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ABSTRACT 

Cerebral palsy is a major health problem caused by brain damage during pregnancy, 

delivery, or the immediate postnatal period. Perinatal stroke, intraventricular 

hemorrhage, and asphyxia are the most common causes of neonatal brain damage. 

Periventricular white matter damage (periventricular leukomalacia) is the predominant 

form in premature infants and the most common antecedent of cerebral palsy.  

Stem cell treatment has proven effective in restoring injured organs and tissues in 

animal models. The potential of stem cells for self-renewal and differentiation translates 

into substantial neuroprotection and neuroregeneration in the animal brain, with minimal 

risks of rejection and side effects. 

Stem cell treatments described to date used neural stem cells, embryonic stem cells, 

mesenchymal stem cells, umbilical cord stem cells, and induced pluripotent stem cells. 

Most of these treatments are still experimental.  

In this review, we will focus on the efficacy of stem cell therapy in animal models of 

cerebral palsy, and we will discuss potential implications for current and future clinical 

trials.  
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INTRODUCTION 

 

Neonatal brain injuries and cerebral palsy (CP) 

Brain injury in premature infants is a major health problem worldwide. The 

incidence of preterm birth has increased, and improvements in survival rates have led to 

increased numbers of disabled patients despite a concomitant decrease in long-term 

neurodevelopmental disability rates.1-4  

Perinatal stroke, intraventricular hemorrhage, and asphyxia are the most common 

causes of neonatal brain injury, with hypoxia-ischemia being the final common pathway 

of injury.  

Periventricular white matter damage (PWMD, periventricular leukomalacia) is the 

predominant form of brain injury in premature infants and the most common antecedent 

of cerebral palsy (CP). Hypoxia/ischemia with or without systemic infection/inflammation 

is the main mechanism responsible for PWMD. Neuropathology studies show focal 

necrotic lesions within the white matter surrounding the lateral ventricles and/or the 

subsequent appearance of more widespread lesions5 related to apoptotic death of late 

oligodendrocyte progenitors.6, 7 The main neuropathological feature of PWMD is marked 

hypomyelination.8 In addition to the white matter damage, the gray matter exhibits 

abnormalities including neuronal loss and impaired neuronal guidance.9 These findings 

support the view that some of the dysfunctions seen in preterm infants reflect decreased 

brain connectivity with impairments in the integration of information arriving from 

different areas of the brain.10, 11 

Children assessed several years after preterm birth often perform less well in tests 

of cognition, attention, executive function, and perception than do children born at full 

Page 45 of 82

John Wiley & Sons

Annals of Neurology



Stem cells and perinatal brain damage  Titomanlio L. et al. 

5 
 

term.12 The massive personal and economic burdens generated by long-term 

neurological morbidity, together with the high prevalence of perinatal brain damage, are 

of considerable concern, particularly as no effective treatment is available to date.13 

 

Animal models of cerebral palsy 

Because of the many developmental and functional differences between the 

neonatal brain and the adult brain, extrapolating adult data to neonates is generally 

unwise. Consequently, the efficacy of potential treatments should be tested in 

developmentally appropriate models. Several inflammation- or ischemia/hypoxia-based 

models of CP have been developed, mainly in rodents.14 

Transient bilateral carotid artery stenosis leads to generalized brain ischemia, 

which selectively destroys specific cells. However, this model is associated with highly 

variable outcomes,15 and models of focal ischemia are therefore more commonly used. 

These models involve occlusion of the middle cerebral artery (MCA), which leads to 

infarction of the striatum and overlying cortex. Permanent occlusion is accomplished via 

laser-induced photothrombosis, ligation, or cauterization.16 Ischemia-reperfusion injury 

can be replicated by inducing transient occlusion17 using an intraluminal filament fed 

through the carotid artery into the proximal MCA. Animal models of hypoxia-ischemia 

have shown clearly that brain injury is followed by reduced myelination, ventricular 

enlargement, loss of neurons, damage to axons and dendrites, and alterations in 

neurobehavioral performance,18-21 thus reproducing common features of PWMD.  

Experimentally induced inflammation has been used in a number of studies to model 

PWMD pathology and to test potential therapeutic interventions. The endotoxin 

lipopolysaccharide (LPS), a potent inducer of innate immune responses such as 
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inflammation,22-24 administered intracerebrally during the early neonatal period or 

intraperitoneally to the pregnant dam, results in (neuro)-inflammation and 

hypomyelination in the offspring.25, 26 Excitotoxicity is another key factor that contributes 

to the development of white and gray matter damage in the premature brain.9, 27, 28 Well-

characterized animal models of excitotoxic damage involve activation of the excitotoxic 

cascade via the NMDA and metabotropic glutamate receptors. Ibotenate and quinolinate 

29 induce white matter cysts, as well as cortical necrosis, reproducing the lesions 

observed in infants with PWMD.  

 

Cell therapy  

Cell therapy holds promise in various models of brain injury or disease.30-33 Over 

the last two decades, numerous studies have evaluated the efficacy and/or feasibility of 

transplantation within the injured brain of stem cells or specialized progenitor cells of 

both neural and non-neural origin, in order to replace lost cells or to prevent damaged 

cells from dying.34, 35 However, despite the wide availability of these cells and their 

common use in animal models of injury, few studies have focused on their 

protective/regenerative effect in models of perinatal brain damage.36-42 

 

Stem cell types 

Multipotency and self-renewal are the cardinal features of stem cells. Multipotency 

is the ability to differentiate into multiple cell types belonging to the same germ layer 

(endoderm, mesoderm, or ectoderm). Self-renewal is the ability to make identical copies 

via cell division. Stem cells have considerable proliferative potential. They can be 

derived from many human tissues (Figure 1). 
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Neural stem cells (NSCs) 

NSCs are found in the adult human brain, mainly in the subventricular zone (SVZ) 

and hippocampus.43, 44 These cells give rise to the three cerebral cell types, namely, 

neurons, astrocytes, and oligodendrocytes.45 NSCs from exogenous sources can be 

isolated from many regions of the central nervous system and cultured in vitro as 

neurospheres. Neurospheres are heterogeneous cell collections that include true stem 

cells, committed progenitors, and differentiated progeny. NSCs can also be derived from 

embryonic or fetal brain tissue, and they generate oligodendrocytes, neurons, and 

astrocytes when allowed to differentiate spontaneously in serum-free media.46, 47 NSCs 

can differentiate into functional cellular subtypes48, 49 such as cortical projection 

neurons,50 interneurons,51 and hippocampal pyramidal neurons.52 

 

Embryonic stem cells (ESCs) 

ESCs are derived from blastocysts during the 16-cell stage. They are pluripotent: 

they can give rise to all cell types within the developing embryo. ESCs can provide an 

almost unlimited supply of cells for transplantation. Unfortunately, ESCs form teratomas 

after in vivo transplantation.53, 54 Purifying neural cells by removing tumorigenic 

pluripotent stem cells is feasible,55 but the resulting cell population is probably not 

different from NSCs derived from other sources. 

 

Induced pluripotent stem cells (iPSCs) 

Induced pluripotent stem cells (iPSCs) can be obtained by inducing terminally 

differentiated somatic cells via nuclear reprogramming. Reprogramming has been 
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achieved by transducing mouse56 or human57 fibroblasts with retroviral vectors 

containing cDNA encoding four genes (Oct3/4, Sox2, c-Myc, and Klf4). Recently, similar 

results were obtained by transducing fibroblasts with Oct4, Sox 2, NANOG, and LIN28,58 

a strategy having the major advantage of not using the proto-oncogene c-Myc. An 

advantage of iPSCs is the ability to generate cellular products for autologous grafts. 

Thus, the administration of iPSC-derived progenitors is not followed by a graft-versus-

host response.59 A recent study established that functional neurons, of which a small 

proportion also expressed markers of GABAergic neurons, could be obtained in mice 

from adult somatic cells without the intermediate iPSC step.60 Interestingly, the same 

procedure has been developed in humans, permitting for the first time the generation of 

hematopoietic progenitors and mature cells directly from human dermal fibroblasts, 

without establishing pluripotency.61 This strategy is ethically acceptable and, 

theoretically, eliminates the risk of tumor formation. 

 

Mesenchymal stem cells (MSCs) 

Bone marrow contains a non-hematopoietic stem cell, the mesenchymal stem cell 

(MSC). MSCs differentiate into mesodermal tissues, including bone, cartilage and fat. It 

has even been suggested that MSCs may differentiate into functional neurons.62, 63 In 

vitro, MSCs have been shown to differentiate into neurons, astrocytes, and 

oligodendrocytes.64-67 In these studies, in vitro neural transdifferentiation by MSCs was 

assessed based on the detection of neural-related mRNAs and proteins in the treated 

cells. However several neural-related mRNAs and proteins are expressed by 

undifferentiated human MSCs.68 Moreover several studies have shown that in vitro 

neuronal differentiation protocols with chemical induction medium can produce 
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unexpected and misleading effects, with cell morphology changes caused by rapid actin 

cytoskeleton disruption, cell shrinkage, and cellular toxicity.69-72 These studies indicate a 

need for a more cautious evaluation of MSC differentiation using dissection of molecular 

signaling and commitment events, in order to reliably assess the ability of MSCs to 

differentiate into neuronal lineages.  

