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Abstract

We present a backward diffusion flow (i.e. a backward-in-time stochastic differential equa-
tion) whose marginal distribution at any (earlier) time is equal to the smoothing distribution
when the terminal state (at a latter time) is distributed according to the filtering distribution.
This is a novel interpretation of the smoothing solution in terms of a nonlinear diffusion (stochas-
tic) flow. This solution contrasts with, and complements, the (backward) deterministic flow of
probability distributions (viz. a type of Kushner smoothing equation) studied in a number of
prior works. A number of corollaries of our main result are given including a derivation of the
time-reversal of a stochastic differential equation, and an immediate derivation of the classical
Rauch-Tung-Striebel smoothing equations in the linear setting.

Keywords: Nonlinear filtering and smoothing; Kalman-Bucy filter; Rauch-Tung-Striebel smoother; particle
filtering and smoothing; diffusion equations; stochastic semigroups; backward stochastic integration; back-
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1 Introduction

Let (Wt, Vt) ∈ (Rp × Rq) be a (p+ q)-dimensional Brownian motion for finite p, q ≥ 1. Consider a
signal-observation model (Xt, Yt) ∈ (Rm × Rn) given by the Itô stochastic differential equation:{

dXt = at(Xt) dt+ σt(Xt) dWt

dYt = bt(Xt) dt+ ςt dVt
(1.1)

for some measurable functions ςt, at(x), σt(x), bt(x) with appropriate dimensions. We set Y0 = 0 and
letX0 be an initial random variable with absolute moments of any order. We let αt(x) := σt(x)σ′t(x),
and βt := ςtς

′
t, where A′ denotes the transpose of some matrix A.

∗B.D.O. Anderson was supported by the Australian Research Council (ARC) via grant DP160104500 and grant
DP190100887; and by Data61-CSIRO.
†P. Del Moral was supported in part by the Chair Stress Test, RISK Management and Financial Steering, led by
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To avoid unnecessary technical details, we assume βt ≥ ε I, for some ε > 0, where I denotes
the identity matrix. We also assume the drift and sensor functions (au(x), bu(x)), as well as the
diffusion matrix σu(x), are smooth w.r.t. (u, x) and they have uniformly bounded derivatives w.r.t
x of all order on (u, x) ∈ [s, t]× Rm, for any s ≤ t.

These technical conditions ensure that the above stochastic differential equation (1.1) has a
global solution (Xt, Yt) in the sense of Itô. In addition, (Xt, Yt) as well as the sensor function bt(Xt)
have absolute moments of any order. The stochastic flow associated with the signal is also smooth
w.r.t. its initial condition, and its derivatives have absolute moments of any order.

The filtering problem then consists of computing the conditional distribution πt of the random
signal states Xt of the signal given the sigma-field Yt = σ(Ys, s ≤ t) generated by the observations.
The smoothing problem is to compute the conditional distribution πt,s of the random signal states
Xs given Yt, with t ≥ s. With this notation, we have πt,t = πt.

The filtering and smoothing problems have been studied extensively, and the literature on this
topic is too broad to survey in detail here; and a review of this type is beyond the rather narrow
scope of our contribution. We may point to the general texts [28, 5] for broad coverage of these
problems.

We do note some rather seminal early literature in the linear setting [6, 37, 16, 39] and the
nonlinear setting [6, 27, 1, 3]. The first work on the smoothing topic is the maximum likelihood
solution in [6] in both the linear and nonlinear setting. The study of [37] more formally confirms
the linear result in [6] and also provides a simpler formulation for the mean and covariance of the
smoothing distribution. In the nonlinear setting, the work of [1, 27] introduces an analogue of a
type of Kushner-Stratonovich equation (see [5] for this equation in the filtering context) for the
smoothing problem. More specifically, [1, 27] propose a deterministic partial differential equation
that describes the flow of the smoothing distribution in terms of a backward flow and the standard
filtering distribution which acts as the boundary condition (the latter follows from the classical
Kushner-Stratonovich equation).

