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Crouzon Syndrome (CS), Jackson-Weiss syndrome (JWS) and Pfeiffer syndrome (PS) 

are three craniosynostotic conditions caused by heterozygous mutations in Fibroblast 

Growth Factor Receptor (FGFR) genes. Screening a large cohort of 84 patients with 

CS, JWS or PS by direct sequencing of genomic DNA, enabled FGFR1, 2 or 3 mutation 

detection in 79 cases (94%). Mutations preferentially occurred in exons 8 and 10 of 

FGFR2 encoding the third Ig loop of the receptor. Among the 74 FGFR2 mutations that 

we identified, five were novel including four missense substitutions causing CS and a 

two bp deletion creating a premature stop codon and producing JWS. Five FGFR2 

mutations were found in one of the two tyrosine kinase sub-domains and one in the Ig I 

loop. Interestingly, two FGFR2 mutations creating cysteine residues (W290C and 

Y340C) caused severe forms of PS while conversion of the same residues into another 

amino-acid resulted in Crouzon phenotype. 

Our data provide conclusive evidence that the mutational spectrum of FGFR2 mutations 

in CS, JWS and PS is wider than originally thought. Genotype-phenotype analyses 

further indicate that FGFR2 mutations creating cysteine residues at positions 290 and 

340 are associated with the most severe forms of PS with a poor prognosis. 
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INTRODUCTION 

Crouzon (MIM# 123500), Jackson-Weiss (MIM# 123150) and Pfeiffer syndromes 

(MIM# 101600) are three clinically related but distinct craniosynostoses with common 

clinical features including craniosynostosis, ocular hypertelorism with proptosis and 

midface hypoplasia. They differ by the absence in CS and presence in PS and JWS of 

limb abnormalities. Clinical distinction between PS and JWS is based on the presence 

in JWS of broad great toes with medial deviation and tarsal-metatarsal coalescence in 

the absence of hand anomalies, but clinical overlap between the two entities does exist, 

making the diagnosis difficult [Cohen 2001]. In 1993, Pfeiffer syndrome has been 

subdivided into 3 types [Cohen 1993]. Type I, the most frequent form is usually 

associated with a benign course and satisfactory prognosis, whereas type II and III 

represent severe forms of the disease with a poor outcome and early demise in some 

cases. Subdivision was based on the presence (type II) or absence (type III) of 

cloverleaf skull. 

In 1994, CS has been ascribed to de novo mutations in the FGFR2 gene 

[Reardon et al., 1994]. FGFR2 belongs to a family of four receptors comprising an 

extracellular ligand-binding domain, a transmembrane domain and an intracellular 

domain carrying the tyrosine kinase activity. Further studies have shown that FGFR2 

mutations also accounted for JWS and PS [Jabs et al., 1994; Lajeunie et al., 1995; 

Rutland et al., 1995], but genetic heterogeneity of this latter syndrome was 

demonstrated by the identification in several families of a recurrent FGFR1 mutation 

causing mild forms of the disease [Muenke et al., 1994; Schell et al., 1995]. Sporadic 

cases of CS and PS have been associated with advanced paternal age and the origin of 

FGFR2 mutations in these two conditions, like in Apert syndrome, was demonstrated to 

be exclusively paternal [Moloney et al., 1996, Glaser et al., 2000]. 

Surprisingly, the same FGFR2 mutation can give rise to Crouzon, Jackson-Weiss or 

Pfeiffer syndrome [Rutland et al., 1995; Tartaglia et al., 1997]. Until 2002, FGFR2 



mutations had been identified exclusively in the extracellular domain of the receptor 

mainly in exons 8 (IIIa) and 10 (IIIc) encoding the third immunoglobulin-like (Ig III) loop 

and appeared to account for only 50% of CS and PS cases [Passos-Bueno et al., 

1999]. In 2002, novel mutations in other regions of the receptor including the IgII loop 

and the tyrosine kinase sub-domains TK1 and TK2 have been reported [Kan et al., 

2002]. Likewise, this study demonstrated that in a clinically homogeneous group of CS 

and PS patients, FGFR2 mutations were detectable in more than 90% of all cases, thus 

making the existence of an additional locus [Passos-Bueno et al., 1999] very unlikely. A 

recurrent mutation, A391E, in a third gene, FGFR3, accounts for a peculiar form of CS 

associating craniosynostosis with acanthosis nigricans [Meyers et al., 95].  