Apart from the bone marrow, non-embryonic tissues from which MSCs can be 

isolated include cord blood and the stroma of the umbilical cord and placenta.73 MSCs 

can be expanded in vitro. This culture procedure usually takes at least 2-3 weeks, which 

is not consistent with early autologous MSC treatment after the insult. The 

immunogenicity of MSCs is extremely low, as MSCs lack expression of MHC Class-II 

antigens, which prevents the development of a graft-versus-host response. Moreover, 

MSCs have immunosuppressive activity and are even used to treat steroid-resistant 

graft-versus-host disease.74, 75 This last feature may facilitate the transplantation of 

allogeneic MSCs, thus considerably improving treatment feasibility by allowing the 

administration of stored in vitro-expanded MSCs. Apart from their regenerative capacity, 

MSCs also exhibit anti-inflammatory properties, a feature that underlines their potential 

for the treatment of cerebral injury. 

 

Umbilical cord stem cells 

Umbilical cord blood contains many stem cell types such as MSCs76 and 

endothelial progenitor cells77, and has been demonstrated as a viable alternative to 

bone marrow transplantation.78, 79 Pluripotent stem cells were recently isolated from cord 

blood.80 
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The whole mononuclear cell fraction, containing all cord blood stem cells, is easily 

obtained from cord blood and has been transplanted in different animal models with the 

goal of assessing its possible neuroprotective effects.81-84 Human umbilical cord blood 

mononuclear cells (HUCBCs) differentiate in vitro into virtually all mature cells85-89 and 

neural cells.80, 90, 91 In a few laboratories, iPSCs were recently generated from cord 

blood.92 

The many advantages of HUCBCs include ready availability with no harm to the 

baby or mother, a limited number of ethical issues, low immunogenicity,93 and beneficial 

effects in vivo in animal diseases.81, 94, 95 

The connective tissue of the cord (Wharton’s jelly) is also a promising source for 

regenerative treatments, as it can be used to generate relatively high numbers of MSCs, 

which exhibit greater proliferative activity compared to bone marrow.73, 96 

 

Strategies for stem cell therapy  

Delivery routes and methods 

Stem cells may be delivered either systemically into the vasculature or locally into 

the brain (intraparenchymally, intraventricularly, and intrathecally)52, 97 (Figure 2). Many 

stem cells are capable of migration toward a focus of injury.39 NSCs are more frequently 

delivered directly into the brain, whereas MSCs are usually given systemically. Recently, 

we showed that intranasal delivery of stem cells was a useful and non-invasive 

method.41 The stem cells cross the cribiform plate and migrate through the brain via the 

rostral migratory route.98 

 

Cell dose 
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The appropriate dose of cells for transplantation depends on several factors, of 

which the most crucial is the host environment. 99 The goal is to obtain the greatest local 

benefits using the smallest possible number of viable transplanted cells in order to 

reduce the risk of toxicity.  

In a hostile microenvironment, for instance in an area of acute brain injury, a large 

number of cells may be needed to achieve effective neuroprotection, neuroregeneration, 

and local repair modulation. However, implantation of large numbers of cells into a small 

intraparenchymal site may affect cell viability and differentiation. Moreover, when gliotic 

changes begin, the volume of cells that can be accepted physically at an injury site is 

limited, even when slow administration rates are used.100 Strategies that are being 

evaluated in several animal models include multisite intracerebral injections; prolonged 

intraventricular, intrathecal, or intravenous infusion; and repeated cell grafting over 

time.52, 97, 101, 102 Our recent studies indicate that intracranial administration of 100,000 

MSCs into the neonatal mouse brain 10 days after the insult is sufficient to improve 

outcomes.40, 103 

 

Timing of transplantation 

Most neuroprotective agents have a relatively narrow therapeutic time window to 

be effective. The window for cell therapy remains ill-defined, and the effect of stem cells 

varies across disease models. This variability reflects the ability of stem cells to act as 

neuroprotective agents, as a source of cells for in vivo replacement (neuroregeneration), 

or as both.104 Whereas neuroprotection may be suitable for the treatment of acute brain 

injury, the treatment of chronic neurodegenerative diseases requires both 

neuroprotective and cell replacement strategies. When using animal models of CP, 
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many groups transplant the cells 4 to 48 hours following acute injury. However, benefits 

have been observed with cell delivery up to 10 days after cerebral hypoxia-ischemia.41 

Such findings may suggest mechanisms of action other than neuroprotection or in 

addition to neuroregeneration, such as enhancement of endogenous cerebral plasticity.  

In acute human brain disorders such as stroke, the efficacy of therapeutic 

interventions is directly related to the time to implementation.105, 106 In animal models of 

stroke, administration of MSCs 3-24 hours after MCA occlusion diminished cell 

apoptosis by 50% in the ischemic penumbra.107-109 From a clinical point of view, whether 

stem cells are appropriate in newborns shortly after an acute brain insult is debatable. 

In this specific clinical situation, activated microglia/macrophages play a central 

pathophysiological role,110, 111 and inflammatory cytokine production by these cells may 

partly inhibit stem cell-mediated repair processes. In addition, stem cell transplantation 

may result in a systemic inflammatory response that may enhance microglial activation 

at the lesion site and worsen the white matter damage through immature 

oligodendrocyte death and oligodendroglial cell maturation arrest.7 Also, stem cell 

infusion has been associated with pulmonary thrombosis in children112, 113 and with a 

decrease in cerebral blood flow in rats.114 In acute hypoxic-ischemic injury, cerebral 

vessel occlusion after cell transplantation may dramatically worsen the effects of the 

perinatal brain insult. 

Therapeutic effects of MSCs transplanted immediately after the insult may be 

chiefly ascribable to inhibition of neuroinflammation and apoptosis. When the cells are 

administered a few days or even a few weeks after the insult, functional improvements 

may be related to endogenous repair processes such as neurogenesis, angiogenesis, 

and synaptogenesis. For the development of future therapeutic interventions, working on 
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the therapeutic window is probably crucial. More specifically, we need to investigate the 

mechanisms of action of MSCs at a given time point after the insult. To obtain proof of 

concept in mice subjected to excitotoxic injury, we compared NSC therapy given 4 or 72 

hours postinjury. The behavioral evaluation showed severe memory function 

impairments without treatment contrasting with normal memory in mice given NSCs 4 

hours postinjury. This effect was mainly due to a neuroprotective mechanism.39 Mice 

treated 72 hours after lesion showed partial memory function recovery. These data 

suggest that an intervention can be effective even when given late, after the 

inflammatory and apoptotic storm has subsided. As discussed above, inflammation 

leads to local microglial activation, inhibiting endogenous neurogenesis and suppressing 

the growth and survival of transplanted cells.115 On the other hand, inflammation also 

activates local repair, facilitating transplanted cell homing, growth, integration, and 

survival after acute injury.116-118 

Better defining therapeutic windows in CP models, as well as the 

pathophysiological mechanisms involved, may help to achieve optimal integration of the 

newly formed cells into functional networks, thereby providing histological and 

behavioral improvements.  

 

Monitoring  

Clinical studies require noninvasive methods for monitoring the migration dynamics 

and viability of transplanted cells. Currently, there is no validated method for tracking 

transplanted stem cells in human patients, as bioluminescence and fluorescence 

techniques are not suitable for use in humans. In myelin diseases, myelin formation 

analysis may allow monitoring of in vivo NSC migration and engraftment.119-121 
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Alternatively, labeling of human NSCs (HuNSCs) grown with magnetic nanoparticles 

allows NSC detection by cerebral magnetic resonance imaging (MRI) in rodents 122, 123 

and would probably be useful also in humans. Metabolic markers have been tested and 

quantified in the human brain using proton nuclear MR spectroscopy.124 Unfortunately, 

the amount of NSC metabolic biomarker decreases dramatically with increasing stem 

cell age, leading to potential misinterpretation of data. Other techniques are being 

evaluated such as the use of viral vectors to deliver genes to stem cells encoding 

proteins detectable on MRI scans.125 However, before these techniques enter clinical 

trials, the use of genetically modified HuNSCs for in vivo tracking will have to be 

approved. 

In animal studies stem cells can easily be labeled using a fluorochrome and traced 

throughout the period of regeneration.  

 

Engraftment or stimulation of endogenous regeneration? 

Originally, the positive effects of stem cell transplantation were attributed to donor 

cell engraftment in the lesion site. MSCs express neuronal proteins and differentiate in 

vitro to respond to depolarizing stimuli.64, 65, 126 Data indicate that MSCs can differentiate 

into functional neurons.62, 63 However, in a recent qPCR study of mice on postnatal day 

9 (P9), we showed that after successful intracranial eGFP+-MSC transplantation 3 and 

10 days after hypoxia-ischemia, less than 1% of the MSCs were traced 18 days after the 

last stem cell dose. Thus, at least in models of neonatal hypoxia-ischemia, MSCs may 

function merely as regulators of endogenous regeneration rather than as a substitute for 

damaged tissue (Van Velthoven et al., manuscript submitted). In this respect, it is worth 

noting that MSCs produce myriad growth and differentiation factors such as BDNF, 
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BMP, CSF, NGF, EGF, interleukins, neurotrophin, Persepin, Spp1, TGFb, VEGF, and 

others. These factors may change the local milieu, thereby acting as inducing signals 

enabling endogenous regeneration (Van Velthoven et al. manuscript submitted and40, 

41). 