In Section 2 we state the main contribution of this work. Our main result asserts a backward
diffusion flow (i.e. a backward stochastic differential equation) whose marginal distribution at any
time 0 ≤ s ≤ t is equal to the smoothing distribution πt,s when the terminal state is distributed
according to the filtering distribution πt.

This is a novel interpretation of the smoothing solution in terms of a nonlinear diffusion (stochas-
tic) flow (in the spirit of McKean-Vlasov-type processes). This solution contrasts with, and comple-
ments, say, the (backward) deterministic flow of probability distributions (viz. a type of Kushner
smoothing equation) in [1, 27]. We also provide a number of corollaries of our main result in Section
2.1 including an immediate derivation of the Rauch-Tung-Striebel smoothing equations [37] in the
linear setting.

A number of auxiliary contributions are set forth in order to prove our main contribution to the
smoothing problem. As is typical, (e.g. see [6, 37, 16, 39, 27, 1, 3, 34]), our smoothing solution
requires the formulation of a related filtering problem. In Section 3 we present a brief review of the
Kallianpur-Striebel formula. We then provide a novel and more direct approach to deriving weak-
versions of the Zakai and the Kushner-Stratonovich equations in Sections 3.1 and 3.2 respectively.
We also consider the backward versions of these equations in Section 3.3.

Our approach to the filtering equations in this article combines forward and backward Itô formu-
las for stochastic transport semigroups with a recent backward version of the Itô-Ventzell formula
presented in [13]. This semigroup methodology can be seen as an extension, to the Zakai and
Kushner-Stratonovich equations, of the forward-backward stochastic analysis of diffusion flows de-
veloped in [10, 11, 13, 23, 24].
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Our direct semigroup approach to the forward/backward filtering equations in this work con-
trasts with classical stochastic partial differential methods and functional analysis in Sobolev spaces;
see e.g. the seminal works by Pardoux [31, 32, 34], as well as Krylov and Rozovskii [19, 20]. Related
reverse time diffusions and filtered and smoothed densities are also developed in [2, 3] using discrete
time approximation techniques, without a detailed discussion on the existence of these densities.
We present a number of auxiliary results in this direction throughout Section 3 which are utilised
in the proof of our main smoothing result in Section 4.

1.1 Some preliminary notation

This subsection presents some notation needed from the onset.
The signal and the observation defined in (1.1) are column vectors. Unless otherwise stated,

we use the letters f and g to denote bounded scalar measurable test functions on some measurable
space.

We denote by ∇f the column gradient whenever f is a differentiable function on some Euclidian
space, and by ∇2f the Hessian matrix whenever it is twice differentiable.

With f : Rm → R, we let divαt(f) be the αt-divergence m-column vector operator with j-th
entry given by the formula

divαt(f)(x)j :=
∑

1≤i≤m
∂xi

(
αi,jt (x) f(x)

)
The generator Lt of the signal Xt is also given by the second order differential operator

Lt(f)(x) := ∇f(x)′bt(x) +
1

2
Tr
(
∇2f(x)αt(x)

)
with the trace operator Tr(·).

Here and throughout, and without further mention, we assume that functions f acted on by a
second-order differential generator are in addition twice differentiable with bounded derivatives.

For a measure µ and test function f of compatible dimension we write,

µ(f) :=

∫
µ(dx) f(x)

An integral operatorQ(x, dz) acts on the right on scalar test functions f ; and on the left on measures
µ according to the formulae,

Q(f)(x) :=

∫
Q(x, dz) f(z) and (µQ)(dz) :=

∫
µ(dx) Q(x, dz)

We extend this operator to an integral operator on matrix functions h(x) = (hi,j(x))i,j by setting,

Q(h)(x)i,j = Q(hi,j)(x)

2 Main Result

In further development of this article we assume for any t > 0 the conditional distribution πt has
a positive density pt := dπt/dλ w.r.t. the Lebesgue measure λ on Rm. In addition, pu(x) and its
derivative ∇pu(x) are uniformly bounded w.r.t. (u, x) ∈ [s, t] × Rm, for any given s > 0, almost
surely w.r.t. the distribution of the observation process. A more detailed discussion on these
regularity conditions is provided in Section 2.2.

