
HAL Id: hal-02342655
https://hal.science/hal-02342655v1

Preprint submitted on 1 Nov 2019 (v1), last revised 6 Apr 2020 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

THE INVOLUTIVE QUANTALOID OF
COMPLETELY DISTRIBUTIVE LATTICES

Luigi Santocanale

To cite this version:
Luigi Santocanale. THE INVOLUTIVE QUANTALOID OF COMPLETELY DISTRIBUTIVE LAT-
TICES. 2019. �hal-02342655v1�

https://hal.science/hal-02342655v1
https://hal.archives-ouvertes.fr


THE INVOLUTIVE QUANTALOID OF COMPLETELY

DISTRIBUTIVE LATTICES

LUIGI SANTOCANALE

Laboratoire d’Informatique et des Systèmes,
UMR 7020, Aix-Marseille Université, CNRS

Abstract. Let L be a complete lattice and let Q(L) be the unital quantale
of join-continuous endo-functions of L. We prove the following result: Q(L) is
an involutive (that is, non-commutative cyclic ⋆-autonomous) quantale if and
only if L is a completely distributive lattice. If this is the case, then the dual
tensor operation corresponds, via Raney’s transforms, to composition in the
(dual) quantale of meet-continuous endo-functions of L.

Let Latt∨ be the category of sup-lattices and join-continuous functions and

let Latt
cd∨ be the full subcategory of Latt∨ whose objects are the completely

distributive lattices. We argue that (i) Lattcd∨ is itself an involutive quantaloid,

and therefore it is the largest full-subcategory of Latt∨ with this property;

(ii) Latt
cd∨ is closed under the monoidal operations of Latt∨, and therefore it

is star-autonomous. Consequently, if Q(L) is involutive, then it is completely
distributive as well.

1. Introduction

Let C be a finite chain or the unit interval of the reals. In a series of recent
works [4, 17, 16] we argued that the unital quantale structure of Q(C), the set of
join-continuous functions from C to itself, plays a fundamental role to solve more
complex combinatorial and geometrical problems arising in Computer Science. In
[4, 17] we formulated an order theoretic approach to the problem of constructing
discrete approximations of curves in higher dimensional unit cubes. On the side
of combinatorics, the results in [16] yield bijective proofs for counting idempotent
monotone endo-functions of a finite chain [6, 9] and a new algebraic interpretation
of well-known combinatorial identities [2].

The quantales Q(C), C a finite chain or [0, 1] ⊆ R, are are involutive—or, using
another possible naming, non-commutative cyclic ⋆-autonomous. The involution
was indeed used in the mentioned works, yet it was not clear to what extent it
was necessary. Also, it was left open whether there are other chains C such that
Q(C) is involutive. At its inception, the aim of this reserach was to answer this
question. Also, letting D(P ) be the perfect distributive lattice of downsets of a
poset P , Q(D(P )) is involutive. In this case, Q(D(P )) is isomorphic the residuated
lattice of weakening relations on P , known to be involutive, see [15, 10, 7]. Relying
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on our earlier and more recent works on involutive quantale structures, we have
been able to find the common generalization responsible for a quantale Q(L) to be
involutive. Let us recall that chains and perfect distributive lattices are completely
distributive. We prove in this paper the following statements:

Theorem. The quantale Q(L) of join-continuous endo-functions of L is involutive
if and only if L is a completely distributive lattice.

We also observe that if Q(L) is involutive, then it is involutive in a unique way.
If Q(L) is involutive, then the dual quantale structure of Q(L) arises from Q(L∂),
the quantale of meet-continuous endo-functions of L, via Raney’s transforms (to be
studied in Section 5).

Theorem. A complete lattice is a chain if and only if the inclusion 0 ≤ 1 (in the
language of involutive residuated lattices) holds in Q(L), i.e. if and only if Q(L)
satisfies the mix law. A completely distributive lattice has no completely join-prime
elements if and only if the inclusion 1 ≤ 0 holds in Q(L).

We observe that the local involutive quantale structures on each completely dis-
tributive lattice fit together in a uniform way. A quantaloid is a category whose
homsets are complete lattices and for which composition distributes on both sides
with suprema. As a quantale can be considered as a one-object quantaloid, the
notion of involutive quantale naturally lifts to the multi-object context—so an in-
volutive quantale is a one-object involutive quantaloid. The following statement,
proved in this paper, makes precise the intuition that the local involutive quantaloid
structures are uniform:

Theorem. The full subcategory of the category of complete lattices and join-
continuous functions whose objects are the completely distributive lattices is an
involutive quantaloid.

Finally, the tools we develop also yield the following result:

Theorem. The quantaloid of completely distributive lattices is closed under
the monoidal operations inherited from the category of complete lattices and join-
continuous functions. Therefore, it is a ⋆-autonomous category.

From the above statement it is also inferred that Q(L) is completely distributive
whenever it is an involutive quantale.