 

Toxicity 

Immune response 

The central nervous system has been viewed as an immunologically isolated site 

protected by an impermeable blood-brain barrier (BBB). However, recent studies 

suggest that activated lymphocytes may cross the BBB at sites of injury and that 

resident microglia may have antigen-presenting capacity.127 Although NSCs are 

minimally immunogenic, chronic low-grade rejection of transplanted NSCs remains 

possible. Furthermore, bone marrow-derived transplants can cause an inflammatory 

response and acute rejection,128 especially when they contain CD34+ hematopoietic 

stem cells. Systemic administration of stem cells can also modify the immune response 

by modifying cytokine production.129 Clinical investigators therefore believe that some 

form of immunosuppression is necessary to optimize donor cell engraftment and survival 

in humans, by blocking T-cell activation. This strategy has been studied in only a few 

patients with Parkinson disease130, 131 or Huntington disease 132, 133 treated with fetal cell 

transplantation. Given the potentially serious side effects of immunosuppression, this 

topic will gain in importance in future clinical trials of stem cell treatments. The 

development of noninvasive means of monitoring cell engraftment will help to assess the 

need for immunosuppression.134 
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Tumors 

ESCs and iPSCs have substantial significant teratogenic potential after 

implantation into host tissues, due to their pluripotency.53, 54 Non-ESC-derived NSCs and 

MSCs are usually considered non-tumorigenic.135-138 Unfortunately, a recent report from 

Russia described a young patient with teleangiectasia ectatica who developed several 

histologically proven neuroblastomas probably derived from HuNSC transplants.139 

Because the immunodeficiency associated with telangiectasia ectatica might have 

accounted for this complication, several methods were used to demonstrate that the 

tumor was not due to chromosomal and genetic instability in the patient. The results 

supported a nonhost origin to the tumors. The NSCs used in this patient for repeated 

intracerebral transplantation were derived from periventricular tissue isolated from 

several fetuses aborted at 8-12 weeks of gestation. Conceivably, the relatively poor 

purity of these cells may have contributed, at least in part, to tumor formation in this 

patient. This report confirms the need for a detailed safety assessment of stem cell 

treatments via well-conducted clinical trials.  

 

Stem cell therapy in animal models of cerebral palsy 

Stem cell treatments have been tested in various animal models of CP. Almost all 

types of stem cells produced beneficial effects in rodents (see Table). Brain injury in 

these models is not limited to a single cell type but instead affects heterogeneous cell 

populations. This heterogeneity is desirable, as it replicates observations in humans 

after neonatal brain injury. Research on stem cell therapy in this field has therefore 

focused on a mix of progenitor cells, whereas a single cell type has often been used in 
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other developmental disorders (e.g., oligodendrocyte progenitor cells in mouse models 

of congenital demyelination140). 

Stem cell therapy has been studied chiefly in focal lesions. Focal lesions are highly 

reproducible 41, 141 and allow a histological comparison with the non-injured hemisphere. 

Another advantage of studying focal lesions is that injury to different cerebral areas 

causes different phenotypes.142-144 The efficacy of stem cell therapy in these models 

provides useful information about the pathophysiology of brain damage in full-term and 

preterm infants. 

 

Embryonic stem cells (ESCs) 

ESCs have been tested in postnatal day-12 mice with ligation of the right carotid 

artery.38 NSCs derived from ESCs by retinoic acid-induced differentiation were injected 

into the striatum 2 or 7 days after ligation, and hemispheric brain atrophy was measured 

4 weeks after ligation. Hemispheric brain atrophy was less severe in the pups treated 2 

days postligation, but not in those treated 7 days postligation, compared to vehicle-

injected ligated controls. In 3 of the 10 surviving stem cell-injected animals, the 

transplanted cells formed tumors that contained very abnormal structures.38 Teratoma 

formation appears to correlate with the degree of cell differentiation and enrichment in 

culture.145 It is possible that ESCs were transplanted with the ESC-derived NSCs, 

accounting for the tumor formation. Indeed, in transplants of cells derived from ESCs, 

the main challenge is elimination of tumorigenic cells from the progenitor populations.145 

 

Neural stem cells (NSCs) 
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The therapeutic potential of NSCs in acute neonatal brain injuries has been 

evaluated in rodent excitotoxic and ligature models. The mouse pup model of ibotenate-

induced brain injury is a classic excitotoxic injury model for white and gray matter 

damage in human cerebral palsy.141 We recently reported that early (4-hour) and late 

(72-hour) neurosphere-derived precursor cell (NDP) implantation significantly reduced 

brain lesion size in this neonatal model.39 The implanted cells, modified in vitro prior to 

transplantation toward the oligodendrocytic lineage, were capable of migrating toward 

the lesion site even when implanted contralaterally to the lesion, a feature similar to the 

long-distance migration of NSCs seen in a hypoxic-ischemic model of brain injury.118 At 

the lesion site, the NDPs underwent transient differentiation into neurons and 

oligodendrocytes but not astrocytes, suggesting that fate specification was achieved by 

the culture conditions. In parallel with the reduction in lesion size, the injured mice 

displayed a persistent and marked improvement in temporal and spatial memory at 3 

and 6 weeks of age compared to littermates given intracerebroventricular injections of 

PBS or fibroblasts. The cells finally died in situ. Thus, even NDPs that do not survive 

can modify the functional impact of brain injury in neonates.  

HuNSCs derived from ESCs were tested in mouse pups with excitotoxic lesions 

induced by the NMDA receptor agonist quinolinic acid.146 Three days after the injury, the 

mice received intraparenchymal injections of HuNSCs, which were labeled in vitro for in 

vivo tracking. The cells migrated to the sites of injury, and subsets expressed neuronal 

and glial cell markers, partially restoring the striatal neurons in the brain-damaged mice.  

More recently, HuNSCs derived from ESCs and genetically engineered for in vivo 

molecular imaging and histological tracking were tested in a rat model of permanent left 

carotid artery ligation followed by hypoxia.147 HuNSCs were transplanted in the ischemic 
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left hemisphere in the newborn pups 24 hours after the brain injury. Transplanted 

animals had significantly better behavioral performances compared to the sham-

operated controls. Bioluminescence imaging permitted real-time tracking of the grafted 

cells, which showed good survival, dispersion, and differentiation.  

 

Mesenchymal stem cells (MSCs) 

Transplantation of MSCs derived from bone marrow has been shown to promote 

functional neurologic recovery in various models of neonatal and adult cerebral damage 

and confers neurogenesis, oligodendrogenesis and axonal remodeling and rewiring.148-

150  

The overall efficacy of stem cell treatment is greater in neonatal than in adult 

models of cerebral ischemia. This difference may be ascribable to the fact that the 

potential for endogenous neurogenesis continues throughout life but declines with age, 

so that neonates have a greater potential for regenerating lost neurons compared to 

adults.151-153 We recently showed that two administrations of bone marrow-derived 

MSCs to neonatal mice 3 and 10 days after unilateral right carotid artery occlusion on 

P9 produced a 46% improvement in sensorimotor function as observed in the cylinder 

rearing test and a 60% decrease in neuronal loss, compared to vehicle-treated animals. 

Moreover, we observed cellular proliferation and differentiation of the proliferated cells 

into cells expressing neuronal, oligodendroglial and astrocyte markers. Interestingly, the 

number of proliferating microglia decreased after MSC transplantation, possibly as a 

result of the well-known anti-inflammatory effects of MSCs.40, 103 Finally, two MSC 

administrations induced extensive remodeling of the corticospinal tract with increased 

axon density and activity when analyzed by anterograde tracing with bovine dextran 
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amine or retrograde tracing with pseudo rabies virus (103 and Van Velthoven et al., 

unpublished results). Interestingly, remodeling of the corticospinal tract correlated with 

sensorimotor improvement. These data demonstrate that MSC transplantation into 

human neonates with cerebral damage may constitute a promising and realistic 

treatment modality for regenerating the damaged neonatal brain. 

 

Human umbilical cord blood mononuclear cells (HUCBCs) 

When HUCBCs were injected into non-injured neonatal rodent brains, they showed 

relatively good engraftment with 20% of cells surviving for one month.154 About 2% of 

the cells differentiated into astrocytes and neurons, indicating good adaptation to the 

host environment. In a rat model of spastic paresis induced by hypoxia-ischemia,82 

HUCBCs injected intraperitoneally 24 hours after the insult were found exclusively in the 

damaged hemisphere and exhibited no evidence of differentiation. This cell homing was 

associated with an improvement in motor function. 82 The chemokine SDF-1, which is 

secreted by astrocytes, has been suggested as an important player for attracting 

HUCBCs expressing the SDF-1 receptor (CXCR4).116 In the same model of neonatal 

hypoxic-ischemic brain damage (Rice-Vannucci model), intraperitoneal injection of 

HUCBCs 3 hours posthypoxia reduced microglial activation in the cortex and caspase-3 

mediated cell death in the striatum.81 HUCBC transplantation resulted in improved 

functional outcomes as measured using negative geotaxis and cliff aversion reflexes. 

However, contrary to the previously cited work,82 very few cells reached the injured sites 

in the cerebral cortex and striatum. Furthermore, other authors showed no cognitive 

improvement or attenuation of structural damage after the intravenous administration of 

high HUCBC doses.84 More recently, low doses of intravenously injected HUCBCs 
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induced behavioral improvements in the Rice-Vannucci rat model. This effect was 

potentiated by the use of the BBB permeabilizer mannitol and was associated with 

upregulation of brain neurotrophic factors.83 In this work, only a few cells were found in 

the injured hippocampal dentate gyrus.  

Altogether, these results indicate that experimental parameters relevant to HUCBC 

therapy, such as cell dose, timing of the injection(s), and delivery route, still need to be 

extensively investigated.  