Molecular screening in a large cohort of CS, JWS and PS patients diagnosed in 

our hospital was performed. The diagnosis was based on the clinical presentation of the 

proband and family members. Mutations in one of the three FGFR genes (FGFR 1, 2 or 

3) were found in 94% of our cases. Five novel FGFR2 mutations were identified. 

FGFR2 mutations, although clustered mainly in exons 8 and 10, were also present with 

a lower frequency in exons 3, 14 and 16. The recurrent FGFR3 mutation A391E in exon 

10 caused CS with acanthosis nigricans whereas the P252R FGFR1 mutation produced 

PS with slight facial anomalies and absence of neurological defects. Altogether our 

results confirm that CS and JWS are genetically homogeneous at the FGFR2 locus 

whereas PS is heterogeneous, being caused by FGFR1 or FGFR2 mutations. Clinical 

and radiological examination of PS patients further revealed that FGFR2 mutations 

creating cysteine residues at positions 290 and 340 are associated with the most severe 

phenotypes. 

 

PATIENTS AND METHODS 

Patients and samples 

During the past 10 years, clinical diagnosis and surgical correction of the skull 



deformation in patients with syndromic craniosynostoses was achieved by the same 

team of physicians and surgeons at the Craniofacial Surgery Department of the Hôpital 

Necker-Enfants Malades. Each patient showed characteristic clinical features including 

synostosis of one or several cranial sutures, ocular proptosis, maxillary hypoplasia and 

midface retrusion. Crouzon patients were distinguishable from PS and JWS by the 

absence of hand and foot anomalies. Among 2594 children with proven 

craniosynostosis, 116 children from 100 families were diagnosed as Crouzon patients 

and 35 children from 33 families as Pfeiffer patients. Diagnosis of JWS was established 

in two patients. In our series, the birth prevalence of CS was 1/50,000 and this entity 

appeared to account for 4.5 % of all craniosynostoses. PS was less frequent with an 

estimated birth prevalence of 1/150,000 and accounted for 1.3 % of all 

craniosynostoses. DNA samples were obtained from eighty four patients with Crouzon, 

Jackson-Weiss or Pfeiffer syndromes. Informed consents for molecular studies and 

photographs were obtained from all patients or their parents. 

 

Mutation analysis 
 

Molecular analysis was performed on a cohort of patients comprising 62 

unrelated CS (24 familial cases and 38 sporadic cases) including two patients with 

acanthosis nigricans (one sporadic and one familial case), two familial cases of JWS 

and 20 unrelated PS (5 familial cases and 15 sporadic cases).  

PCR amplification of genomic DNA was performed using previously described 

primers and conditions [Lajeunie et al., 1995, Kan et al., 2002]. PCR fragments were 

directly sequenced on an ABI 3100 capillary sequencer (Applied Biosystems) with 

BigDye terminator mix. Since FGFR2 mutations preferentially occur in exons 8 and 10, 

these two exons were tested first.  

Novel mutations were validated by sequencing exons 8 and 10 in 65 control genomic 



DNAs. When no mutation was found, screening of other exons was undertaken. Exon 

numbering for FGFR2 was based on a recently proposed nomenclature [Ingersoll et al 

2002]. GenBank accession numbers for FGFR1: BC015035; FGFR2: AF410480; 

FGFR3: AY768549 

 

RT-PCR amplifications 
 

For RT-PCR studies, total RNA was extracted from cultured skin fibroblasts using 

the RNeasy Mini Kit (Qiagen). Complementary DNA was synthesized by priming with 

either random hexamers or oligo-dT in the presence of MuLV reverse transcriptase 

using the manufacturer’s protocol (GeneAmp RNA PCR Core Kit, Roche). Twenty five 

to 40 PCR cycles were then performed to amplify fragments specific for either the IIIb 

isoform (exon 9) or the IIIc isoform (exon 10) of FGFR2 by using the following primers: 

5’-AAGCACTCGGGGATAAATAG-3’ (F) and 5’-GTTTTGGCAGGACAGTGAGC-3’ (R) for 

exon 9 ; 5’-CACAGTGGTCGGAGGAGA-3’ (F) and 5’-AGTTACATTCCGAATATAGAG-3’ 

(R) for exon 10.  Sense and antisense primers used for GAPDH amplification were as follows: 

5’-CATGTGGGCCATGAGGTCCACCAC-3’ and 5’-

TGAAGGTCGGAGTCAACGGATTTGGT-3’. Samples were analysed on 1% agarose gels. 