These results give an important clarification of the algebra used in our previous
works [4, 17, 16] and open new perspectives and research directions on the algebra
of chains and of completely distributive lattices. In particular, the first theorem
yields a new characterization of completely distributive lattices that adds up to the
existing ones, see e.g. [11, 18]. On the side of logic, it is worth observing that
enforcing a linear negation (the involution, the star) on the most typical models
of intuitionistic non-commutative linear logic also enforces a classical behaviour—
that is, distributivity—of the additive logical connectors. Besides the philosophical
questions about logic, the above theorems pinpoint an important obstacle in finding
Cayley style representation theorems for involutive residuated lattices or a general-
ization of Holland’s theorem [5] from lattice-ordered groups to involutive residuated
lattices: if a residuated lattice embedding of Q into some involutive residuated lat-
tice of the form Q(L) exists, then Q is distributive.
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The paper is organised as follows. We provide in Section 2 definitions and ele-
mentary results. In Section 3 we introduce the notion of an involutive quantaloid
(we shall identify an involutive quantale with a one-object involutive quantaloid).
We prove in Section 4 that if a quantale of the form Q(L) is involutive, then it
has just one cyclic dualizing element. That is, there can be at most one involutive
quantale structure extending the structure of Q(L). Moreover, we prove in this
section that if Q(L) is involutive, then L is a completely distributive lattice. The
uniqueness of the involutive structure is intimately related to the fact—analyzed
at the end of Section 4—that the only central elements of Q(L) are the identity
and the constant function with value the bottom of L. We introduce in Section 5
Raney’s transforms and their elementary properties. Raney’s transforms are the
main tool used to prove, in Section 6, that completely distributive lattices form an
involutive quantaloid. In Section 7 we prove that the full subcategory of Latt∨—the
category of complete lattices and join-continuous functions—whose objects are the
completely distributive lattices is closed under the monoidal operations of Latt∨.
Consequently, it is a ⋆-autonomous category. In particular, this implies that Q(L)
is a completely distributive lattice if Q(L) involutive, that is, if L is completely
distributive.

2. Definitions and elementary results

Complete lattices and the category Latt∨. A complete lattice is a poset L such
that X ⊆ L has a supremum

∨

X . A map f : L −−→ M is join-continuous
if f(

∨

X) =
∨

f(X), for each subset X ⊆ L. We shall denote by Latt∨ the
category whose objects are the complete lattices and whose morphisms are the
join-continuous maps.

For a poset P , P ∂ denotes the poset with the same elements of P but with the
reverse ordering: x ≤P∂ y iff y ≤P x. In a complete lattice, the set

∨

{ y | y ≤
x, for each x ∈ X } is the infimum of X . Therefore, if L is complete, then L∂ is
also a complete lattice. Moreover, if L,M are complete lattices and f : L −−→ M
is join-continuous, then the map ρ(f) :M −−→ L, defined by ρ(f)(y) :=

∨

{ x ∈ L |
f(x) ≤ y }, preserves infima and therefore it belongs to the homset Latt∨(M∂ , L∂).
The map ρ(f) is the right adjoint of f , meaning that, for each x ∈ L and y ∈ M ,
f(x) ≤ y if and only if x ≤ ρ(f)(y). For g : M −−→ L meet-continuous, its left
adjoint ℓ(g) : L −−→ M is defined similalry, and satisfies ℓ(g)(x) ≤ y if and only if
x ≤ g(y), for each x ∈ L and y ∈ M . Consequenly, ℓ(ρ(f)) = f and ρ(ℓ(g)) = g.
Indeed, by defining with f∂ := ρ(f), ( · )∂ : Latt∨ −−→ Latt

op∨ is a (contravariant)

functor and a category isomorphism.
Let { fi | i ∈ I } be a family of join-continuous functions from L to M . The

function
∨

i∈I fi, defined by

(
∨

i∈I

fi)(x) :=
∨

i∈I

fi(x)

is a join-continuous map from L to M . Therefore the homset Latt∨(L,M), with
the poitwise ordering, is a complete lattice, where suprema are computed by the
above formula. The same formula shows that the inclusion of Latt∨(L,M) intoML,
the set of all functions form L to M , is join-continuous. It follows that, for every
f : L −−→ M , there is a (uniquely determined) greatest join-continuous function
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int(f) ∈ Latt∨(L,M) such that int(f) ≤ f . Observe also that, by monotonicity
of composition, int(g) ◦ int(f) ≤ g ◦ f and therefore int(g) ◦ int(f) ≤ int(g ◦ f).
Quantales and involutive quantales. A quantale is a complete lattice Q coming
with a semigroup operation ◦ that distributes with arbitrary sups. That is, we
have (

∨

X) ◦ (
∨

Y ) =
∨

x∈X,y∈Y x ◦ y, for each X,Y ⊆ Q. A quantale is unital if
the semigroup operation has a unit. As we shall always consider unital quantales,
we shall use the wording quantale as a synonym of unital quantale. In a quantale
Q, left and right divisions are defined as follows:

x\y :=
∨

{ z ∈ Q | x ◦ z ≤ y } , y/x :=
∨

{ z ∈ Q | z ◦ x ≤ y } .

Clearly, we have the following adjointness relations: x◦y ≤ z iff y ≤ x\z iff x ≤ z/y.
Let us recall that a quantale Q is a residuated lattice, as defined for example in [3].

A standard example of quantale isQ(L), the set of join-continuous endo-functions
of a complete lattice L. In this case, the semigroup operation is function compo-
sition; otherwise said, Q(L) is the homset Latt∨(L,L). We shall consider special
elements of Q(L) and of Q(Lop). For x ∈ L, let cx, γx, ax, αx : L −−→ L be defined
as follows:

cx(t) :=

{

x , t = ⊤ ,

⊥ , t = ⊥ ,
γx(t) :=

{

⊤ t = ⊤ ,

x , t = ⊥ ,
(1)

ax(t) :=

{

⊤ , t 6≤ x ,

⊥ , t ≤ x ,
αx(t) :=

{

⊤ , x ≤ t ,

⊥ , x 6≤ t .