 

Mechanisms of action: mostly hypotheses 

 Although stem cells can differentiate into neurons, oligodendrocytes, astrocytes 

and, possibly, endothelium,35, 155 neuroregeneration by cell replacement after brain injury 

might not represent their main mechanism of action. As reported above, stem cells can 

survive after transplantation, tend to migrate toward injured areas,156 and can generate 

functional neurons50 that may form connections with host cells.157 Neuroprotective39, 158 

and immunomodulatory97, 159 effects are possible mechanisms in addition to cell 

replacement.160 The effects of stem cells may include, without being limited to, 

attenuation of central nervous system inflammation, secretion of survival-promoting 

neurotrophic factors, stimulation of the plastic response or neural activity in damaged 

host tissue, and restoration of synaptic transmitter release via the provision and/or 

promotion of local re-innervation.161-165 Promotion of central nervous system repair by 

these bystander effects is due to the extraordinary capacity of in vivo stem cells to find 

the best route to certain favorable niches, where they survive and act via interaction with 

various cell types in the micro-environment.166, 167 This interaction is mainly related to 

integrins, which are proteins that act via inside-out and outside-in signaling to control 
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many cell functions such as survival, differentiation, migration, and adhesion. The varied 

integrin expression displayed by stem cells of different tissue origins and the importance 

of integrin-mediated signaling and adhesion during development highlight the need for 

elucidating the signaling mechanisms involved.168 Specific surfaces for stem cell 

derivation, maintenance, proliferation, and differentiation were developed recently. 

These surfaces mimic the complex cellular environment existing in vivo, allowing 

tailoring of tissue culture environments to individual stem cell lines, and are suitable for 

clinical applications.168, 169 

Although stem cells can survive after transplantation, long-term survival of 

engrafted cells does not seem needed to improve outcomes. Recent work by our group 

indicates that intracranially applied MSCs decline gradually, although their regenerative 

effects persist over time. Grafted stem cells induce activation of endogenous stem cell 

compartments and a global decrease in microglial activity.170 Although all these 

mechanisms have been described, the mechanisms underlying the benefits of stem cell 

therapy may vary across animal models. It is worth noting that most studies did not 

show substantial changes in both morphology and behavior after stem cell 

transplantation.84, 156, 171 However, in our studies using bone marrow-derived MSCs in a 

mouse model of hypoxia-ischemia, MSC transplantation led to recovery of sensorimotor 

function; proliferation and differentiation into neurons, astrocytes, and oligodendrocytes; 

and rewiring of the corticospinal tract.40, 41, 103 

 

Stem cell therapy in neonates with brain injury 

Clinical trials with NSCs 
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Human NSCs are becoming very attractive cells for transplantation, because of 

their stable expansion and in vitro differentiation into neurons and oligodendrocytes. 

Fetal tissue-derived NSCs have been used in preclinical mouse studies. When 

transplanted intracerebrally in mice with a disorder resembling infantile neuronal ceroid 

lipofuscinosis (NCL, Batten’s disease), these NSCs showed robust engraftment, 

extensive migration, and production of sufficient enzyme levels to alter host 

neuropathology.172 The first FDA-approved open-label, dose-escalating phase I clinical 

trial with HuNSCs was completed in January 2009 

(http://clinicaltrials.gov/ct2/show/NCT00337636). HuNSCs were transplanted into 6 

patients in the advanced stages of Batten’s disease, directly into the brain parenchyma. 

Two dose levels were tested (500 million and 1 billion cells), and patients received 

immunosuppressive therapy for 12 months. The safety profile was favorable and long-

term survival of the transplanted cells was documented. A second phase I clinical trial in 

patients with Pelizaeus-Merzbacher disease (PMD), another central nervous system 

disorder characterized by defective myelination, has received FDA approval and is 

under way at the University of California in San Francisco. This clinical trial is expected 

to enroll 4 patients with connatal PMD, who will receive stem cell transplants and 

immunosuppression for 9 months. The expected primary completion date is December 

2012 (http://clinicaltrials.gov/ct2/show/NCT01005004). 

 

Clinical trials with HUCBCs 

HUCBCs were used in a clinical trial to treat young infants with Krabbe’s 

syndrome.173 Krabbe’s syndrome is a leukodystrophy due to a disorder in the 

metabolism of galactocerebroside, one of the main lipid components of myelin. This 
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disease usually begins during the first few postnatal months, causing severe loss of 

motor skills and often death before 2 years of age. In this trial, significant improvements 

with progressive central myelination and gains in neurodevelopmental functions were 

shown only in those infants given mononuclear HUCBCs before symptom onset. Very 

recently, a pilot study of autologous cord blood infusion was performed in 184 infants 

with acquired neurological disorders.174 This retrospective study supported the safety of 

intravenous autologous HUCBC infusion. Finally, two randomized, blinded, placebo-

controlled clinical trials designed to evaluate possible beneficial effects of autologous 

umbilical cord blood infusion in infants with established CP are ongoing at the Medical 

College of Georgia (USA, http://clinicaltrials.gov/ct2/show/NCT01072370) and at the 

Duke University (USA, http://clinicaltrials.gov/ct2/show/NCT01147653), respectively. 

Based on animal models of hypoxic-ischemic encephalopathy, HUCBCs and 

MSCs may be the most promising stem cells, as they are effective and potentially 

available for human studies. HUCBCs have advantages over MSCs that may support 

their use for neonatal insults. First, HUCBCs can be harvested very easily with no harm 

to the baby or mother. They have better proliferative capacities compared to MSCs. As 

they are less mature than stem cells from adult tissues, they are probably less 

immunogenic. This feature is associated with a lower risk of graft-versus-host disease in 

recipients of transplants from unrelated donors, even when there is some degree of HLA 

mismatch.79, 93, 175 Moreover, HUCBCs have a low rate of viral infection,175 and their use 

for newborns or children is particularly appropriate as one cord usually contains a 

sufficient number of cells for use in a low-body-weight patient. Finally, the use of cord 

blood improves the availability of stem cells for ethnic groups that are under-represented 

in bone marrow donor registries. 
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Perspectives 

The most extraordinary promises held by stem cells are flexibility, adaptive growth, 

and improved host acceptance. Immunosuppression is a critically important aspect of 

moving stem cell treatments to clinical applications in humans. In the future, the need for 

immunosuppression may be obviated by the use of generated cells that are genetically 

identical to the patient.176, 177 Human mature neurons may soon be obtained from adult 

somatic cells without the intermediate iPSC step.60,61 Furthermore, given their ability to 

migrate toward areas of injury, stem cells may prove to be appropriate vehicles for 

delivering specific molecules that may not achieve sufficient concentrations in the 

injured area when given systemically.178 Candidate drugs for such ex vivo stem cell-

assisted gene therapy may include antiinflammatory, proangiogenic, and prosurvival 

molecules.179  

Current areas of concern include the risk for tumor formation, the lack of evidence 

that iPSC-derived neurons are functional, and the paucity of data indicating that stem 

cell transplantation provides clinically meaningful benefits in humans. Importantly, 

preclinical data showing neural protection should not be misinterpreted as evidence that 

these stem cell approaches are effective in patients with established CP. For the 

moment, clinical data are not available. Further studies are needed to fully understand 

the mechanisms involved in stem cell-mediated neuroprotection/neuroregeneration in 

animal models before cell therapy can be considered for newborns with CP. 
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FIGURE LEGENDS  

 

Figure 1: Neural stem cell sources, cultured in vitro as neurospheres and giving rise to 

differentiated neurons, astrocytes, and oligodendrocytes. 

 

Figure 2: Systemic and intracerebral routes of stem cell delivery to the brain.  
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Table: Stem cell types used in neonatal brain injury models.  

 

Cell type Route; time after 
injury 

Animal 
model 

Functional 
outcome 

Cellular effect Reference 

Fetal cortex 
(ED 13) 

Intracerebral; 7 
days 

P7 rats NE Graft survival 180 

Fetal cortex 
(ED 16) 

intracerebral; 3 
days 

P7 rats Improved 
performance 

NE 181 

ESCs Intracerebral; 2 
days 

P12 mice NE Decreased neural 
death 

38 

ESCs intracerebral; 2 
days 

P7 mice Improved 
performance 

Increased number 
of neurons 

182 

NSCs intraventricular; 
24 hours 

P7 rats NE Reduced brain 
damage 

183 

NSCs intracerebral; 4 
and 72 hours 

P5 mice Improved 
performance 

Reduced lesion 
size 

39 

HuNSCs intracerebral; 3 
days 

P5 mice NE Decreased neural 
death 

146 

HuNSCs intracerebral; 24 
hours 

P7 rats Improved 
performance 

Increased 
neurogenesis 

147 

MSCs intracerebral or 
intravenous; 7 
days 

P7 rats Improved 
performance 

Reduced cell loss 148 

MSCs intravenous; 3 
days 

P7 rats Improved 
performance 

No effects 184 

MSCs intracerebral; 3 
days 

P9 mice Improved 
performance 

Increased 
neurogenesis 

40 

MSCs Intranasal; 10 
days 

P9 mice Improved 
performance 

Reduced lesion 
size 

41 

MSCs intracerebral; 3 
and 10 days 

P9 mice Improved 
performance 

Reduced lesion 
size 

103 

HUCBCs intraperitoneal; 24 
hours 

P7 rats Improved 
performance 

 No reduction in 
lesion size 

82 

HUCBCs intraperitoneal; 3 
hours 

P7 rats Improved 
performance 

Decreased neural 
death 

81 

HUCBCs intravenous; 24 
hours 

P7 rats No effect No effect 84 

HUCBCs intravenous; 7 
days 

P7 rats Improved 
performance 

Increased 
dendritic density 

83 

 

ESCs, embryonic stem cells; HuNSCs, human neural stem cells; MSCs, mesenchymal 

stem cells; HUCBCs, human umbilical cord blood mononuclear cells; NE, not evaluated; 

ED, embryonic day; P, postnatal day 

 

Page 69 of 82

John Wiley & Sons

Annals of Neurology



Stem cells and perinatal brain damage  Titomanlio L. et al. 

29 
 

REFERENCES  

1. Allen MC. Neurodevelopmental outcomes of preterm infants. Curr Opin Neurol. 

2008;21:123-128 

2. Robertson CM, Watt MJ, Yasui Y. Changes in the prevalence of cerebral palsy for 

children born very prematurely within a population-based program over 30 years. Jama. 