The main result of the article takes the following form:
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Theorem 2.1. For any t ≥ u ≥ s we have the transport equation

πt,s(dx) = (πt,uKu,s)(dx) :=

∫
πt,u(dz) Ku,s(z, dx) (2.1)

where Ku,s denotes the Markov semigroup of the backward diffusion flow,

dXu,s(x) = −
((
ps(Xu,s(x))−1divαs(ps)(Xu,s(x))− as(Xu,s(x))

)
ds+ σs(Xu,s(x)) dWs

)
(2.2)

with the boundary condition Xu,u(x) = x, and where Wt ∈ Rp denotes a p-dimensional Brownian
motion independent of the observations.

The proof of the above theorem is provided in Section 4.1. The backward stochastic differential
equation (2.2) should be read as shorthand for the backward Itô integration formula,

Xt,s(x) = x+

∫ t

s

(
pu(Xt,u(x))−1divαu(pu)(Xt,u(x))− au(Xt,u(x))

)
du+

∫ t

s
σu(Xt,u(x)) dWu (2.3)

with terminal condition Xt,t(x) = x. The right-most term in the above formula is an Itô backward
stochastic integral such that for any terminal time t this process is a square integrable backward
martingale w.r.t. the variable s ∈ [0, t].

Formally, we may slice the time interval [s, t]h := {u0, . . . , un−1} via some time mesh ui+1 =
ui +h from u0 = s to un = t and with time step h > 0. In this notation, according to the backward
equation (2.2), or (2.3), we compute Xt,u−h(x) from Xt,u(x) using the formula

Xt,u−h −Xt,u '
(
pu(Xt,u)−1divαu(pu)(Xt,u)− au(Xt,u)

)
h+ σu(Xt,u)(Wu −Wu−h) (2.4)

We may provide some comments on the above theorem. By construction, given the observations
and for any given x ∈ Rm and t ≥ s, the probability Kt,s(x, dz) introduced in (2.1) coincides with
the distribution of the random state Xt,s(x). In addition, for any t ≥ u ≥ s we have the integral
and stochastic semigroup properties,

Kt,s(x2, dx0) :=

∫
Kt,u(x2, dx1) Ku,s(x1, dx0) (2.5)

and
Xt,s = Xu,s ◦ Xt,u (2.6)

where Xu,s ◦ Xt,u denotes the composition of the mappings Xu,s and Xt,u.
If we let Xt be a random variable with distribution πt, for some t ≥ 0. According to (2.1)

the random state Xt,s(Xt) of the process (2.2) at any given s ∈ [0, t], is distributed according to
πt,s = πtKt,s. In words, the backward process Xt,s(Xt) is distributed according to the smoothing
distribution πt,s for any s ≤ t whenever the terminal condition Xt,t(Xt) = Xt is distributed according
to the filtering distribution πt. In this sense, (2.2) constitutes a backward nonlinear smoothing
diffusion. A forward diffusion flow that has a marginal distribution at any time equal to the
filtering distribution is considered in [42, 43].

More generally, we have the backward Itô formula

df(Xt,s(x)) = −Ls,πs(f)(Xt,s(x)) ds−∇f(Xt,s(x))′ σs(Xt,s(x)) dWs (2.7)

with the second order differential operator

Ls,πs(f) =
∑

1≤j≤m

(
− ajs +

1

ps
divαs(ps)

j

)
∂xjf +

1

2

∑
1≤i,j≤m

αi,js ∂xixjf (2.8)
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Equivalently, we have the backward martingale decomposition

f(Xt,s(x))− f(x)−
∫ t

s
Lu,πu(f)(Xt,u(x)) du =

∫ t

s
∇f(Xt,u(x))′ σu(Xt,u(x)) dWu (2.9)

This yields the backward evolution equations,

∂sKt,s(f)(x) = −Kt,s(Ls,πs(f))(x) (2.10)

and
∂sπt,s(f) = −πt,s(Ls,πs(f)) (2.11)

with terminal conditionsKt,t(f) = f and πt,t = πt. The formula (2.11) coincides with the conditional
Fokker-Planck equation in [27], and further developed in [1].