Clearly, cx, ax ∈ Q(L), while γx, αx ∈ Q(Lop). Moreover, we have ρ(cx) = αx and
ρ(ax) = αx.
Completely distributive lattices. A complete lattice L is said to be completely dis-
tributive if, for each pair of families π : J −−→ I and x : J −−→ L, the following
equality holds

∧

i∈I

∨

j∈Ji

xj =
∨

ψ

∧

i∈I

xψ(i) ,

where Ji = π−1(i), for each i ∈ I, and the meet on the right is over all sections ψ
of π, that is, those functions such that π ◦ψ = idI . Let us recall that the notion of
a completely distributive lattice is auto-dual, meaning that a complete lattice L is
completely distributive iff Lop is such. For each complete lattice L, define

oL(x) :=
∨

{ t | x 6≤ t } , ωL(y) :=
∧

{ t | t 6≤ y } .(2)

It is easy to see that oL ∈ Q(L) and that ρ(oL) = ωL. The following statement
appears in [12, Theorem 4]:

Theorem 1. A lattice is completely distributive if and only if any of the following
equivalent conditions hold:

∨

x 6≤t

ωL(t) = x ,
∧

t6≤y

oL(t) = y .(3)

3. Involutive quantaloids

We recall that a quantaloid, see e.g. [18], is a category Q enriched over the
category of sup-lattices. This means that, for each pair of objects L,M of Q,
the homset Q(L,M) is a complete lattice and that composition distributes over
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suprema in both variables, (
∨

i∈I gi) ◦ (
∨

j∈J fj) =
∨

i∈I,j∈J fi ◦ gj . A quantale, see

e.g. [13], might be seen as a one-object quantaloid. The category Latt∨ is itself a
quantaloid.

We define now involutive quantaloids and state elementary facts.

Definition 1. An involutive quantaloid1 is a quantaloid Q coming with operations

( · )⋆L,M : Q(L,M) −−→ Q(M,L) , L,M objects of Q,

satisfying the following conditions:

(1) (f⋆L,M )⋆M,L = f , for each f ∈ Q(L,M),
(2) for each f, g ∈ Q(L,M),

f ≤ g iff f ◦ g⋆L,M ≤ 0M iff g⋆L,M ◦ f ≤ 0L ,

where 0M := (idM )⋆M,M and 0L := (idL)
⋆L,L .

The definition mimics in a multisorted setting the definition of an involutive
quantale (and that of an involutive residuated lattice). Indeed, we shall consider
an involutive quantale as an involutive quantaloid with just one object.

If the superscripts in ( · )⋆L,M might be inferred from the context, then we shall
avoid writing them.

For a category C enriched over posets, we use Cco for the category with same
objects and homsets, but for which the order is reversed.

Lemma 1. In an involutive quantaloid, the operations ⋆ are order reversing. Thus,
⋆ is the arrow part of a functor Q −−→ (Qop)co which is the identity on objects.

Proof. We have f ≤ g iff g⋆ ◦ f⋆⋆ = g⋆ ◦ f ≤ 0 iff g⋆ ≤ f⋆. �

Lemma 2. In an involutive quantaloid, if any of the inequalities below holds, then
so do the other two:

L N

M

f

h

g

≤

N M

L

h⋆

g⋆

f

≤

M L

N

g

f⋆

h⋆

≤

Proof. Suppose g ◦ f ≤ h, then g ◦ (f ◦ h⋆) = (g ◦ f) ◦ h⋆ ≤ 0N , and so f ◦ h⋆ ≤ g⋆.
Using the same argument, from f ◦ h⋆ ≤ g⋆, it follows h⋆ ◦ g ≤ f⋆. �

Let us recall that in any quantaloid residuals (i.e. division operators) exist being
defined as follows: for f : L −−→M , g :M −−→ N , and h : L −−→ N ,

g\h : L −−→M :=
∨

{ k | g ◦ k ≤ h } , h/f :M −−→ N :=
∨

{ k | k ◦ f ≤ h } ,

so, the usual adjointness relations hold:

g ◦ f ≤ h iff f ≤ g\h iff g ≤ h/f .

Lemma 3. In an involutive quantaloid, for f : L −−→ M , g : M −−→ N , and
h : L −−→ N , we have the following equalities:

g\h = (h⋆L,N ◦ g)⋆M,L , h/f = (f ◦ h⋆L,N )⋆N,M .

In particular (for L = N and h = 0L) we have g\0L = g⋆M,L and 0L/f = f⋆L,M .

1Another possible naming for the same concept is non-commutative, cyclic, star-autonomous

quantaloid. However, for the sake of conciseness, we prefer the wording involutive quantaloid.
Also, in [14], involutive quantaloids are called Girard quantaloids.
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Proof. We use uniqueness of adjoints and the previous lemmas. We have g ≤ h/f
iff g ◦ f ≤ h iff f ◦ h⋆ ≤ g⋆ iff g = g⋆⋆ ≤ (f ◦ h⋆)⋆.

Similarly, f ≤ g\h g ◦ f ≤ h iff h⋆ ◦ g ≤ f⋆ iff f = f⋆⋆ ≤ (h⋆ ◦ g)⋆. �

4. Cyclic dualizing elements of Q(L) and complete distributivity of

L

We prove in this section that if a quantale of the form Q(L) is involutive, then
id⋆L equals oL defined in equation (2). From this it follows that there is at most
one involutive quantale structure on Q(L) extending the quantale structure. At
the end of this section, we also argue that if Q(L) is involutive, then L is a com-
pletely distributive lattice. To this end, let us firstly recall the following standard
definitions:

Definition 2. Let Q be a quantale. An element α ∈ Q is said to be

• cyclic if f\α = α/f , for each f ∈ Q,
• dualizing if α/f\α = f , for each f ∈ Q.

