar3/symfinder
https://www.youtube.com/watch?v=wb3U6MJ7nAM
https://deathstar3.github.io/symfinder-demo/

Johann Mortara, Xhevahire Tërnava, and Philippe Collet

Figure 1: Example of variation points, as local symmetries
(illustrated with red lines), in code asset representations

2 VARIATION POINTS AND VARIANTS IN
OBJECT-ORIENTED SYSTEMS

Let us consider an illustrative example with a Java implementa-
tion of a family of geometric shapes, such as rectangles and circles
(cf. Figure 1). What is common from Rectangle and Circle is fac-
torized into the abstract class Shape using inheritance as a variabil-
ity implementation technique. Besides, overloading is used to im-
plement two ways for drawing shapes, namely the draw() method
in Rectangle. Finally, the ShapeFactory and ConcreteFactory
classes implement a Factory pattern, with an abstract build()
method that is implemented in the subclass by returning an in-
stance of a subclass of Shape depending on some configuration
values.

As stated in the introduction, a variation point corresponds to
a place in code where some variation happens, and the way this
point vary corresponds to variants [7]. Therefore, the example in
Figure 1 exhibits three variation points:

• the abstract class Shape is common, thus a variation point,
for two variants Rectangle and Circle;

• the abstract creator class ShapeFactory is another variation
point for its single variant ConcreteFactory;

• the method draw() in class Rectangle is another variation
point for two overloaded variants that have different arity.

Symmetry and local symmetry have been recognized as a way
to comprehend and create order in nature and human made arti-
facts [1]. They have also been studied in software and been iden-
tified in different constructs of programming languages or object-
oriented design patterns [5, 19] where, in accordance with the sym-
metry definition, a part of their design remains unchanged while
another may change. For example, subtyping in the Shape hierarchy
in Figure 1 exhibits the property of symmetry. The classes of this
type path, Circle and Rectangle, change while they preserve and
conform to the common behavior defined in the superclass Shape.

A more complete study of the symmetry in object-oriented con-
structs can be found in the companion research paper [18], as well
as the definition of the relationship between variation points and
symmetry. Basically, as variation points and variants, respectively,
mark the unchanged and changeable parts in a design, they are

Figure 2: The dockerized symfinder toolchain

Table 1: Six language features, their symmetries, and their
respective visualization as nodes with their relationships

Language feature Visual Commonality Variability
node /Unchange /Change

Class as type Class Objects
Class subtyping Superclass Subclasses
Interface Type Implem. classes
Method overloading Structure Signatures
Constructor
overloading Structure Signatures

Strategy Pattern S Strategy interface Algorithms
Factory Pattern F Abstract Creator Concrete creat-

and product ors and products

Inheritance

actually the local symmetric places in design. Hence, all the tech-
niques used to implement the three variation points in Figure 1
uniformly exhibit the property of symmetry.

3 SYMFINDER
3.1 Overview
The aim of symfinder is to enable automatic identification and
visualization of different local symmetries (i.e., variation points) in
a variability-rich Java-based system. The main purpose is to provide
help in understanding the variability places of a variability-rich
system during its development. Figure 2 depicts its whole toolchain,
which consists of three parts. First, the sources of a targeted Java
project are fetched from its git repository, then the symfinder engine
enables the automatic identification of all its vp-s, through the
property of local symmetries, and builds a graph representation of
them, and finally a visualization of the identified vp-s is generated
and can be navigated through a web browser.

3.2 Identification through local symmetries
For a targeted variability-rich system, local symmetries are identi-
fied according to the defined symmetry in each language construct,
technique, and design pattern given in the companion research
paper [18] and summarized in Table 1. Specifically, each interface,
abstract class, extended class, overloaded constructor, and over-
loaded method is identified. All together, they actually represent

symfinder

Figure 3: Excerpt of a visualization of identified vp-s in the
Java AWT library. Annotations in blue show potential vp-s
names that are displayed when hovering a node.

the potential vp-s. Then, the classes that implement or extend them,
including the concrete overloaded constructors and methods are
also identified, representing their respective variants.