Specificity of all RT-PCR products was tested by direct sequencing 

 

RESULTS 

Mutation screening was performed by direct sequencing of FGFR1, 2 and 3 

genes. In FGFR1 and FGFR3 genes, sequence analyses were restricted to exons 7 and 

10 respectively, whereas 16 exons of the FGFR2 gene were studied. FGFR mutations 

were detected in 79/84 (94%)  unrelated patients (Table 1). The recurrent FGFR1 

mutation P252R was recorded in 3 Pfeiffer cases (one familial and two sporadic). In two 

Crouzon patients with acanthosis nigricans, the recurrent A391E FGFR3 mutation was 



identified. All other mutations causing CS, JWS and PS were found in the FGFR2 gene. 

As expected, mutations in exons 8 and 10 of the FGFR2 gene were largely predominant 

in our cohort, representing 92% (68/74) of the overall FGFR2 mutations. Among these 

68 mutations, 36 (53%) either created or eliminated cysteine residues, thus generating 

unpaired cysteine able to induce disulfide bond formation between two mutant 

receptors. Mutations outside exons 8 and 10 (6/74) were located in either exon 3 

encoding the first Ig-like loop (Y105C) or exons 14 and 16 encoding the tyrosine kinase 

sub-domains. Mutations N549H in the TK1 and K659N in the TK2 domains are 

homologous, respectively, to the N540K and K650N FGFR3 mutations causing 

hypochondroplasia. In 5 patients (4 CS and 1 PS) no FGFR2 mutation was found. 

Analysis of exon 7 of FGFR1, exons 7 and 10 of FGFR3 and exon 1 of TWIST also 

failed to reveal an abnormal sequence in those cases.  

 

CROUZON PATIENTS 

Missense substitutions were detected in 57/60 unrelated cases including 21 

familial forms and 36 sporadic cases. In familial forms, presence of the single base 

change was confirmed by DNA sequencing of at least one additional affected member.  

The Y105C mutation in exon 3 was found in one familial case. Three other family 

members carried the same substitution. Sixteen missense mutations corresponding to 

10 distinct heterozygous amino-acid changes were identified in exon 8. Two of these 

mutations (I288N and Y308C) are novel (Table 2). They were found neither in the DNA 

of unaffected parents, nor in 65 control DNA samples. Thirty three mutations 

corresponding to 12 distinct amino-acid changes occurred in exon 10. The most 

frequent mutation C342Y was detected in 12 unrelated cases (22%). The L357S 

mutation is reported for the first time.  

Clinical re-examination of Crouzon patients carrying FGFR2 mutations showed 

that proptosis although variable was systematically present in all patients. Coronal 



sutures were the most frequently affected as 86% of patients presented bicoronal 

fusions (brachycephaly), 18% exhibited both coronal and sagittal fusions (oxycephaly) 

and 5% showed pansynostosis (fusion of all sutures). In the remaining 9%, fusion was 

restricted to the sagittal suture (scaphocephaly) or the sagittal and lambdoids.  

A close examination of patients carrying novel FGFR2 mutations revealed that 

the Y308C mutation occurred in a girl with a typical form of CS. The L357S mutation 

was detected in a familial case and segregated with the disease. The proband was a 12 

year-old girl with pansynostosis and chronic tonsillar herniation. Her older brother who 

had sagittal and bicoronal synostosis had never required surgery because facial 

anomalies were mild. 

 

JACKSON-WEISS PATIENTS 

An heterozygous dinucleotide deletion (AC) at position 958-959 was detected in 

exon 10 of FGFR2 in a familial form of JWS with typical tarsal/metatarsal coalescence 

in the absence of hand anomalies (Fig. 1a-d). This frameshift mutation that occurred in 

a mother and her son, was predicted to induce translation of four illegitimate amino-

acids, immediately followed by a premature termination codon (TGA) at position 324 of 

the receptor (Fig. 2b). RT-PCR analysis of mRNA extracted from fibroblasts of the 

affected mother, revealed an absence of the mutant transcripts, indicating that the 2bp 

deletion induced RNA instability of the IIIc transcripts (Fig. 2a). Interestingly, ectopic 

expression of the FGFR2 IIIb transcripts was observed in the mother’s fibroblasts (Fig. 