It is well-known that involutive quantale structures on a quantale Q are in bijec-
tion with cyclic dualizing elements of Q. Let us also recall that, for an involutive
quantaloid Q and an obiect L of Q, 0L := (idL)

⋆L,L is both a cyclic and a dualizing
element of the quantale Q(L,L).

An important first observation, stated in the next lemma, is that residuals of the
form g\h in Latt∨ can be constructed by means of the operations int( · ) (greatest
join-continuous map below a given one) and ρ( · ) (taking the right adjoint of a
join-continuous map).

Lemma 4. For each g ∈ Latt∨(M,N), h ∈ Latt∨(L,N), we have

g\h = int(ρ(g) ◦ h).

Proof. Indeed, for each f ∈ Latt∨(L,M), we have f ≤ g\h iff g ◦ f ≤ h, iff
g(f(x)) ≤ h(x), for each x ∈ L, iff f(x) ≤ ρ(g)(h(x)), for each x ∈ L, iff f ≤ ρ(g)◦h,
iff f ≤ int(ρ(g) ◦ h). �

For the next lemma, recall that the join-continuous map oL has been defined
in (2) and that the maps ct and at have been defined in (1).

Lemma 5. We have oL =
∨

t∈L ct ◦ at.

Proof. Observe that ct(at(x)) = ⊥, if x ≤ t, and ct(at(x)) = t, if x 6≤ t. Therefore

(
∨

t∈L

ct ◦ at)(x) =
∨

t∈L

(ct(at)(x)) =
∨

t∈L,

ct(at(x)) 6=⊥

ct(at(x)) =
∨

t∈L,

x 6≤t

t = oL(x) .�

Lemma 6. For each x ∈ L, int(αx) = aoL(x).

Proof. Let us observe that ao(x) ≤ αx. This amounts to veryfing that if αx(t) = ⊥,
then ao(x)(t) = ⊥. Now, αx(t) = ⊥ iff x 6≤ t, and so t ≤ o(x), thus ao(x)(t) = ⊥.
Next, let us suppose that f : L −−→ L is join-continuous and below αx. Thus,
if αx(t) = ⊥, that is, if x 6≤ t, then f(t) = ⊥. Then f(o(x)) = f(

∨

x 6≤t t) =
∨

x 6≤t f(t) = ⊥. By monotonicity of f , if t ≤ o(x), then f(t) = ⊥, showing that
f ≤ ao(x). �
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Lemma 7. If L is not trivial, then c⊤ is not a dualizing element of Q(L).

Proof. Observe that c⊤ is the greatest element of Q(L) and, for this reason, f\c⊤ =
c⊤/f = c⊤, for each f ∈ Q(L). If c⊤ is dualizing, then c⊥ = (c⊤/c⊥)\c⊤ = c⊤.
Considering that the mapping from sending x ∈ L to cx ∈ Q(L) is an embedding,
this shows that ⊥ = ⊤ in L. �

Theorem 2. If Q(L) is an involutive quantale, then id⋆L = oL. That is, a cyclic
dualizing element is unique and necessarily equal to oL.

Proof. Let h = id⋆L, so h is cyclic and dualizing. We firstly prove that oL ≤ h.
Consider that, for each x ∈ L, ax ◦ cx = c⊥ ≤ h. Thus, since g ◦ f ≤ h if and only if
f ◦ g ≤ h, we also have cx ◦ ax ≤ h. Since this relation holds for each x ∈ L, then,
using Lemma 5, the relation oL =

∨

x∈L cx ◦ ax ≤ h holds.
We argue now that h = oL. Let x ∈ L and consider that c⋆x ◦ cx ≤ h. Now,

c⋆x = cx\h = int(ρ(cx) ◦ h) = int(αx ◦ h) and therefore, using Lemma 6,

aoL(x) ◦ h ◦ cx = int(αx) ◦ int(h) ◦ cx ≤ int(αx ◦ h) ◦ cx = c⋆x ◦ cx ≤ h .

If t 6= ⊥, then, by evaluating the above inequality at t, we get aoL(x)(h(x)) ≤ h(t).
Since aoL(x)(h(x)) takes values ⊥ and ⊤, this means that aoL(x)(h(x)) = ⊤ implies
⊤ ≤ h(t), for all t 6= ⊥. That is, if h(x) 6≤ oL(x), then h(t) = ⊤, for all t 6= ⊥
and x ∈ L. Otherwise stated, if h 6≤ oL (or h 6= oL, given the inclusion ol ≤ h has
already been proved), then h = c⊤. By Lemma 7, the equality h = c⊤ does not
hold, unless L is trivial. Thus, if L is not trivial, then h ≤ oL, and if L is trivial,
then h = oL since Q(L) is has just one element. �

Theorem 3. If Q(L) is an involutive quantaloid, then x =
∧

t6≤x oL(t), for each
x ∈ L. Consequently, L is a completely distributive lattice.

Proof. If L is a one-element lattice, then the above equation trivially holds. Thus
we shall suppose that L has at least two elements. In this case, assuming Q(L) an
involutive quantaloid, then oL is dualizing and oL 6= c⊤ by Lemma 7.