Technically, the vp-s identification process is achieved in two
steps. First, the targeted Java system is parsed and the structure
of its implementation units is stored into a Neo4j graph database
where each class, interface, and method is represented by a node,
including its structural relationships with other nodes. The node
and relationship types are also labeled, for example, CLASS and/or
ABSTRACT for nodes, EXTENDS or IMPLEMENTS for inheritance rela-
tionships. Secondly, vp-s are identified by querying the database
for specific paths in the labeled graph using the Cypher language 1.
For example, the following query uses labels (e.g., CLASS, EXTENDS,
and IMPLEMENTS) to identify some vp and its variants:

MATCH (c)-[:EXTENDS|:IMPLEMENTS]->(c2:CLASS)
WHERE ID(c) = $id
RETURN count(c2)

When the $id of the node corresponds to the Shape class (cf.
Figure 1), then the query will count the number of its EXTENDS
relationships (i.e., 2). Thus, Shape is identified as a vp with its two
variants. Similarly, other queries are used to identify method level
vp-s, as well as the strategy and factory design patterns. In that last
case, more complex queries analyse respectively the structural rela-
tionship of classes, and the return types of methods, a detected fac-
tory being a class that contains a method returning an object whose
type is a subtype of the declared method return type. Moreover, the
four main queries used to count the number of vp-s and variants,
at class and method level are documented here: https://github.com/
DeathStar3/symfinder/blob/splc2019-artifact/detection_method.md.

3.3 Web-based visualization
The symfinder toolchain provides the capability to generate an
interactive Web-based visualization of the identified vp-s (cf. Fig-
ure 2). After considering the visualization capabilities of Neo4j and

1https://neo4j.com/developer/cypher/

other visualization forms used in SPL engineering [13], we decided
to use the D3.js 2 library as the visualization support, so that only
a Web browser is needed to visualize the vp-s graph.

Instead of visualizing the graph of vp-s with variants by plain
nodes and edges, we consider that it is important to also visualize
information regarding the used language constructs, techniques,
or design patterns for implementing variability. For this reason, as
in many software and code artifacts visualizations [10], we rely
on the visual principles of preattentive perception [6] using some
of the seven parameters that can vary in visualization in order to
represent data, namely position, size, shape, value (lightness), color
hue, orientation, and texture. The seven kinds of nodes that we
use in symfinder for the visualization of the kinds of potential vp-s
with variants are shown in Table 1.

As an example, Figure 3 shows a visualization excerpt of the
identified vp-s in the Java AWT library. It shows 30 identified vp-s
without variants, where each vp node is represented by a circle, and
edges are class extension or interface implementation. Using Table 1,
one can interpret that the black circle with letter S of vp_Shape
denotes its relation to an interface that is also a Strategy pattern in
code. In addition, the larger size of node vp_Line2D denotes that it
contains variability at method level through overloading. Similarly,
the more intense color of vp_Rectangle denotes that it contains
variability at constructor level.

The visualization itself has five main features: (1) the visualized
graph of vp-s can be zoomed in and out, (2) the vp label appears
when hovering the node, (3) the out-of-scope vp-s [18] can be
filtered out (e.g., java.awt.images when analysing the variability
of Java AWT library), (4) the isolated nodes can also be filtered out,
and (5) the number of identified vp-s and variants.

3.4 Portability and performance
In order to achieve maximum portability, the execution of the
symfinder toolchain is fully dockerized. Thus, only Docker 3 and
Docker Compose 4 are required to run the toolchain. Internally,
three Docker environments are executed sequentially, which corre-
spond to the three parts of the toolchain enumerated in Section 3.1:

(1) A Docker container that fetches sources and checks out the
desired tags or commits of a variability-rich system from its
git repository (cf. Figure 2). This enables symfinder to work
easily over any Java system that is publicly available.