2c) suggesting that illegitimate expression of the IIIb isoform in cells of mesenchymal 

origin might account for the phenotype. 

 

PFEIFFER PATIENTS 

FGFR mutations were detected in 19/20 (95%) Pfeiffer samples. Three patients 

carried the recurrent P252R FGFR1 substitution that gave rise to a relatively mild 



phenotype (Table 3). Sixteen patients including 4 familial forms and 12 sporadic cases 

harbored a FGFR2 mutation. Although variable, the phenotype was more severe (Fig. 

1j) than in patients carrying FGFR1 mutations as attested by marked facial deformities, 

common hydrocephaly (in 10/16 patients), mental retardation and premature death 

(Table 3). In exon 8, the W290C FGFR2 mutation was identified in three cases, two of 

them died prematurely and the third was prenatally diagnosed by ultrasound 

examination at 29 weeks of gestation. Radiological and clinical examination after 

termination of pregnancy confirmed the diagnosis of Pfeiffer type II with very severe 

proptosis, cloverleaf skull and humero-radio-ulnar synostosis (Fig. 1k). In exon 10, we 

found 11 mutations of 6 different types including the common splice mutation (940-

2A→G) that creates a cryptic donor site. Both patients harboring the Y340C mutation 

had a severe phenotype consistent with the diagnosis of Pfeiffer type II. One case died 

in the early childhood of respiratory distress while the second case was prenatally 

diagnosed and pregnancy was terminated at 25 weeks of gestation. Radiological 

examination showed cloverleaf skull, elbow ankylosis with bilateral humero-radio-ulnar 

synostosis, broad and deviated big toes and vertebral anomalies including 

sacrococcygeal eversion (Fig. 1e-g) 

Mutations in exons 14 and 16 encoding the tyrosine kinase domains TK1 and 

TK2 were identified in two sporadic cases. Mutation in the TK2 domain was associated 

with a more severe phenotype (Fig. 1h, i) than in the TK1.  

 

DISCUSSION 

We have carried out a molecular study of three FGFR genes in a large series of 

84 cases with CS, JWS and PS.  Based on previous studies [Kan et al., 2002; Cornejo-

Roldan et al., 1999] and our own experience, the mutation detection rate appears to 

depend largely on the accuracy of the original diagnosis and the sensitivity of the 

detection method. In our study, all patients were examined by the same physicians so 



that the clinical criteria for phenotypic classification were highly homogeneous allowing 

recognition of the Crouzonoid facies.  

Based on our clinical diagnosis and using direct sequencing, we identified 

FGFR2 mutations in 95% (57/60) of our Crouzon patients. This situation is similar to two 

previous studies [Kress et al., 2000; Kan et al., 2002] in which mutations were found in 

25/28 and 18/20 Crouzon patients respectively. In PS, we found 95% of mutations in 

our cohort of 20 patients. A similar percentage was obtained in the Oxford series [Kan 

et al 2002]. In contrast, Cornejo-Roldan et al. [1999] studying a total of 78 unrelated 

Pfeiffer patients identified FGFR mutations in only 40 cases (51%). The difference 

between the three studies could rely on the stringency of clinical diagnosis. In the 

Cornejo-Roldan’s group, the criteria for inclusion in the Pfeiffer group might be too 

broad. Hence, the presence of mild radiological findings like shortened middle 

phalanges could be insufficient to make a diagnosis of PS.  

Although previous studies have failed to disclose genotype-phenotype 

relationships in craniosynostoses caused by FGFR2 mutations, analysis of amino-acid 

substitutions eliminating cysteine 342 in our cohort of patients suggest that the 

phenotype relies on the nature of the newly created residue. Tyrosine would 

preferentially cause CS (12/12) while serine, arginine or tryptophane would mainly 

account for PS (5/6). A similar situation exists in FGFR3-related skeletal dysplasias. 

Substitutions of lysine 650 by methionine or glutamic residues give rise to thanatophoric 

dysplasia or SADDAN whereas replacement of lysine by glutamine, asparagine or 

threonine generates hypochondroplasia, a much milder condition [Bellus et al., 1996; 

Bellus et al., 2000]. Differences in the receptor activation levels due to conformational 

changes of the receptor three-dimensional structure induced by amino-acids of variable 

charge and size could explain this result.  