Since oL is cyclic, then, for each y, x ∈ L, the two conditions cy ◦ ax ≤ oL and
ax ◦ cy ≤ oL are equivalent.

Condition cy ◦ ax ≤ oL states that, for each t ∈ L, t 6≤ x implies y ≤ oL(t); that
is y ≤

∧

t6≤x oL(t). Condition ax ◦ cy ≤ oL states that, for each t 6= ⊥, if y 6≤ x then

oL(t) = ⊤. This condition is equivalent to y 6≤ x implies oL = c⊤ or, equivalently,
to oL 6= c⊤ implies y ≤ x. We have argued that oL 6= c⊤ holds, and therefore the
second condition is equivalent to y ≤ x. Thus, y ≤ x iff y ≤

∧

t6≤x oL(t), for each

x, y ∈ L and then the equality x =
∧

t6≤x oL(t) follows, for each x ∈ L. The last
sentence of the theorem follows from Theorem 1. �

4.0.1. The center of Q(L). Uniqueness of an involutive quantale structure extend-
ing the quantale structure of Q(L) can also be achieved through the observation
that the unique central elements of Q(L) are idL and c⊥. We are thankful to
Claudia Muresan for her help investigating the center of Q(L).

Definition 3. We say that an element β of a quantale Q is

• central if β ◦ x = x ◦ β, for each x ∈ Q,
• codualizing if x = β\(β ◦ x), for each x ∈ Q.

Lemma 8. If Q is an involutive quantale, then α ∈ Q is cyclic if and only if α⋆ is
central and it is dualizing if and only if α⋆ is codualizing.
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Proof. Since x\α = (α⋆ ◦ x)⋆, α/x = (x ◦ α⋆)⋆, and ( · )⋆ is invertible, the equality
x\α = α/x holds if and only if the equality α⋆ ◦ x = x ◦ α⋆ holds.

Now α is dualizing if and only if, for each x ∈ Q, x = α/(x\α) = α⋆\(x\α)⋆ =
α⋆\(α⋆ ◦ x). �

Proposition 1. The only central elements of Q(L) are idL and c⊥.

Proof. Clearly, idL and c⊥ are central, so we shall be concerned to prove that they
are the only ones with this property. To this end, for x0 ∈ L, define

νx0
(t) :=

{

⊥ , t ≤ x0

t , otherwise.

Notice that if x0 = ⊥, then νx0
= idL, while if x0 = ⊤, then νx0

= c⊥. We firstly
claim that if β is central in Q(L), then β = νx0

, for some x0 ∈ L. Suppose β is
central. For each x ∈ L, we have cx(x) = x and therefore

β(x) = (β ◦ cx)(x) = cx(β(x)) .

If β(x) 6= ⊥, then, evaluating the rightmost expression, we obtain β(x) = x. Let
x0 :=

∨

{ y | β(y) = ⊥}, so β(x0) = ⊥. If t ≤ x0, then β(t) ≤ β(x0) = ⊥ and,
otherwise, β(t) 6= ⊥ and so β(t) = ct(β(t)) = t. Therefore, β = νx0

.
Next, we claim that if x0 6∈ {⊥,⊤}, then νx0

is not central. Observe that

νx0
(f(x)) =

{

⊥ , f(x) ≤ x0 ,

f(x) , otherwise ,
f(νx0

(x)) =

{

⊥ , x ≤ x0 ,

f(x) , otherwise .

It follows that if νx0
◦ f = f ◦ νx0

, then f(x0) ≤ x0. Indeed, if f(x0) 6≤ x0, then
f(x0) 6= ⊥, νx0

(f(x0)) = f(x0) 6= ⊥, and f(νx0
(x0)) = ⊥. Now, if x0 6∈ {⊥,⊤},

then c⊤ is such that x0 < ⊤ = c⊤(x0), and therefore νx0
◦ c⊤ 6= c⊤ ◦ νx0

. �

It is possible now to argue that, for a complete lattice L, there exists at most
one extension of Q(L) to an involutive quantale as follows. Let ( · )⋆ be a fixed
involutive quantale structure. If α is cyclic and dualizing, then β = α⋆ is central and
codualizing and, by the previous proposition, β ∈ { c⊥, idL }. Since β is codualizing,
then it is an injective function: if β(x) = β(y), then β ◦ cx = β ◦ cy and cx =
β\(β ◦ cx) = β\(β ◦ cy) = cy; since the mapping sending t to ct is an embedding, we
obtain x = y. Thus β 6= c⊥ (if L is not trivial) and in any case β = idL. It follows
that α = id⋆L.

5. Raney’s transforms

Let L,M be two complete lattices. For f : L −−→M , define

f∨(x) :=
∨

x 6≤t

f(t) , f∧(x) :=
∧

t6≤x

f(t) , for each x ∈ L.

We call f∨ and f∧ the Raney’s transforms of f .

Lemma 9. For any f : L −−→M , define

gf(y) :=
∧

{ z | f(z) 6≤ y } .(4)

Then gf is right adjoint to f∨ and therefore f∨ is join-continuous. Dually, f∧ is
meet-continuous.



THE INVOLUTIVE QUANTALOID OF COMPLETELY DISTRIBUTIVE LATTICES 9

Proof. Indeed, we have f∨(x) ≤ y if and only if, for all z ∈ L, x 6≤ z implies
f(z) ≤ y, and this is logically (classically) equivalent to stating that, for all z ∈ L,
f(z) 6≤ y implies x ≤ z, that is, x ≤ gf(y). �

We call the operation ( · )∨ Raney’s transform for the following reason. For
θ ⊆ L×M an arbitrary relation, Raney [12] defined (up to some dualities)

rθ(x) :=
∧

{ y ∈M | ∀(t, v). (t, v) ∈ θ implies x ≤ t or v ≤ y } .