2007;297:2733-2740 

3. Vincer MJ, Allen AC, Joseph KS et al. Increasing prevalence of cerebral palsy among 

very preterm infants: a population-based study. Pediatrics. 2006;118:e1621-1626 

4. Wilson-Costello D, Friedman H, Minich N et al. Improved neurodevelopmental outcomes 

for extremely low birth weight infants in 2000-2002. Pediatrics. 2007;119:37-45 

5. Volpe JJ. Neurobiology of periventricular leukomalacia in the premature infant. Pediatr 

Res. 2001;50:553-562 

6. Craig A, Ling Luo N, Beardsley DJ et al. Quantitative analysis of perinatal rodent 

oligodendrocyte lineage progression and its correlation with human. Exp Neurol. 

2003;181:231-240 

7. Back SA, Han BH, Luo NL et al. Selective vulnerability of late oligodendrocyte 

progenitors to hypoxia-ischemia. J Neurosci. 2002;22:455-463 

8. Inder TE, Warfield SK, Wang H et al. Abnormal cerebral structure is present at term in 

premature infants. Pediatrics. 2005;115:286-294 

9. Volpe JJ. Encephalopathy of prematurity includes neuronal abnormalities. Pediatrics. 

2005;116:221-225 

10. Kesler SR, Vohr B, Schneider KC et al. Increased temporal lobe gyrification in preterm 

children. Neuropsychologia. 2006;44:445-453 

11. Leviton A, Gressens P. Neuronal damage accompanies perinatal white-matter damage. 

Trends Neurosci. 2007;30:473-478 

12. Marlow N, Wolke D, Bracewell MA, Samara M. Neurologic and developmental disability 

at six years of age after extremely preterm birth. N Engl J Med. 2005;352:9-19 

13. O'Shea M. Cerebral palsy. Semin Perinatol. 2008;32:35-41 

14. Silbereis JC, Huang EJ, Back SA, Rowitch DH. Towards improved animal models of 

neonatal white matter injury associated with cerebral palsy. Dis Model Mech. 

2010;3:678-688 

15. Zhen G, Dore S. Optimized protocol to reduce variable outcomes for the bilateral 

common carotid artery occlusion model in mice. J Neurosci Methods. 2007;166:73-80 

16. Howells DW, Porritt MJ, Rewell SS et al. Different strokes for different folks: the rich 

diversity of animal models of focal cerebral ischemia. J Cereb Blood Flow Metab. 

2010;30:1412-1431 

17. Popp A, Jaenisch N, Witte OW, Frahm C. Identification of ischemic regions in a rat 

model of stroke. PLoS One. 2009;4:e4764 

18. Hagberg H, Peebles D, Mallard C. Models of white matter injury: comparison of 

infectious, hypoxic-ischemic, and excitotoxic insults. Ment Retard Dev Disabil Res Rev. 

2002;8:30-38 

19. Follett PL, Deng W, Dai W et al. Glutamate receptor-mediated oligodendrocyte toxicity 

in periventricular leukomalacia: a protective role for topiramate. J Neurosci. 

2004;24:4412-4420 

20. Vannucci RC, Connor JR, Mauger DT et al. Rat model of perinatal hypoxic-ischemic 

brain damage. J Neurosci Res. 1999;55:158-163 

Page 70 of 82

John Wiley & Sons

Annals of Neurology



Stem cells and perinatal brain damage  Titomanlio L. et al. 

30 
 

21. Vannucci SJ, Hagberg H. Hypoxia-ischemia in the immature brain. J Exp Biol. 

2004;207:3149-3154 

22. Pang Y, Cai Z, Rhodes PG. Disturbance of oligodendrocyte development, 

hypomyelination and white matter injury in the neonatal rat brain after intracerebral 

injection of lipopolysaccharide. Brain Res Dev Brain Res. 2003;140:205-214 

23. Fan LW, Tien LT, Mitchell HJ et al. Alpha-phenyl-n-tert-butyl-nitrone ameliorates 

hippocampal injury and improves learning and memory in juvenile rats following 

neonatal exposure to lipopolysaccharide. Eur J Neurosci. 2008;27:1475-1484 

24. Lehnardt S, Lachance C, Patrizi S et al. The toll-like receptor TLR4 is necessary for 

lipopolysaccharide-induced oligodendrocyte injury in the CNS. J Neurosci. 

2002;22:2478-2486 

25. Cai Z, Pan ZL, Pang Y et al. Cytokine induction in fetal rat brains and brain injury in 

neonatal rats after maternal lipopolysaccharide administration. Pediatr Res. 2000;47:64-

72 

26. Wang X, Rousset CI, Hagberg H, Mallard C. Lipopolysaccharide-induced inflammation 

and perinatal brain injury. Semin Fetal Neonatal Med. 2006;11:343-353 

27. Johnston MV. Excitotoxicity in perinatal brain injury. Brain Pathol. 2005;15:234-240 

28. Deng W, Pleasure J, Pleasure D. Progress in periventricular leukomalacia. Arch Neurol. 

2008;65:1291-1295 

29. Inglis WL, Semba K. Discriminable excitotoxic effects of ibotenic acid, AMPA, NMDA 

and quinolinic acid in the rat laterodorsal tegmental nucleus. Brain Res. 1997;755:17-27 

30. Cao Q, Benton RL, Whittemore SR. Stem cell repair of central nervous system injury. J 

Neurosci Res. 2002;68:501-510 

31. Conti L, Cataudella T, Cattaneo E. Neural stem cells: a pharmacological tool for brain 

diseases? Pharmacol Res. 2003;47:289-297 

32. Pluchino S, Zanotti L, Rossi B et al. Neurosphere-derived multipotent precursors promote 

neuroprotection by an immunomodulatory mechanism. Nature. 2005;436:266-271 

33. Windrem MS, Schanz SJ, Guo M et al. Neonatal chimerization with human glial 

progenitor cells can both remyelinate and rescue the otherwise lethally hypomyelinated 

shiverer mouse. Cell Stem Cell. 2008;2:553-565 

34. Kim SU, de Vellis J. Stem cell-based cell therapy in neurological diseases: a review. J 

Neurosci Res. 2009;87:2183-2200 

35. Pimentel-Coelho PM, Mendez-Otero R. Cell therapy for neonatal hypoxic-ischemic 

encephalopathy. Stem Cells Dev. 2010;19:299-310 

36. Sato Y, Nakanishi K, Hayakawa M et al. Reduction of brain injury in neonatal hypoxic-

ischemic rats by intracerebroventricular injection of neural stem/progenitor cells together 

with chondroitinase ABC. Reprod Sci. 2008;15:613-620 

37. Zheng T, Marshall Ii GP, 2nd, Chen KA, Laywell ED. Transplantation of neural 

stem/progenitor cells into developing and adult CNS. Methods Mol Biol. 2009;482:185-

197 

38. Comi AM, Cho E, Mulholland JD et al. Neural stem cells reduce brain injury after 

unilateral carotid ligation. Pediatr Neurol. 2008;38:86-92 

39. Titomanlio L, Bouslama M, Le Verche V et al. implanted neurosphere-derived precursors 

promote recovery after neonatal excitotoxic brain injury. Stem Cells Dev. 2011;20:865-79 

40. van Velthoven CT, Kavelaars A, van Bel F, Heijnen CJ. Mesenchymal stem cell 

treatment after neonatal hypoxic-ischemic brain injury improves behavioral outcome and 

Page 71 of 82

John Wiley & Sons

Annals of Neurology



Stem cells and perinatal brain damage  Titomanlio L. et al. 

31 
 

induces neuronal and oligodendrocyte regeneration. Brain Behav Immun. 2010;24:387-

393 

41. van Velthoven CT, Kavelaars A, van Bel F, Heijnen CJ. Nasal administration of stem 

cells: a promising novel route to treat neonatal ischemic brain damage. Pediatr Res. 

2010;68:419-422 

42. Lee HJ, Lim IJ, Lee MC, Kim SU. Human neural stem cells genetically modified to 

overexpress brain-derived neurotrophic factor promote functional recovery and 

neuroprotection in a mouse stroke model. J Neurosci Res. 2010;88:3282-3294 

43. Alvarez-Buylla A, Temple S. Stem cells in the developing and adult nervous system. J 

Neurobiol. 1998;36:105-110 

44. Gage FH. Mammalian neural stem cells. Science. 2000;287:1433-1438 

45. Weiss S, Reynolds BA, Vescovi AL et al. Is there a neural stem cell in the mammalian 

forebrain? Trends Neurosci. 1996;19:387-393 

46. Gritti A, Bonfanti L, Doetsch F et al. Multipotent neural stem cells reside into the rostral 

extension and olfactory bulb of adult rodents. J Neurosci. 2002;22:437-445 

47. Johe KK, Hazel TG, Muller T et al. Single factors direct the differentiation of stem cells 

from the fetal and adult central nervous system. Genes Dev. 1996;10:3129-3140 

48. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the 

adult mammalian central nervous system. Science. 1992;255:1707-1710 

49. Reynolds BA, Weiss S. Clonal and population analyses demonstrate that an EGF-

responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol. 1996;175:1-13 

50. Englund U, Bjorklund A, Wictorin K et al. Grafted neural stem cells develop into 

functional pyramidal neurons and integrate into host cortical circuitry. Proc Natl Acad Sci 

U S A. 2002;99:17089-17094 

51. Scheffler B, Schmandt T, Schroder W et al. Functional network integration of embryonic 

stem cell-derived astrocytes in hippocampal slice cultures. Development. 2003;130:5533-

5541 

52. Corti S, Locatelli F, Papadimitriou D et al. Multipotentiality, homing properties, and 

pyramidal neurogenesis of CNS-derived LeX(ssea-1)+/CXCR4+ stem cells. Faseb J. 