Mutations affecting tryptophan 290 were also of particular interest. Three different 

amino-acid substitutions have been recorded W290C, W290G and W290R. The four 



patients carrying W290G and W290R substitutions had Crouzon syndrome. Similarly, 

four previously reported patients with the same mutations have been diagnosed as 

Crouzon [Passos-Bueno et al., 1999]. By contrast, the three patients carrying the 

W290C mutation in our series had a severe sub-lethal form of Pfeiffer syndrome. The 

same mutation has been described in at least seven additional patients. Six of them had 

a severe form of PS with cloverleaf skull and severe proptosis and two of them died 

prematurely [Tartaglia et al., 1997, Schaefer et al., 1998; Kan et al., 2002; Zackai et al., 

2003; Nazarro et al., 2004]. The seventh patient presented a severe non classifiable 

craniosynostosis syndrome with limb and joint anomalies and mental retardation 

[Shotelersuk et al., 2002]. Taken together, these observations strongly suggest that 

conversion of tryptophane 290 into cysteine is likely to induce formation of disulfide 

bonded dimer receptors resulting in a severe phenotype, mostly Pfeiffer syndrome type 

II [Cohen, 1993], characterized by marked disabling and early death.  

Of note was the relatively uncommon Y340C substitution. This mutation has 

been previously described in three patients with PS [Cornejo-Roldan et al., 1999; Kan 

et al., 2002, Blaumeiser et al., 2004] and in our series, it was identified in two PS cases. 

Both exhibited a very severe form of the disease with cloverleaf skull, severe ocular 

proptosis, hydrocephalus, abnormal great toes and thumbs consistent with the 

diagnosis of PS type II. Premature death occurred in one case. It is tempting to 

conclude that this mutation, like the W290C substitution, is preferentially associated with 

severe forms of PS with a poor prognosis regarding neurological functions and survival. 

Interestingly, another amino-acid substitution creating an unpaired cysteine residue, 

namely S351C, also results in severe forms of Pfeiffer syndrome (type III) in most 

reported cases [Gripp et al., 1998, Sweeney et al., 2002]. Although confusion might 

exist between PS type III and the so-called ‘Antley-Bixler-like’ phenotype, we consider 

that the heterozygous S351C FGFR2 mutation is a hallmark of severe forms of PS, as 

typical forms of Antley-Bixler syndrome are caused by recessive mutations in the P450 



oxido-reductase (POR) gene [Fluck et al., 2004]. 

Unlike FGFR3, mutations in the tyrosine kinase subdomains of FGFR2 have 

been described only recently [Kan et al., 2002] and since, only one additional case has 

been reported [Zankl et al., 2004]. In our series, five additional cases were identified 

including three CS and two PS. In keeping with previous data, the K641R mutation 

caused PS.  The N549H mutation caused both CS and a mild form of PS suggesting 

that mutations in the TK domains are phenotypically less deleterious than mutations 

creating cysteine residues in the extracellular domain. 

Although no definitive genotype-phenotype relationships can be drawn from the 

literature on craniosynostoses and FGFR genes, our results suggest that some specific 

FGFR2 residues namely tryptophan 290 and tyrosine 340 account for the most severe 

forms of Pfeiffer syndrome when converted into cysteine residues.  
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Legends 

 
Figure 1. Phenotype of a mother and her son with Jackson-Weiss syndrome. Both patients 

have brachycephaly, midface hypoplasia, facial dysmorphism and proptosis (a, b). Note 

partial tarsal fusion and extra delta-shaped small bone between the first and the second 

phalanx of the left hallux in the boy (at 15 years) and complete tarsal fusion in the mother 



(c,d). 

Radiographs of a 25-week-old foetus with Pfeiffer syndrome carrying the Y340C FGFR2 

mutation. Lateral and frontal views showing humero-radio-ulnar synostosis and sacral 

anomalies (e), cloverleaf skull (f) and abnormal shape of the first phalanxes of big toes (g). 

Severe proptosis, marked brachycephaly with underossified cranial vault (h), mild 

syndactyly and flat thumbs (i) in a patient with Pfeiffer syndrome carrying a K641R 

FGFR2 mutation. 

Facial and lateral radiographs of a Pfeiffer patient carrying a C342R FGFR2 mutation, 

showing multisynostoses of sagittal and coronal sutures responsible for severe 

scaphocephaly (j). Radiographs of a 29-week-old foetus with Pfeiffer syndrome carrying 

the W290C FGFR2 mutation. Brachycephaly with cloverleaf skull, bilateral humero-radio-

ulnar synostosis and large and deviated thumbs are visible (k). 