Recall that a left adjoint ℓ : L −−→ M can be expressed from its right adjoint
ρ : M −−→ L by the formula ℓ(x) =

∧

{ y | x ≤ ρ(y) }. Using this expression with
ℓ = f∨ and ρ = gf defined in (4), we obtain

f∨(x) =
∧

{ y ∈M | ∀t. f(t) 6≤ y implies x ≤ t } .

Clearly, if we let θ be the graph of f , defined by (t, v) ∈ θ if and only if f(t) = v,
then we obtain that f∨ = rθ.

Lemma 10. The transform ( · )∨ has the following properties:

(1) if f ≤ g : L −−→M , then f∨ ≤ g∨,
(2) if g : L −−→M and f :M −−→ N is monotone, then (f ◦ g)∨ ≤ f ◦ (g∨),
(3) if g : L −−→ M and f : M −−→ N is join-continuous, then (f ◦ g)∨ =

f ◦ (g∨).

Proof. 1. If t 6≤ x, then f(t) ≤ g(t) for each t ∈ L and therefore
∨

t6≤x f(t) ≤
∨

t6≤x g(t). 2. The relation
∨

x 6≤t f(g(t)) ≤ f(
∨

x 6≤t f(g(t))) is an immediate conse-

quence of monotonicity of f . 3. If f is join-continuous, then clearly f(
∨

x 6≤t g(t)) =
∨

x 6≤t f(g(t)). �

Lemma 11. If L and M are arbitrary complete lattices and f : L −−→ M is
join-continuous, then

ℓ(f∧) = ρ(f)∨ :M −−→ L .(5)

Proof. We show that, for x ∈M and y ∈ L, ρ(f)∨(x) ≤ y if and only if x ≤ f∧(y).
The condition ρ(f)∨(x) ≤ y amounts to

x 6≤ t implies ρ(f)(t) ≤ y , forall t ∈M ,(6)

while the condition x ≤ f∧(y) amounts to

u 6≤ y implies x ≤ f(u) , forall u ∈ L,

or, equivalently, to

x 6≤ f(u) implies u ≤ y , forall u ∈ L.(7)

Let us show that (6) implies (7). If x 6≤ f(u), then, by (6), ρ(f)(f(u)) ≤ y, and
then u ≤ y, since u ≤ ρ(f)(f(u)). Conversely, let us assume (7) and argue for (6).
If x 6≤ t, then, considering that f(ρ(f)(t)) ≤ t, x 6≤ f(ρ(f)(t)) as well. Therefore,
using (7), ρ(f)(t) ≤ y. �
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6. The involutive quantaloid of completely distributive lattices

We prove now that Latt
cd∨ , the full subcategory of Latt∨ whose objects are the

completely distributive lattices, is an involutive quantaloid. By the results of Sec-
tion 4, this is also the largest full subcategory of Latt∨ with this property.

Recall from Theorem 1 that a complete lattice is completely distributive if and
only if ωL

∨ = idL (or, equivalently, oL
∧ = idL).

Lemma 12. If L is a completely distributive lattice and f : L −−→M is monotone,
then int(f) = (f ◦ ωL)

∨ and f∨ = int(f ◦ oL).

Proof. By monotonicity of f , we have (f ◦ ωL)
∨ ≤ f ◦ (ωL

∨) = f . Suppose that
g is join-continuous and g ≤ f . Then g = g ◦ (ωL

∨) = (g ◦ ωL)
∨ ≤ (f ◦ ωL)

∨. To
see that f∨ = int(f ◦ oL), observe that f∨ = (f ◦ id)∨ ≤ f ◦ (idL

∨) = f ◦ oL, and
therefore f∨ ≤ int(f ◦ oL). On the other hand, int(f ◦ oL) = (f ◦ oL ◦ ωL)

∨ ≤ f∨,
using the conunit of the adjunction, oL ◦ ωL ≤ idL. �

The interior operator so defined is quite peculiar, since for g : L −−→M monotone
and f :M −−→ N join-continuous, we have

int(f ◦ g) = (f ◦ g ◦ ωL)
∨ = f ◦ (g ◦ ωL)

∨ = f ◦ int(g) .

In general, if L is not a completely distributive lattice, then we would have, above,
only an inequality, since int(f ◦ g) ≥ int(f) ◦ int(g) = f ◦ int(g).

Lemma 13. If L is a completely distributive lattice and f : L −−→ M is join-
continuous, then f = f∧∨.

Proof. We firstly show that f∧∨ ≤ f . If x 6≤ t, then f∧(t) =
∧

u6≤t f(u) ≤ f(x) and

therefore f∧∨(x) =
∨

x 6≤t f
∧(t) ≤ f(x), for all x ∈ L. Let us argue that f ≤ f∧∨:

f = f ◦ idL = f ◦ (ωL
∨) = (f ◦ ωL)

∨ ≤ f∧∨ ,

where we have used the fact, dual to the relation f∨ = int(f ◦ oL) established
in Lemma 12, that f∧ is the least meet-continuous function above f ◦ ωL, so in
particular f ◦ ωL ≤ f∧. �

For f : L −−→M join-continuous, define f⋆L,M :M −−→ L as follows:

f⋆L,M := ρ(f)∨ .