2005;19:1860-1862 

53. Bjorklund LM, Sanchez-Pernaute R, Chung S et al. Embryonic stem cells develop into 

functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc Natl 

Acad Sci U S A. 2002;99:2344-2349 

54. Carson CT, Aigner S, Gage FH. Stem cells: the good, bad and barely in control. Nat Med. 

2006;12:1237-1238 

55. Chung S, Shin BS, Hedlund E et al. Genetic selection of sox1GFP-expressing neural 

precursors removes residual tumorigenic pluripotent stem cells and attenuates tumor 

formation after transplantation. J Neurochem. 2006;97:1467-1480 

56. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic 

and adult fibroblast cultures by defined factors. Cell. 2006;126:663-676 

57. Takahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult 

human fibroblasts by defined factors. Cell. 2007;131:861-872 

58. Yu J, Vodyanik MA, Smuga-Otto K et al. Induced pluripotent stem cell lines derived 

from human somatic cells. Science. 2007;318:1917-1920 

59. Salewski RP, Eftekharpour E, Fehlings MG. Are induced pluripotent stem cells the future 

of cell-based regenerative therapies for spinal cord injury? J Cell Physiol. 2010;222:515-

521 

Page 72 of 82

John Wiley & Sons

Annals of Neurology



Stem cells and perinatal brain damage  Titomanlio L. et al. 

32 
 

60. Vierbuchen T, Ostermeier A, Pang ZP et al. Direct conversion of fibroblasts to functional 

neurons by defined factors. Nature. 2010;463:1035-1041 

61. Szabo E, Rampalli S, Risueno RM et al. Direct conversion of human fibroblasts to 

multilineage blood progenitors. Nature. 2010;468:521-6 

62. Kohyama J, Abe H, Shimazaki T et al. Brain from bone: efficient "meta-differentiation" 

of marrow stroma-derived mature osteoblasts to neurons with Noggin or a demethylating 

agent. Differentiation. 2001;68:235-244 

63. Dezawa M, Kanno H, Hoshino M et al. Specific induction of neuronal cells from bone 

marrow stromal cells and application for autologous transplantation. J Clin Invest. 

2004;113:1701-1710 

64. Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow 

stromal cells differentiate into neurons. J Neurosci Res. 2000;61:364-370 

65. Sanchez-Ramos J, Song S, Cardozo-Pelaez F et al. Adult bone marrow stromal cells 

differentiate into neural cells in vitro. Exp Neurol. 2000;164:247-256 

66. Suzuki H, Taguchi T, Tanaka H et al. Neurospheres induced from bone marrow stromal 

cells are multipotent for differentiation into neuron, astrocyte, and oligodendrocyte 

phenotypes. Biochem Biophys Res Commun. 2004;322:918-922 

67. Hermann A, Liebau S, Gastl R et al. Comparative analysis of neuroectodermal 

differentiation capacity of human bone marrow stromal cells using various conversion 

protocols. J Neurosci Res. 2006;83:1502-1514 

68. Montzka K, Lassonczyk N, Tschoke B et al. Neural differentiation potential of human 

bone marrow-derived mesenchymal stromal cells: misleading marker gene expression. 

BMC Neurosci. 2009;10:16 

69. Lu P, Blesch A, Tuszynski MH. Induction of bone marrow stromal cells to neurons: 

differentiation, transdifferentiation, or artifact? J Neurosci Res. 2004;77:174-191 

70. Neuhuber B, Gallo G, Howard L et al. Reevaluation of in vitro differentiation protocols 

for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid 

morphological changes and mimics neuronal phenotype. J Neurosci Res. 2004;77:192-

204 

71. Bertani N, Malatesta P, Volpi G et al. Neurogenic potential of human mesenchymal stem 

cells revisited: analysis by immunostaining, time-lapse video and microarray. J Cell Sci. 

2005;118:3925-3936 

72. Choi CB, Cho YK, Prakash KV et al. Analysis of neuron-like differentiation of human 

bone marrow mesenchymal stem cells. Biochem Biophys Res Commun. 2006;350:138-

146 

73. Pappa KI, Anagnou NP. Novel sources of fetal stem cells: where do they fit on the 

developmental continuum? Regen Med. 2009;4:423-433 

74. Kaplan JM, Youd ME, Lodie TA. Immunomodulatory Activity of Mesenchymal Stem 

Cells. Curr Stem Cell Res Ther 2011, in press (PMID:21190531) 

75. Sato K, Ozaki K, Mori M et al. Mesenchymal stromal cells for graft-versus-host disease : 

basic aspects and clinical outcomes. J Clin Exp Hematop. 2010;50:79-89 

76. Lee MW, Yang MS, Park JS et al. Isolation of mesenchymal stem cells from 

cryopreserved human umbilical cord blood. Int J Hematol. 2005;81:126-130 

77. Ingram DA, Mead LE, Tanaka H et al. Identification of a novel hierarchy of endothelial 

progenitor cells using human peripheral and umbilical cord blood. Blood. 2004;104:2752-

2760 

Page 73 of 82

John Wiley & Sons

Annals of Neurology



Stem cells and perinatal brain damage  Titomanlio L. et al. 

33 
 

78. Broxmeyer HE. Umbilical cord transplantation: epilogue. Semin Hematol. 2010;47:97-

103 

79. Kurtzberg J. Update on umbilical cord blood transplantation. Curr Opin Pediatr. 

2009;21:22-29 

80. Kogler G, Sensken S, Airey JA et al. A new human somatic stem cell from placental cord 

blood with intrinsic pluripotent differentiation potential. J Exp Med. 2004;200:123-135 

81. Pimentel-Coelho PM, Magalhaes ES, Lopes LM et al. Human cord blood transplantation 

in a neonatal rat model of hypoxic-ischemic brain damage: functional outcome related to 

neuroprotection in the striatum. Stem Cells Dev. 2010;19:351-358 

82. Meier C, Middelanis J, Wasielewski B et al. Spastic paresis after perinatal brain damage 

in rats is reduced by human cord blood mononuclear cells. Pediatr Res. 2006;59:244-249 

83. Yasuhara T, Hara K, Maki M et al. Mannitol facilitates neurotrophic factor up-regulation 

and behavioural recovery in neonatal hypoxic-ischaemic rats with human umbilical cord 

blood grafts. J Cell Mol Med. 2010;14:914-921 

84. de Paula S, Vitola AS, Greggio S et al. Hemispheric brain injury and behavioral deficits 

induced by severe neonatal hypoxia-ischemia in rats are not attenuated by intravenous 

administration of human umbilical cord blood cells. Pediatr Res. 2009;65:631-635 

85. Markov V, Kusumi K, Tadesse MG et al. Identification of cord blood-derived 

mesenchymal stem/stromal cell populations with distinct growth kinetics, differentiation 

potentials, and gene expression profiles. Stem Cells Dev. 2007;16:53-73 

86. Tondreau T, Meuleman N, Delforge A et al. Mesenchymal stem cells derived from 

CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 

expression, and plasticity. Stem Cells. 2005;23:1105-1112 

87. Gao F, Wu DQ, Hu YH et al. In vitro cultivation of islet-like cell clusters from human 

umbilical cord blood-derived mesenchymal stem cells. Transl Res. 2008;151:293-302 

88. Haase A, Olmer R, Schwanke K et al. Generation of induced pluripotent stem cells from 

human cord blood. Cell Stem Cell. 2009;5:434-441 

89. Das H, Abdulhameed N, Joseph M et al. Ex vivo nanofiber expansion and genetic 

modification of human cord blood-derived progenitor/stem cells enhances vasculogenesis. 

Cell Transplant. 2009;18:305-318 

90. Buzanska L, Jurga M, Stachowiak EK et al. Neural stem-like cell line derived from a 

nonhematopoietic population of human umbilical cord blood. Stem Cells Dev. 

2006;15:391-406 

91. Jang YK, Park JJ, Lee MC et al. Retinoic acid-mediated induction of neurons and glial 

cells from human umbilical cord-derived hematopoietic stem cells. J Neurosci Res. 

2004;75:573-584 

92. Broxmeyer HE. Will iPS cells enhance therapeutic applicability of cord blood cells and 

banking? Cell Stem Cell. 2010;6:21-24 

93. Rocha V, Wagner JE, Jr., Sobocinski KA et al. Graft-versus-host disease in children who 

have received a cord-blood or bone marrow transplant from an HLA-identical sibling. 

Eurocord and International Bone Marrow Transplant Registry Working Committee on 

Alternative Donor and Stem Cell Sources. N Engl J Med. 2000;342:1846-1854 

94. Borlongan CV, Hadman M, Sanberg CD, Sanberg PR. Central nervous system entry of 

peripherally injected umbilical cord blood cells is not required for neuroprotection in 

stroke. Stroke. 2004;35:2385-2389 

Page 74 of 82

John Wiley & Sons

Annals of Neurology



Stem cells and perinatal brain damage  Titomanlio L. et al. 