 

Figure 2. Direct sequencing of genomic DNA from the JWS mother showing a heterozygous 

frameshift deletion (delAC) in exon 10 of FGFR2 (b). The normal sequence of the RT-PCR 

product derived from the patient fibroblasts indicates that the mutant allele is not detectable 

at the cDNA level (a). RT-PCR amplification of the IIIc isoform of FGFR2 encoded by exon 

10 gives a signal both in the patient and control cells whereas amplification of the IIIb 

isoform encoded by exon 9 gives a signal in the patient’s fibroblasts only (c). M : affected 

mother; C : control 

 

 

 



 
TABLE 1. Patients analyzed for FGFR mutations 

 
 

*AN = acanthosis nigricans 
 

Clinical 
diagnosis 

 

Number of 
patients 

Patients with 
FGFR2 

mutation 

Patients with 
FGFR1 

mutation 

Patients with 
FGFR3 

mutation 

Patients with 
no FGFR 
mutation 

 
Crouzon 
syndrome 

 
60 

 
57 (95%) 

 
0 

 
0 

 
3 (5%) 

Pfeiffer 
syndrome 

20 16 (80%) 3 (15%) 0 1 (5%) 

Crouzon 
syndrome  
with A.N.* 

2 0 0 2 0 

Jackson-
Weiss 

syndrome 

2 1 0 0 1 

Total 84 74 (88%) 3 (3.5%) 2 (2.5%) 5 (6%) 



TABLE 2. FGFR mutations* identified in the study 
  Gene Nucleotide  

  change 
Mutation Protein 

domain 
Familial/ 
Sporadic 

Crouzon Pfeiffer Crouzon 
+ A.N.a 

Jackson- 
 Weiss 

FGFR2 314A>G  Y105C     Ig Ib      F      1      -                 -      - 
FGFR2 799T>C  S267P  Ig IIIa      S      2      -       -      - 
FGFR2 800C>T  S267F  Ig IIIa      F      1      -       -      - 
FGFR2 826T>G  F276V  Ig IIIa      S      1      -       -      - 
FGFR2 833G>T  C278F  Ig IIIa      S      5      -       -      - 
FGFR2 833G>A  C278Y  Ig IIIa      S      1      -        -      - 
FGFR2 

863T>A  I288N 
 Ig IIIa      S      1      -       -      - 

FGFR2 866A>C  Q289P  Ig IIIa 2F + 1S      3      -       -      - 
FGFR2 868T>G  W290G  Ig IIIa      F      1      -       -      - 
FGFR2 870G>T  W290C  Ig IIIa      S      -       3       -      - 
FGFR2 

923A>G 
 Y308C  Ig IIIa      S      1      -       -      - 

FGFR2 940 –2  
A>G 

Splice 
acceptor 

 Ig IIIc      S      2          -       -      - 

FGFR2 958delAC Premature 
stop codon 

 Ig IIIc      F      -     -       -     1 

FGFR2 962A>C  D321A  Ig IIIc      S      1      -       -      - 
FGFR2 1009G>C  A337P  Ig IIIc      S      1      -       -      - 
FGFR2 1012G>C  G338R  Ig IIIc  3S + 1F      4      -       -      - 
FGFR2 1018T>C  Y340H  Ig IIIc  2S + 1F      3      -       -      - 
FGFR2 1019A>C  Y340S  Ig IIIc       S      1      -       -      - 
FGFR2 1019A>G  Y340C  Ig IIIc       S      -      2       -          - 
FGFR2 1021A>C  T341P  Ig IIIc       S      1       -        -      - 
FGFR2 1024T>C  C342R  Ig IIIc       S      -      1       -      - 
FGFR2 1025G>A  C342Y  Ig IIIc   9S + 3F     12      -       -      - 
FGFR2 1025G>C  C342S  Ig IIIc   4S + 1F     1(F)     4(S)       -      - 
FGFR2 1026C>G  C342W  Ig IIIc   2F + 1S     2(F)     1(S)       -      - 
FGFR2 1032G>A  A344A 