Theorem 4. The operations ( · )⋆L,M so defined yield an involutive quantaloid
structure on Latt

cd∨ , the full subcategory of Latt∨ whose objects are the completely
distributive lattices.

Proof. Firstly, we verify that f⋆⋆ = f using Lemmas 11 and 13, and the fact the
join-continuous functions are in bijection with meet-continuous functions via taking
adjoints:

f⋆⋆ = ρ(ρ(f)∨)∨ = ρ(ℓ(f∧))∨ = f∧∨ = f .

We verify now that ( · )⋆ satisfies the constraints needed to have an involutive quan-
taloid. Let us remark that id⋆L = ρ(idL)

∨ = idL
∨ = oL.

Observe that since ( · )⋆ is defined by composing an order reversing and an order
preserving function, it is order reversing. Since it is an involution, then f ≤ g if
and only if g⋆ ≤ f⋆.
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Now we assume that f : L −−→ M and h : M −−→ L and recall (see Lemma 12)
that h⋆M,L = ρ(h)∨ = int(ρ(h) ◦ oL) : L −−→M . Therefore, h ◦ f ≤ oL if and only
if f ≤ ρ(h) ◦ oL, if and only if f ≤ int(ρ(h) ◦ oL) = h⋆. Therefore, if g : L −−→M ,
then (letting h = g⋆) f ≤ g if and only if g⋆ ◦ f ≤ oL. Then, also, f ≤ g if and only
if g⋆ ≤ f⋆ if and only if f ◦ g⋆ ≤ oM . �

Putting together Theorems 3 and 4, we obtain:

Corollary 1. The quantale Q(L) is involutive if and only if L is a completely
distributive lattice.

For f : L −−→ M and g : M −−→ N (with L,M,N completely distributive
lattices), let us define

g ⊕ f := (f⋆ ◦ g⋆)⋆ : L −−→M ,

and observe that

(g ⊕ f) = (f⋆ ◦ g⋆)⋆ = ρ((ℓ(f∧) ◦ ℓ(g∧)))∨ = (g∧ ◦ f∧)∨ .

That is, the dual quantale structure arise via Raney’s transforms from the compo-
sition Latt∨(L∂,M∂)× Latt∨(M∂ , N∂) −−→ Latt∨(L∂, N∂).

An immediate consequence of Corollary 1 is the following:

Theorem 5. A complete lattice L is a chain if and only if Q(L) is an involutive
quantale satisfying the mix rule.

Proof. Let us recall that, in the language of involutive residuated lattices, the mix
rule is the inclusion x ◦ y ≤ x ⊕ y—with x ⊕ y = (y⋆ ◦ x⋆)⋆. It is well known that
this inclusion is equivalent to the inclusion 0 ≤ 1—where 1 is the unit for ◦ and 0
is the unit for ⊕. Therefore, an involutive quantale of the form Q(L) satisfies the
mix rule if and only if oL ≤ idL. This relation is easily seen to be equivalent to the
statement that if x 6≤ t, then t ≤ x, so L is a chain. For the converse, we just need
to recall that every chain is a completely distributive lattice. �

Let us recall that an element of a lattice L is said to be completely join-irreducible
(equivalently, completely join-prime, if L is distributive) if it has a unique lower
cover. It is not difficult to see that, if L is a completely distributive lattice, then
x 6≤ oL(x) if and only if x is completely join-prime. Thus we say that a completely
distributive lattice is smooth if it has no completely join-prime element. For exam-
ple, the interval [0, 1] of the reals is a smooth completely distributive lattice. The
following statement is an immediate consequence of these considerations.

Theorem 6. A completely distributive lattice L is smooth if and only if idL ≤ oL,
that is, if and only if Q(L) satisfies the inclusion 1 ≤ 0 in the language of involutive
residuated lattices.

7. Further properties of Latt
cd∨

For a family { fi ∈ Latt∨(L,M) | i ∈ I } let us define its pointwise meet
∧

i∈i fi
as usual by

(
∧

i∈I

fi)(x) :=
∧

i∈I

(fi(x)) , for each x ∈ L.

Notice that
∧

i∈i fi need not to be join-continuous; however, its interior is join-
continuous and, necessarily, it is the infimum of the family { fi | i ∈ I } within the
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complete lattice Latt∨(L,M). Moreover, Lemma 12 yields for completely distribu-
tive lattices an explicit description of the interior int(

∧

i∈i fi) that we shall exploit
later on. We collect these observations in the following proposition.

Proposition 2. If L is a completely distributive lattice and { fi | i ∈ I } is a family
as above, then the function

∧∧

i∈I fi defined by

(
∧∧

i∈I

fi)(x) :=
∨

x 6≤t

∧

i∈I

fi(ωL(t)) , for each x ∈ L,(8)

is the infimum of { fi | i ∈ I } in Latt∨(L,M).

Proof. Observe that
∧∧

i∈I fi = ((
∧

i∈I fi) ◦ ωL)
∨ = int(

∧

i∈I fi), by Lemma 12.
We have, therefore,

∧∧

i∈I fi = int(
∧

i∈I fi) ≤
∧

i∈I fi ≤ fi, for each i ∈ I.
Conversely, if g ∈ Latt∨(L,M) and g ≤ fi for each i ∈ I, then g ≤

∧

i∈I fi and
g ≤ int(

∧

i∈I fi) =
∧∧

i∈I fi. �

Theorem 7. If L andM are completely distributive lattices, then so is the complete
lattice Latt∨(L,M).