34 
 

95. Vendrame M, Cassady J, Newcomb J et al. Infusion of human umbilical cord blood cells 

in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct 

volume. Stroke. 2004;35:2390-2395 

96. Baksh D, Yao R, Tuan RS. Comparison of proliferative and multilineage differentiation 

potential of human mesenchymal stem cells derived from umbilical cord and bone 

marrow. Stem Cells. 2007;25:1384-1392 

97. Fujiwara Y, Tanaka N, Ishida O et al. Intravenously injected neural progenitor cells of 

transgenic rats can migrate to the injured spinal cord and differentiate into neurons, 

astrocytes and oligodendrocytes. Neurosci Lett. 2004;366:287-291 

98. Danielyan L, Schafer R, von Ameln-Mayerhofer A et al. Intranasal delivery of cells to the 

brain. Eur J Cell Biol. 2009;88:315-324 

99. Stroemer P, Patel S, Hope A et al. The neural stem cell line CTX0E03 promotes 

behavioral recovery and endogenous neurogenesis after experimental stroke in a dose-

dependent fashion. Neurorehabil Neural Repair. 2009;23:895-909 

100. Schwarz SC, Schwarz J. Translation of stem cell therapy for neurological diseases. Transl 

Res. 2010;156:155-160 

101. Bjarkam CR, Glud AN, Margolin L et al. Safety and function of a new clinical 

intracerebral microinjection instrument for stem cells and therapeutics examined in the 

Gottingen minipig. Stereotact Funct Neurosurg. 2010;88:56-63 

102. Guillaume DJ, Huhn SL, Selden NR, Steiner RD. Cellular therapy for childhood 

neurodegenerative disease. Part I: rationale and preclinical studies. Neurosurg Focus. 

2008;24:E22 

103. van Velthoven CT, Kavelaars A, van Bel F, Heijnen CJ. Repeated mesenchymal stem cell 

treatment after neonatal hypoxia-ischemia has distinct effects on formation and 

maturation of new neurons and oligodendrocytes leading to restoration of damage, 

corticospinal motor tract activity, and sensorimotor function. J Neurosci. 2010;30:9603-

9611 

104. Sykova E, Jendelova P. Migration, fate and in vivo imaging of adult stem cells in the 

CNS. Cell Death Differ. 2007;14:1336-1342 

105. Adams HP, Jr., del Zoppo G, Alberts MJ et al. Guidelines for the early management of 

adults with ischemic stroke: a guideline from the American Heart Association/American 

Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular 

Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease 

and Quality of Care Outcomes in Research Interdisciplinary Working Groups: The 

American Academy of Neurology affirms the value of this guideline as an educational 

tool for neurologists. Circulation. 2007;115:e478-534 

106. Adams HP, Jr., del Zoppo G, Alberts MJ et al. Guidelines for the early management of 

adults with ischemic stroke: a guideline from the American Heart Association/American 

Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular 

Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease 

and Quality of Care Outcomes in Research Interdisciplinary Working Groups: the 

American Academy of Neurology affirms the value of this guideline as an educational 

tool for neurologists. Stroke. 2007;38:1655-1711 

107. Chen J, Li Y, Katakowski M et al. Intravenous bone marrow stromal cell therapy reduces 

apoptosis and promotes endogenous cell proliferation after stroke in female rat. J 

Neurosci Res. 2003;73:778-786 

Page 75 of 82

John Wiley & Sons

Annals of Neurology



Stem cells and perinatal brain damage  Titomanlio L. et al. 

35 
 

108. Okazaki T, Magaki T, Takeda M et al. Intravenous administration of bone marrow 

stromal cells increases survivin and Bcl-2 protein expression and improves sensorimotor 

function following ischemia in rats. Neurosci Lett. 2008;430:109-114 

109. Zhang C, Li Y, Chen J et al. Bone marrow stromal cells upregulate expression of bone 

morphogenetic proteins 2 and 4, gap junction protein connexin-43 and synaptophysin 

after stroke in rats. Neuroscience. 2006;141:687-695 

110. Ferriero DM. Neonatal brain injury. N Engl J Med. 2004;351:1985-1995 

111. Degos V, Favrais G, Kaindl AM et al. Inflammation processes in perinatal brain damage. 

J Neural Transm. 2010;117:1009-1017 

112. Kounami S, Aoyagi N, Nakayama K et al. Fatal pulmonary thromboembolism after a 

second course of high-dose chemotherapy with autologous peripheral blood stem cell 

transplantation. Pediatr Transplant. 2003;7:400-403 

113. Morales IJ, Anderson PM, Tazelaar HD, Wylam ME. Pulmonary cytolytic thrombi: 

unusual complication of hematopoietic stem cell transplantation. J Pediatr Hematol 

Oncol. 2003;25:89-92 

114. Walczak P, Zhang J, Gilad AA et al. Dual-modality monitoring of targeted intraarterial 

delivery of mesenchymal stem cells after transient ischemia. Stroke. 2008;39:1569-1574 

115. Nishino H, Borlongan CV. Restoration of function by neural transplantation in the 

ischemic brain. Prog Brain Res. 2000;127:461-476 

116. Rosenkranz K, Kumbruch S, Lebermann K et al. The chemokine SDF-1/CXCL12 

contributes to the 'homing' of umbilical cord blood cells to a hypoxic-ischemic lesion in 

the rat brain. J Neurosci Res. 2010;88:1223-1233 

117. Abe K. Therapeutic potential of neurotrophic factors and neural stem cells against 

ischemic brain injury. J Cereb Blood Flow Metab. 2000;20:1393-1408 

118. Imitola J, Raddassi K, Park KI et al. Directed migration of neural stem cells to sites of 

CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 

pathway. Proc Natl Acad Sci U S A. 2004;101:18117-18122 

119. Duncan ID. Oligodendrocytes and stem cell transplantation: their potential in the 

treatment of leukoencephalopathies. J Inherit Metab Dis. 2005;28:357-368 

120. McKenzie IA, Biernaskie J, Toma JG et al. Skin-derived precursors generate myelinating 

Schwann cells for the injured and dysmyelinated nervous system. J Neurosci. 

2006;26:6651-6660 

121. Tran KD, Ho A, Jandial R. Stem cell transplantation methods. Adv Exp Med Biol. 

2010;671:41-57 

122. Guzman R, Uchida N, Bliss TM et al. Long-term monitoring of transplanted human 

neural stem cells in developmental and pathological contexts with MRI. Proc Natl Acad 

Sci U S A. 2007;104:10211-10216 

123. Neri M, Maderna C, Cavazzin C et al. Efficient in vitro labeling of human neural 

precursor cells with superparamagnetic iron oxide particles: relevance for in vivo cell 

tracking. Stem Cells. 2008;26:505-516 

124. Manganas LN, Zhang X, Li Y et al. Magnetic resonance spectroscopy identifies neural 

progenitor cells in the live human brain. Science. 2007;318:980-985 

125. Politi LS. MR-based imaging of neural stem cells. Neuroradiology. 2007;49:523-534 

126. Deng J, Petersen BE, Steindler DA et al. Mesenchymal stem cells spontaneously express 

neural proteins in culture and are neurogenic after transplantation. Stem Cells. 

2006;24:1054-1064 

Page 76 of 82

John Wiley & Sons

Annals of Neurology



Stem cells and perinatal brain damage  Titomanlio L. et al. 

36 
 

127. Nag S, Kapadia A, Stewart DJ. Molecular Pathogenesis of Blood-Brain Barrier 

Breakdown in Acute Brain Injury. Neuropathol Appl Neurobiol. 2011;37(1):3-23 

128. Coyne TM, Marcus AJ, Woodbury D, Black IB. Marrow stromal cells transplanted to the 

adult brain are rejected by an inflammatory response and transfer donor labels to host 

neurons and glia. Stem Cells. 2006;24:2483-2492 

129. Spaggiari GM, Capobianco A, Abdelrazik H et al. Mesenchymal stem cells inhibit natural 

killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-

dioxygenase and prostaglandin E2. Blood. 2008;111:1327-1333 

130. Freed CR, Greene PE, Breeze RE et al. Transplantation of embryonic dopamine neurons 

for severe Parkinson's disease. N Engl J Med. 2001;344:710-719 

131. Olanow CW, Goetz CG, Kordower JH et al. A double-blind controlled trial of bilateral 

fetal nigral transplantation in Parkinson's disease. Ann Neurol. 2003;54:403-414 

132. Freeman TB, Cicchetti F, Hauser RA et al. Transplanted fetal striatum in Huntington's 

disease: phenotypic development and lack of pathology. Proc Natl Acad Sci U S A. 

2000;97:13877-13882 

133. Keene CD, Sonnen JA, Swanson PD et al. Neural transplantation in Huntington disease: 

long-term grafts in two patients. Neurology. 2007;68:2093-2098 

134. Tai YT, Svendsen CN. Stem cells as a potential treatment of neurological disorders. Curr 

Opin Pharmacol. 2004;4:98-104 

135. Lepore AC, Neuhuber B, Connors TM et al. Long-term fate of neural precursor cells 

following transplantation into developing and adult CNS. Neuroscience. 2006;142:287-

304 

136. Hess PG. Risk of tumorigenesis in first-in-human trials of embryonic stem cell neural 

derivatives: Ethics in the face of long-term uncertainty. Account Res. 2009;16:175-198 

137. Low CB, Liou YC, Tang BL. Neural differentiation and potential use of stem cells from 

the human umbilical cord for central nervous system transplantation therapy. J Neurosci 

Res. 2008;86:1670-1679 

138. Gruen L, Grabel L. Concise review: scientific and ethical roadblocks to human embryonic 

stem cell therapy. Stem Cells. 2006;24:2162-2169 

139. Amariglio N, Hirshberg A, Scheithauer BW et al. Donor-derived brain tumor following 

neural stem cell transplantation in an ataxia telangiectasia patient. PLoS Med. 

2009;6:e1000029 

140. Windrem MS, Nunes MC, Rashbaum WK et al. Fetal and adult human oligodendrocyte 

progenitor cell isolates myelinate the congenitally dysmyelinated brain. Nat Med. 

2004;10:93-97 

141. Tahraoui SL, Marret S, Bodenant C et al. Central role of microglia in neonatal excitotoxic 

lesions of the murine periventricular white matter. Brain Pathol. 2001;11:56-71 

142. Lodygensky GA, Vasung L, Sizonenko SV, Huppi PS. Neuroimaging of cortical 

development and brain connectivity in human newborns and animal models. J Anat. 