For further discussion on general backward integration of stochastic flows see [10]; see also the
appendix of [4] in the context of nonlinear diffusions, and [34] in the context of nonlinear filtering,
and [13] on forward-backward perturbation analysis of stochastic flows. Note there is no issue with
adaption of the backward process in the sense studied in [35] since we rely only on the independent
backward Brownian motion in (2.2). The “backward diffusion” in (2.2) is backward in the sense of
a time reversed stochastic differential equation as in [2, 14, 30].

2.1 Some corollaries

We end this introduction with some direct consequences of the above theorem.
Note when bt = 0 the measure πt coincides with the distribution of the random state Xt of the

signal. In this context, Xt,s(Xt) reduces to the time reversal of the signal starting at Xt,t(Xt) = Xt

at the terminal time t. Using Theorem 2.1 we recover the fact that the time reversal process of the
signal is itself a Markov diffusion [2, 14, 30]. More precisely, we have the corollary:

Corollary 2.2 (Anderson [2]). Assume that bt = 0. For any time horizon t ≥ 0, the process
Xts := Xt−s with s ∈ [0, t] is a Markov process with generator

Lts(f) =
∑

1≤j≤m

(
1

pt−s
divαt−s(pt−s)

j − ajt−s

)
∂xjf +

1

2

∑
1≤i,j≤m

αi,jt−s ∂xixjf (2.12)

We consider now linear-Gaussian filtering/smoothing models with,

at(x) = At x, bt(x) = Bt x and homogeneous diffusion matrix σt(x) = Σt (2.13)

for some matrices (At, Bt,Σt) with appropriate dimensions. Whenever X0 is a Gaussian random
variable with mean X̂0 and covariance matrix R0, the optimal filter πt is a Gaussian distribution
with mean X̂t and covariance matrix Rt satisfying the Kalman-Bucy and the Riccati equations{

dX̂t = AtX̂t dt+RtB
′
tβ
−1
t

(
dYt −BtX̂t dt

)
∂tRt = AtRt +RtA

′
t + αt −RtB′tβ−1t BtRt

(2.14)

In this context, we also have that

− ps(x)−1divαs(ps)(x) = αsR
−1
s (x− X̂s) (2.15)

This yields the following corollary:
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Corollary 2.3. For linear Gaussian filtering models (2.13), the diffusion flow Xt,s(x) satisfies the
backward evolution equation

dXt,s(x) = −
((
−As Xt,s(x)− αsR−1s (Xt,s(x)− X̂s)

)
ds+ Σs dWs

)
(2.16)

with the boundary condition Xt,t(x) = x.

Replacing x in (2.16) by a random variable Xt with distribution πt for any t ≥ s we have that
Xt,s(Xt) has distribution πt,s. In addition, since the process is linear the distribution πt,s is Gaussian
with mean X̂t,s and covariance matrix Rt,s. The discrete time version of (2.16) can be found in
Section 9.9.6 in [12].

Now taking expectations we readily deduce the rather well-known Rauch-Tung-Striebel smooth-
ing equations [37], simplifying the innovation techniques and the sophisticated approximation theory
developed in [16, 27, 39], or the formal variational approaches and maximum likelihood techniques
presented in the pioneering articles [6, 37].

Corollary 2.4 (Rauch-Tung-Striebel [37]). For any t ≥ s, the parameters (X̂t,s, Rt,s) satisfy the
backward evolution equations{

∂sX̂t,s = AsX̂t,s + αsP
−1
s (X̂t,s − X̂s)

∂sRt,s = (As + αsR
−1
s )Rt,s +Rt,s(As + αsR

−1
s )′ − αs

(2.17)

with terminal conditions (X̂t,t, Rt,t) = (X̂t, Rt).