Cryptic site 
 Ig IIIc   2F + 2S     4      -       -      - 

FGFR2 1040C>G  S347C  Ig IIIc        S     2      -       -      - 
FGFR2 1061C>T  S354F  Ig IIIc        S     1      -       -      - 
FGFR2 1070T>C  L357S  Ig IIIc        F     1      -       -      - 
FGFR2 1645A>C  N549H   TK1c        S     2      1       -      - 
FGFR2 1922A>G  K641R   TK2        S     -      1       -      - 
FGFR2 1977G>T  K659N   TK2        S     1      -       -      - 
FGFR1  755C>G  P252R IgII-IgIII 

  linker 
  2S + 1F     -      3       -           - 

FGFR3 1172C>A   A391E    TMd   1S + 1F     -      -        2      - 
*Nucleotide and amino acid numbers refer to the following GenBank accession numbers: 
FGFR1: BC 015035; FGFR2: AF 410480; FGFR3: AY 768549. Novel mutations are in bold. 
aA.N. : acanthosis nigricans; bIg : immunoglobulin-like loop; cTK: tyrosine kinase;  
dTM : transmembrane 
  



TABLE 3. Clinical features of Pfeiffer patients carrying FGFR2 or FGFR1 mutations 

 

Patient 
 

Mutation Fascio 
stenosis 

Proptosis Suture 
fusions 

Limb 
anomalies 

Synd 
actyly 
 

Arnold- 
Chiari  

Elbow 
ankylosis  

Hydro 
cephaly 

Mental  
retardation 

PS 1 
(dead)a 

W290C 
(FGFR2) 

severe mild Sagittal+ 
metopic 

Thumbs + 
halluces 

+ ? − ? ? 

PS2 
(dead)a 

W290C 
(FGFR2) 

severe moderate *Bicor. + 
sagittal 

Thumbs + 
halluces 

+ + _ + ? 

PS 3 
(fœtus)b 

W290C 
(FGFR2) 

severe   Thumbs + 
halluces 

  +  ? 



*Bicor. = bicoronal, fusion of two coronal sutures (brachycephaly); Unicor.= unicoronal, fusion 
of one coronal suture (plagiocephaly); Pansyn.= pansynostosis, fusion of all sutures.  
aPremature death due to respiratory distress.  
bPregnancy was interrupted at 25 weeks after ultrasound examination and detection of multiple 
malformations. 
cCloverleaf skull 
 

 

  PS 4 D321A 
(FGFR2) 

moderate moderate Bicor. Thumbs +   
halluces 

   + _ _ _ + 

 PS 5 
(foetus)b 

Y340C 
(FGFR2) 

severe Severec *Pansyn. Thumbs + 
halluces 

+ ? − + ? 

PS 6 
(dead)a 

Y340C 
(FGFR2) 

severe Severe Bicor. Thumbs + 
halluces 

+ + − + ? 

PS 7 C342R 
(FGFR2) 

severe severe Pansyn. Thumbs + 
halluces 

+ − − + − 
PS 8 

(dead)a 

C342S 
(FGFR2) 

severe very 
severe 

Pansyn. Thumbs + 
halluces 

+ ? − + ? 

PS 9 C342S 
(FGFR2) 

severe very 
severe 

Bicor. Thumbs + 
halluces 

+ − − − + 

PS 10 C342S 
(FGFR2) 

severe very 
severe 

Sagittal  Thumbs − − − − − 
PS 11 C342S 

(FGFR2) 
severe very 

severe 
lambdoids Thumbs + 

halluces 
+ − + + + 

PS 12 
(dead)a 

C342W 
(FGFR2) 

severe moderate Bicor. + 
sagittal 

Thumbs + 
halluces 

+ + − + ? 

PS 13 N549H 
(FGFR2) 

mild moderate Bicor. Thumbs + 
halluces 

+ + − + ? 

PS 14 K641R 
(FGFR2) 

severe moderate Bicor. + 
sagittal 

Thumbs + 
halluces 

+ + − + − 
PS 15 Sp940-2 

A>G(R2) 
moderate moderate Bicor. + 

metopic 
Thumbs + 
halluces 

+ − − − + 

PS 16 Sp940-2 
A>G(R2) 

severe moderate Bicor. + 
 

Thumbs + 
halluces 

+ − − + + 

PS 17 P252R 
(FGFR1) 

moderate moderate Bicor. Thumbs + 
halluces 

+ − − − − 

PS 18 P252R 
(FGFR1) 

moderate moderate *Unicor. Thumbs + 
halluces 

+ − − − − 
PS 19 P252R 

(FGFR1) 
moderate moderate Bicor. Thumbs + 

halluces 
+ − − − − 

 