2010;217:418-428 

143. Yager JY, Ashwal S. Animal models of perinatal hypoxic-ischemic brain damage. Pediatr 

Neurol. 2009;40:156-167 

144. Scafidi J, Fagel DM, Ment LR, Vaccarino FM. Modeling premature brain injury and 

recovery. Int J Dev Neurosci. 2009;27:863-871 

145. Dihne M, Bernreuther C, Hagel C et al. Embryonic stem cell-derived neuronally 

committed precursor cells with reduced teratoma formation after transplantation into the 

lesioned adult mouse brain. Stem Cells. 2006;24:1458-1466 

Page 77 of 82

John Wiley & Sons

Annals of Neurology



Stem cells and perinatal brain damage  Titomanlio L. et al. 

37 
 

146. Mueller D, Shamblott MJ, Fox HE et al. Transplanted human embryonic germ cell-

derived neural stem cells replace neurons and oligodendrocytes in the forebrain of 

neonatal mice with excitotoxic brain damage. J Neurosci Res. 2005;82:592-608 

147. Daadi MM, Davis AS, Arac A et al. Human neural stem cell grafts modify microglial 

response and enhance axonal sprouting in neonatal hypoxic-ischemic brain injury. Stroke. 

2010;41:516-523 

148. Yasuhara T, Hara K, Maki M et al. Intravenous grafts recapitulate the neurorestoration 

afforded by intracerebrally delivered multipotent adult progenitor cells in neonatal 

hypoxic-ischemic rats. J Cereb Blood Flow Metab. 2008;28:1804-1810 

149. Li Y, Chen J, Chen XG et al. Human marrow stromal cell therapy for stroke in rat: 

neurotrophins and functional recovery. Neurology. 2002;59:514-523 

150. Shen LH, Li Y, Chen J et al. One-year follow-up after bone marrow stromal cell treatment 

in middle-aged female rats with stroke. Stroke. 2007;38:2150-2156 

151. Bondolfi L, Ermini F, Long JM et al. Impact of age and caloric restriction on 

neurogenesis in the dentate gyrus of C57BL/6 mice. Neurobiol Aging. 2004;25:333-340 

152. Kuhn HG, Dickinson-Anson H, Gage FH. Neurogenesis in the dentate gyrus of the adult 

rat: age-related decrease of neuronal progenitor proliferation. J Neurosci. 1996;16:2027-

2033 

153. Leuner B, Kozorovitskiy Y, Gross CG, Gould E. Diminished adult neurogenesis in the 

marmoset brain precedes old age. Proc Natl Acad Sci U S A. 2007;104:17169-17173 

154. Zigova T, Song S, Willing AE et al. Human umbilical cord blood cells express neural 

antigens after transplantation into the developing rat brain. Cell Transplant. 2002;11:265-

274 

155. Wurmser AE, Nakashima K, Summers RG et al. Cell fusion-independent differentiation 

of neural stem cells to the endothelial lineage. Nature. 2004;430:350-356 

156. Kelly S, Bliss TM, Shah AK et al. Transplanted human fetal neural stem cells survive, 

migrate, and differentiate in ischemic rat cerebral cortex. Proc Natl Acad Sci U S A. 

2004;101:11839-11844 

157. Park KI, Lachyankar M, Nissim S, Snyder EY. Neural stem cells for CNS repair: state of 

the art and future directions. Adv Exp Med Biol. 2002;506:1291-1296 

158. Ourednik J, Ourednik V, Lynch WP et al. Neural stem cells display an inherent 

mechanism for rescuing dysfunctional neurons. Nat Biotechnol. 2002;20:1103-1110 

159. Pluchino S, Quattrini A, Brambilla E et al. Injection of adult neurospheres induces 

recovery in a chronic model of multiple sclerosis. Nature. 2003;422:688-694 

160. Sinden JD, Rashid-Doubell F, Kershaw TR et al. Recovery of spatial learning by grafts of 

a conditionally immortalized hippocampal neuroepithelial cell line into the ischaemia-

lesioned hippocampus. Neuroscience. 1997;81:599-608 

161. Aharonowiz M, Einstein O, Fainstein N et al. Neuroprotective effect of transplanted 

human embryonic stem cell-derived neural precursors in an animal model of multiple 

sclerosis. PLoS One. 2008;3:e3145 

162. Ben-Hur T. Immunomodulation by neural stem cells. J Neurol Sci. 2008;265:102-104 

163. Einstein O, Ben-Hur T. The changing face of neural stem cell therapy in neurologic 

diseases. Arch Neurol. 2008;65:452-456 

164. Locatelli F, Bersano A, Ballabio E et al. Stem cell therapy in stroke. Cell Mol Life Sci. 

2009;66:757-772 

Page 78 of 82

John Wiley & Sons

Annals of Neurology



Stem cells and perinatal brain damage  Titomanlio L. et al. 

38 
 

165. Bacigaluppi M, Pluchino S, Peruzzotti Jametti L et al. Delayed post-ischaemic 

neuroprotection following systemic neural stem cell transplantation involves multiple 

mechanisms. Brain. 2009;132:2239-2251 

166. Pluchino S, Cusimano M, Bacigaluppi M, Martino G. Remodelling the injured CNS 

through the establishment of atypical ectopic perivascular neural stem cell niches. Arch 

Ital Biol. 2010;148:173-183 

167. Lee ST, Chu K, Jung KH et al. Anti-inflammatory mechanism of intravascular neural 

stem cell transplantation in haemorrhagic stroke. Brain. 2008;131:616-629 

168. Prowse AB, Chong F, Gray PP, Munro TP. Stem cell integrins: implications for ex-vivo 

culture and cellular therapies. Stem Cell Res. 2011;6:1-12 

169. Keirstead HS, Nistor G, Bernal G et al. Human embryonic stem cell-derived 

oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after 

spinal cord injury. J Neurosci. 2005;25:4694-4705 

170. Mathieu P, Battista D, Depino A et al. The more you have, the less you get: the functional 

role of inflammation on neuronal differentiation of endogenous and transplanted neural 

stem cells in the adult brain. J Neurochem. 2010;112:1368-1385 

171. Pollock K, Stroemer P, Patel S et al. A conditionally immortal clonal stem cell line from 

human cortical neuroepithelium for the treatment of ischemic stroke. Exp Neurol. 

2006;199:143-155 

172. Tamaki SJ, Jacobs Y, Dohse M et al. Neuroprotection of host cells by human central 

nervous system stem cells in a mouse model of infantile neuronal ceroid lipofuscinosis. 

Cell Stem Cell. 2009;5:310-319 

173. Escolar ML, Poe MD, Provenzale JM et al. Transplantation of umbilical-cord blood in 

babies with infantile Krabbe's disease. N Engl J Med. 2005;352:2069-2081 

174. Sun J, Allison J, McLaughlin C et al. Differences in quality between privately and 

publicly banked umbilical cord blood units: a pilot study of autologous cord blood 

infusion in children with acquired neurologic disorders. Transfusion. 2010;50:1980-1987 

175. Gluckman E, Rocha V, Chastang C. Peripheral stem cells in bone marrow transplantation. 

Cord blood stem cell transplantation. Baillieres Best Pract Res Clin Haematol. 

1999;12:279-292 

176. Kaufman DS, Thomson JA. Human ES cells--haematopoiesis and transplantation 

strategies. J Anat. 2002;200:243-248 

177. Zhang SC. Embryonic stem cells for neural replacement therapy: prospects and 

challenges. J Hematother Stem Cell Res. 2003;12:625-634 

178. Muller FJ, Snyder EY, Loring JF. Gene therapy: can neural stem cells deliver? Nat Rev 

Neurosci. 2006;7:75-84 

179. Horita Y, Honmou O, Harada K et al. Intravenous administration of glial cell line-derived 

neurotrophic factor gene-modified human mesenchymal stem cells protects against injury 

in a cerebral ischemia model in the adult rat. J Neurosci Res. 2006;84:1495-1504 

180. Elsayed MH, Hogan TP, Shaw PL, Castro AJ. Use of fetal cortical grafts in hypoxic-

ischemic brain injury in neonatal rats. Exp Neurol. 1996;137:127-141 

181. Jansen EM, Solberg L, Underhill S et al. Transplantation of fetal neocortex ameliorates 

sensorimotor and locomotor deficits following neonatal ischemic-hypoxic brain injury in 

rats. Exp Neurol. 1997;147:487-497 

182. Ma J, Wang Y, Yang J et al. Treatment of hypoxic-ischemic encephalopathy in mouse by 

transplantation of embryonic stem cell-derived cells. Neurochem Int. 2007;51:57-65 

Page 79 of 82

John Wiley & Sons

Annals of Neurology



Stem cells and perinatal brain damage  Titomanlio L. et al. 

39 
 

183. Lee JP, Jeyakumar M, Gonzalez R et al. Stem cells act through multiple mechanisms to 

benefit mice with neurodegenerative metabolic disease. Nat Med. 2007;13:439-447 

184. Lee JA, Kim BI, Jo CH et al. Mesenchymal stem-cell transplantation for hypoxic-

ischemic brain injury in neonatal rat model. Pediatr Res. 2010;67:42-46 

 
 

Page 80 of 82

John Wiley & Sons

Annals of Neurology



  

 

 

 

169x112mm (300 x 300 DPI)  

 
 

Page 81 of 82

John Wiley & Sons

Annals of Neurology



  

 

 

 

170x148mm (300 x 300 DPI)  

 
 

Page 82 of 82

John Wiley & Sons

Annals of Neurology