2.2 Comments on our regularity conditions

We end this section with some comments on the regularity conditions discussed at the beginning
of Section 2. These conditions are clearly met for linear Gaussian filtering models (see e.g. (2.14)
and (2.15)). They are also met for nonlinear models as soon as the signal satisfies a classical
controllability-type condition.

Note firstly, whenever the signal is uniformly elliptic, in the sense that αt(x) = σt(x)σ′t(x) ≥ δ I
for some δ > 0, then it is well known that Xt has a smooth positive density w.r.t. the Lebesgue
measure on Rm. Nevertheless in many important applications this ellipticity condition is not satis-
fied. The parabolic Hörmander condition for time varying models [7, 15] is a weaker condition. For
linear-Gaussian filtering problems, this condition reduces to the usual controllability condition. In-
deed, if we replace the Brownian motions Wt by some arbitrary smooth control functions, all states
are accessible from one to another, as soon as the Lie algebra generated by the controlled vector
fields is of full rank. This result is also called the Chow-Rashevskii theorem [8, 38]. Under this
Hörmander condition, the Hörmander theorem [15] ensures that the signal states have a smooth
density w.r.t. the Lebesgue measure on Rm. In addition, for any s < t the Markov transition
semigroup Ps,t of the signal has a smooth positive density (x, z) 7→ ps,t(x, z) w.r.t. the Lebesgue
measure λ on Rm. In addition, the integral operator Ps,t with s < t maps test functions f into
bounded smooth functions Ps,t(f) given by

Ps,t(f)(x) =

∫
Ps,t(x, dz) f(z) =

∫
f(z) ps,t(x, z) dz

A natural way to transfer the smoothing properties of Ps,t to the optimal filter is to use the
following equation

πt(f) = π0(P0,t(f)) +

∫ t

0
πs(Ps,t(f) (bs − πs(bs)))′ β−1s (dYs − πs(bs) ds) (2.18)
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given in Theorem 1.1 in [22]. Using this formula we readily check that for any t > 0 the conditional
distribution πt has a positive density pt on Rm. Whenever σt(x) and bt(x) are also bounded,
Theorem 3.6 in [29] (see also Theorem 6.3 in [23]) also ensures that pu is smooth, and for any k ≥ 1,
any parameters h > 0 and any time horizon t > 0 we have

sup
h≤s≤t

sup
x∈Rm

(
|ps(x)|+ ‖∇kps(x)‖

)
<∞ (2.19)

where ‖ · ‖ stands for any (equivalent) norm on Rm.
The above estimates are met for linear Gaussian filtering models. Nevertheless, some caution

must be used when considering estimates of the form (2.19). Indeed, most of the literature on
stochastic partial differential equations arising in nonlinear filtering, such as the strong formulation
of the Zakai and Kushner-Stratonovich equations, assume that the sensor function is uniformly
bounded, see e.g. [23, 29, 34] and [41, 44]. To the best of our knowledge the extension of the
estimate (2.19) to more general unbounded sensor functions is still an open important question.

We also note here that the Kallianpur-Striebel formula [17, 18] is valid as soon as βu ≥ ε I, for
some ε > 0 and the functions (au(x), bu(x), σu(x)) are smooth with uniformly bounded derivatives
w.r.t x of all order on (u, x) ∈ [s, t] × Rm, for any s ≤ t. Weaker conditions can also be found in
the book [5] and the recent article [9].

Since Xt has continuous paths, for any continuous function f and any s ≤ t the random mapping
u ∈ [s, t] 7→ f(Xu) is almost surely a uniformly bounded function. In addition, f(Xt) is integrable
as soon as f has polynomial growth. Up to some classical localization procedure (see e.g. Chapter
7 in [40]), these rather weak regularity properties also ensure that the integral semigroups that
transport (in time) the filtering measures discussed in Section 3, as well as their stochastic partial
differential evolution equations, are well defined on any test function with polynomial growth.

3 Nonlinear filtering equations

As is well known (e.g. see [6, 37, 16, 39, 27, 1, 3, 34]), a solution to the smoothing problem will
typically make use of the solution of a related filtering in some way. Consequently, we need to
present and develop some related filtering results for proving our main result, Theorem 2.1. This
section is largely self-contained but it is vital in the proof, in Section 4, of our main result.