(2) The identification process is run by deploying a Docker Com-
pose environment per project that is made of two Docker
containers, the symfinder engine and an instance of a Neo4j
database. Then, a "runner" Docker container automates the
execution of symfinder on multiple systems.

(3) The visualization is provided by running a Docker container
that runs a lightweight Python server exposing the generated
HTML files on http://localhost:8181.

Finally, the deployment of the toolchain is made through shell
scripts that encapsulate the Docker commands to run. symfinder’s
deployment is validated on three operating systems, GNU/Linux,

2https://d3js.org/
3https://www.docker.com/
4https://docs.docker.com/compose/overview/

https://github.com/DeathStar3/symfinder/blob/splc2019-artifact/detection_method.md
https://github.com/DeathStar3/symfinder/blob/splc2019-artifact/detection_method.md
https://neo4j.com/developer/cypher/
http://localhost:8181
https://d3js.org/
https://www.docker.com/
https://docs.docker.com/compose/overview/

Johann Mortara, Xhevahire Tërnava, and Philippe Collet

Table 2: Execution time of all steps when analysing
JFreeChart 1.5.0.

Step Execution time [hh:mm:ss]

Detection of methods and classes 00:19:42.702
Creation of inheritance relationships 00:02:24.419
Detection of strategy patterns 00:01:22.376
Detection of factory patterns 00:02:19.115

macOS Sierra 10.12 or newer on hardware from at least 2010, and
Windows 10 64-bit (Pro, Enterprise or Education)5.

Regarding its performance, a symfinder execution mainly de-
pends on the size of the analysed system. For example, the exe-
cution time over the JFreeChart 1.5.0 (cf. Section 4) with 94,384
LoC takes around 26 minutes on a virtual machine with 1 core of
Xeon E5-2637 at 3.50GHz and 128 GB of memory, to detect an over-
all number of 1415 variation points. Details on the time spent on
each main step are given in Table 2. The detection of methods and
classes is taking 75% of the time as it needs to traverse all classes
and methods, while the other steps reuse the built graph.

4 CURRENT APPLICATIONS
We evaluated the identification and visualization of vp-s, including
the portability and performance of symfinder , by conducting sev-
eral experiments with realistic variability-rich systems. Specifically,
we applied symfinder over eight open source systems, namely Java
AWT, Apache CXF 3.2.7, JUnit 4.12, Apache Maven 3.6.0, JHipster
2.0.28, JFreeChart 1.5.0, JavaGeom, and ArgoUML. Their analysed
tags, commits, size in LoC, and some basic metrics on the identified
number of vp-s with variants are given in the companion research
paper [18]. As the main result of these successful applications of
symfinder , we were able to identify the first patterns of variability
in object-oriented variability-rich systems. Still, all conducted ex-
periments are available at https://deathstar3.github.io/symfinder-
demo/, which are illustrated with extracted screenshots, explana-
tions, and then a demonstration of their visualization is also de-
ployed online. A specific set of experiments is also available as an
online demo.

5 CONCLUSION
symfinder is a toolchain that supports identification and visual-
ization of different kinds of variation points with variants of a
variability-rich Java system using the property of symmetry in
object-oriented software constructs. The toolchain source code is
publicly available and can be easily used through a containerized
version on Docker.

Future work includes toolchain extensions to identify symme-
tries in other language features, being object-oriented or functional,
integrating other properties from Alexander’s theory of centers [1],
and studying how to handle code evolution w.r.t. variation points
identification and visualization.

5Its deployment is not possible on Windows Home, which is a limitation of Docker.

REFERENCES
[1] Christopher Alexander. 2002. The nature of order: an essay on the art of build-

ing and the nature of the universe. Book 1, The phenomenon of life. Center for
Environmental Structure.

[2] Sven Apel, Don Batory, Christian Kästner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines. Springer.