Proof. Let us recall that the join
∨

fi of a family { fi | i ∈ I } is computed pointwise.
We need to argue that, for π : J −−→ I and a family { fj | j ∈ J },

∧∧

i∈I

∨

j∈Ji

fj =
∨

ψ

∧∧

i∈I

fψ(i) ,

where as usual Ji = π−1(i) and the meet on the right ranges over all sections ψ
of π. The inclusion from right to left always holds, so we argue for the inclusion
from left to right. The formula given in equation (8) allows to verify this inclusion
pointwise, since for x ∈ L we have

(
∧∧

i∈I

(
∨

j∈Ji

fj))(x) =
∨

x 6≤t

((
∧

i∈I

(
∨

j∈Ji

fj)) ◦ ωL)(t) =
∨

x 6≤t

∧

i∈I

∨

j∈Ji

fj(ωL(t)) .

Thus, it will be enough to verify that if u ∈ L is arbitrary such that x 6≤ u, then
∧

i∈I

∨

j∈Ji

fj(ωL(u)) ≤ (
∨

ψ

(
∧∧

i∈I

fψ(i)))(x) .

This is achieved as follows:

∧

i∈I

∨

j∈Ji

fj(ωL(u)) =
∨

ψ

∧

i∈I

fψ(i)(ωL(u)) ,

since M is completely distributive,

≤
∨

ψ

∨

x 6≤t

∧

i∈I

fψ(i)(ωL(t)),since x 6≤ u,

=
∨

ψ

((
∧∧

i∈I

fψ(i))(x)) = (
∨

ψ

(
∧∧

i∈I

fψ(i)))(x) .�

Let in the following Latt
cd∨ be the full subcategory of Latt∨ whose objects are the

completely distributive lattices. We refer the reader to [8] for an in-depth study of
the category Latt∨ and to [1] for the notion of a ⋆-autonomous category.

Theorem 8. Latt
cd∨ is closed under the monoidal closed operations of Latt∨ and,

consequently, it is ⋆-automonous.
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Proof. Let us recall that Latt∨ is monoidal closed and ⋆-autonomous. The unit
of the tensor is the two-element Boolean algebra, which we denote by 2. Clearly
2 is a completely distributive lattice and moreover it is the dualizing object of
Latt∨. We have argued that the homset Latt∨(L,M) is a completely distributive

lattice, whenever L and M are such, and so Latt
cd∨ is closed under exponentiation.

A particular case of exponentiation is when M = 2, in which case we derive once
more that L∂ , being isomorphic to Latt∨(L, 2), is a completely distributive lattice.
It follows then that also the tensor product of two completely distributive lattices is
completely distributive, since L⊗M = Latt∨(L,M∂)∂ . Thus Lattcd∨ is closed under
the operations making Latt∨ into a ⋆-autonomous category, and the last statement
of the theorem also follows. �

An important consequence of the remarks developed in this section is the fol-
lowing:

Corollary 2. If an involutive residuated lattice Q has an embedding into an invo-
lutive quantale of the form Q(L), then Q is distributive.

Indeed, if Q(L) is an involutive quantale, then L is a completely distributive
lattice. Then Theorem 7 ensures that Q(L) is also a completely distributive lattice,
and therefore, if Q has a lattice embedding into Q(L), then L is distributive.

8. Conclusions and future steps

The researches exposed in this paper solve a natural problem encountered during
our investigations of certain quantales built from complete chains [16, 17, 4]. The
problem asks to characterize the complete chains whose quantale of join-continuous
endomaps is involutive. Indeed, every complete chain is a completely distributive
lattice and therefore the results presented in this paper prove that every complete
chain has this property; in particular, other properties of chains and posets, such
as self-duality, are not relevant.

The solution we provide is as general as possible, in two respects. On the
one hand, we have been able to give an exact characterization of all the com-
plete lattices—not just the chains—L for which Q(L) is involutive; these are the
completely distributive lattices. In particular, the characterization covers different
kind of involutive quantales known in the literature, those discovered in our investi-
gation of complete chains and those known as the residuated lattices of weakening
relations—arising from the relational semantics of distributive linear logic. On the
other hand, we show that the involutive quantale structures on completely dis-
tributive lattices are uniform, yielding and involutive quantaloid structure on the
category of completely distributive lattices and join-continuous functions.

We have drawn several consequences from the observations developed, among
them, the fact that if an involutive quantale Q can be embedded into an quantale
of the form Q(L), then it is distributive. This fact calls for a characterization of
the involutive residuated lattices embeddable into some Q(L), a research track that
might require to or end up with determining the variety of involutive residuated
lattices generated by the Q(L). A second research goal, that we might tackle in
a close future, demands to investigate the algebra developed in connection with
the continuous weak order [17] in the wider and abstract setting of completely
distributive lattices. Let us recall that in [17] a surprising bijection was established
between two kind of objetcs, the maximal chains in the cube lattice [0, 1]d and the
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families { fi,j ∈ Q([0, 1]) | 1 ≤ i < j ≤ d } such that, for i < j < k, fj,k ◦ fi,j ≤
fi,k ≤ fj,k ⊕ fi,j. So, are there other surprising bijections if the interval [0, 1] is
replaced by an arbitrary completely distributive lattice, and if we move from the
involutive quantale setting to the multisorted setting of involutive quantaloids?
Acknowledgment. The author is thankful to Srecko Brlek, Claudia Muresan, and
André Joyal for the fruitful discussions these scientists shared with him on this
topic during winter 2018.
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