The first part of this section presents the classical Kallianpur-Striebel formula which acts as a
continuous-time version of Bayes law. In Sections 3.1 and 3.2 respectively we present the Zakai,
and Kushner-Stratonovich equations for the flow of the conditional filtering distributions (both
unnormalised and normalised). These results are rather well known. For further background on
these classical ideas, we refer to the pioneering articles by Kallianpur and Striebel [17, 18], and
by Kushner [26] and Zakai [44]. For more recent discussion on these probabilistic models, we refer
to [9], and [5, 12], and the references therein. In this article, we present a novel and self contained
derivation based on stochastic transport semigroups and their forward evolution equations.

The solution of the Zakai equation is sometimes termed the unnormalized filter. The semigroup
that transports these filtering measures (in time) is discussed in Section 3.1; and its normalized
version in Section 3.2. Section 3.3 presents a novel direct approach for deriving the backward
evolution of these transport semigroups. Our approach in Section 3.3 combines the backward Itô
formula for stochastic flows with the backward Itô-Ventzell formula presented in [13].

Now, we introduce some notation/terminology and briefly present the Kallianpur-Striebel for-
mula and the linear semigroup property of unnormalized measures. Let Xs,t(x) be the stochastic

7



flow of the signal on the time interval [s, t] and starting at x at time s. Let Zs,t(x) be the multi-
plicative functional

logZs,t(x) :=

∫ t

s
bu(Xs,u(x))′β−1u dYu −

1

2

∫ t

s
bu(Xs,u(x))′β−1u bu(Xs,u(x)) du (3.1)

When x is replaced by Xs we may write Zs,t instead of Zs,t(Xs), and when s = 0, we may also write
Zt instead of Z0,t. With this notation, we have the classical Kallianpur-Striebel formula,

πt(f) = γt(f)/γt(1) with γt(f) := E0 (f(Xt) Zt)

Here, E0(·) denotes the expectation operator w.r.t. the signal with a fixed observation process.
The transport semigroup of the unnormalized measures γt is given for any s ≤ t by the formula

γt = γsQs,t with Qs,t(f)(x) := E0 (f(Xs,t(x)) Zs,t(x)) (3.2)

To check this claim observe that,

Zt = Zs Zs,t =⇒ E0 (f(Xt) Zt) = E0 (Zs E0(f(Xt) Zs,t | Xs)) = E0 (Zs Qs,t(f)(Xs))

Now for any s ≤ u ≤ t we have

Qs,t(f)(Xs) = E0(f(Xt) Zs,t | Xs) = E0(Zs,u E (f(Xt) Zu,t | Xu) | Xs)

= E0(Zs,u Qu,t(f)(Xu) | Xs) = Qs,u(Qu,t(f))(Xu)

This yields the integral semigroup formula

Qs,t(x0, dx2) = (Qs,uQu,t)(x0, dx2) :=

∫
Qs,u(x0, dx1) Qs,u(x1, dx2)

In a more compact form, the semigroup property takes the form

Qs,t = Qs,uQu,t with Qt,t = I where I denotes the identity operator.

3.1 Unnormalized stochastic semigroups

Consider the stochastic transport semigroups Ps,t and Qs,t defined by the composition of functions

Ps,t(f)(x) := (f ◦Xs,t)(x) and Qs,t(f)(x) := Ps,t(f)(x) Zs,t(x)

Using the semigroup properties of the stochastic flow Xs,t(x) for any s ≤ u ≤ t we check that

Ps,t(f)(x) = (f ◦Xs,t)(x) = (f ◦Xu,t)(Xs,u(x)) = Ps,u(Pu,t(f))(x)

Similarly, we have

Qs,t(f)(x) = Zs,u(x) (Zu,t(Xs,u(x)) (f ◦Xs,t)(Xs,u(x))) = Qs,u(Qu,t(f))(x)