[3] Wesley KG Assunção, Roberto E Lopez-Herrejon, Lukas Linsbauer, Silvia R
Vergilio, and Alexander Egyed. 2017. Reengineering legacy applications into
software product lines: a systematic mapping. Empirical Software Engineering 22,
6 (2017), 2972–3016.

[4] Rafael Capilla, Jan Bosch, and Kyo-Chul Kang. 2013. Systems and Software
Variability Management. Springer.

[5] James O Coplien and Liping Zhao. 2000. Symmetry breaking in software pat-
terns. In International Symposium on Generative and Component-Based Software
Engineering. Springer, 37–54.

[6] Stephan Diehl. 2007. Software visualization: visualizing the structure, behaviour,
and evolution of software. Springer Science & Business Media.

[7] Ivar Jacobson, Martin Griss, and Patrik Jonsson. 1997. Software reuse: architec-
ture, process and organization for business success. ACM Press/Addison-Wesley
Publishing Co.

[8] Christian Kästner, Klaus Ostermann, and Sebastian Erdweg. 2012. A variability-
aware module system. In ACM SIGPLAN Notices, Vol. 47. ACM, 773–792.

[9] Maren Krone and Gregor Snelting. 1994. On the inference of configuration
structures from source code. In Proceedings of 16th International Conference on
Software Engineering. IEEE, 49–57.

[10] Michele Lanza, Stéphane Ducasse, Harald Gall, and Martin Pinzger. 2005. Code-
crawler: an information visualization tool for program comprehension. In Proceed-
ings of the 27th international conference on Software engineering. ACM, 672–673.

[11] Duc Le, Eric Walkingshaw, and Martin Erwig. 2011. # ifdef confirmed harmful:
Promoting understandable software variation. In 2011 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC). IEEE, 143–150.

[12] Jörg Liebig, Sven Apel, Christian Lengauer, Christian Kästner, and Michael
Schulze. 2010. An analysis of the variability in forty preprocessor-based software
product lines. In Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering-Volume 1. ACM, 105–114.

[13] Roberto Erick Lopez-Herrejon, Sheny Illescas, and Alexander Egyed. 2018. A
systematic mapping study of information visualization for software product line
engineering. Journal of Software: Evolution and Process 30, 2 (2018), e1912.

[14] Angela Lozano. 2011. An overview of techniques for detecting software variability
concepts in source code. In International Conference on Conceptual Modeling.
Springer, 141–150.

[15] Andreas Metzger and Klaus Pohl. 2014. Software product line engineering and
variability management: achievements and challenges. In Proceedings of the on
Future of Software Engineering. ACM, 70–84.

[16] Julia Rubin and Marsha Chechik. 2013. A survey of feature location techniques.
In Domain Engineering. Springer, 29–58.

[17] Xhevahire Tërnava and Philippe Collet. 2017. On the Diversity of Capturing
Variability at the Implementation Level. In Proceedings of the 21st International
Systems and Software Product Line Conference-Volume B. ACM, 81–88.

[18] Xhevahire Tërnava, Johann Mortara, and Philippe Collet. 2019. Identifying and
Visualizing Variability in Object-Oriented Variability-Rich Systems. In Proceedings
of the 23rd International Systems and Software Product Line Conference-Volume A.
ACM.

[19] Liping Zhao. 2008. Patterns, symmetry, and symmetry breaking. Commun. ACM
51, 3 (2008), 40–46.

[20] Liping Zhao and James Coplien. 2003. Understanding symmetry in object-
oriented languages. Journal of Object Technology 2, 5 (2003), 123–134.

https://deathstar3.github.io/symfinder-demo/
https://deathstar3.github.io/symfinder-demo/

	Abstract
	1 Introduction
	2 Variation Points and Variants in Object-Oriented Systems
	3 symfinder
	3.1 Overview
	3.2 Identification through local symmetries
	3.3 Web-based visualization
	3.4 Portability and performance

	4 Current Applications
	5 Conclusion
	References