In a more compact form we have the semigroup properties

Ps,t = Ps,u ◦ Pu,t and Qs,t = Qs,u ◦Qu,t with Pt,t = I = Qt,t

Also observe that

Ps,t(f)(x) := E0 (Ps,t(f)(x)) and Qs,t(f)(x) := E0 (Qs,t(f)(x))

The forward evolution equations of the above semigroups are described in the next proposition.
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Proposition 3.1. For any t ≥ s we have the forward stochastic evolution equation

dQs,t(f) = Qs,t(Lt(f)) dt+ Qs,t(f b
′
t) β

−1
t dYt + Qs,t((∇f)′ σt) dWt (3.3)

with initial condition Qs,s(f) = f , when t = s. In particular, we have the forward equation

dQs,t(f) = Qs,t(Lt(f)) dt+Qs,t(f b
′
t) β

−1
t dYt (3.4)

with the initial condition Qs,s(f) = f , when t = s.

Proof. Assume that the sensor function bu(x) is uniformly bounded on [s, t]×Rm, for any s ≤ t. In
this situation, the random process (Xs,u(x), Zs,u(x)) also has uniformly bounded absolute moments
of any order on any compact interval [s, t], for any time parameters s ≤ t. In this context, we use
Itô formula to check that

dZs,t(x) = Zs,t(x) bt(Xs,t(x))′β−1t dYt

as well as
dPs,t(f)(x) = Ps,t(Lt(f))(x) dt+ Ps,t

(
∇f ′ σt

)
(x) dWt

An integration by parts yields

dQs,t(f)(x) = Zs,t(x) dPs,t(f)(x) + Ps,t(f)(x) dZs,t(x)

=
(
Lt(f)(Xs,t(x)) Zs,t(x) dt+ Zs,t(x) f(Xs,t(x)) bt(Xs,t(x))′β−1t dYt

)
+Zs,t(x) ∇f(Xs,t(x))′ σt(Xs,t(x)) dWt

By classical localization principles of Itô integrals (see for instance Chapter 7 in [40]), the above
result is also true for unbounded sensor functions. This ends the proof of (3.3). Taking the expec-
tations, we conclude that

dE0(Qs,t(f)(x)) = E0 (Qs,t(Lt(f))(x)) dt+ E0

(
Qs,t(f b

′
t)(x)

)
β−1t dYt

This ends the proof of (3.4). The proof of the proposition is completed.
Combining (3.2) with Fubini’s theorem, we readily check the weak form of Zakai equation given

by the formula
dγt(f) = γt(Lt(f)) dt+ γt(f b

′
t) β

−1
t dYt (3.5)

Arguing as in (2.18), we transfer the smoothing properties of Ps,t to Qs,t using the perturbation
formulae given for any s < t by

Qs,t(f) = Ps,t(f) +

∫ t

s
Qs,u

(
Pu,t(f) b′u

)
β−1u dYu

Arguing as in [44], the above formula shows that for any s < t the integral operator Qs,t(x0, dx1)
has a density x1 7→ qs,t(x0, x1) w.r.t. the Lebesgue measure on Rm given by the integral equation

qs,t(x0, x1) = ps,t(x0, x1) +

∫ t

s

[∫
qs,u(x0, z) pu,t(z, x1) b

′
u(z) dz

]
β−1u dYu (3.6)

9



3.2 Normalized stochastic semigroups

Let Zs,t(x) be the multiplicative functional defined as Zs,t(x) by replacing in (3.1) the function bu
and the observation increment dYu by the centered function bu and the innovation increment dY u

defined by the formulae

bu := bu − πu(bu) and dY u := dYu − πu(bu) du

Under our assumptions, the random process πt(bt) is almost surely square integrable on any compact
time interval so that the innovation process is well defined. Choosing f = 1 in (3.5) we check that

log γt(1) =

∫ t

0
πu(bu)′β−1u dYu −

1

2

∫ t

0
πu(bu)′β−1u πu(bu) du

Observe that

πsQs,t(1) = γt(1)/γs(1) = exp

(∫ t

s
πu(bu)′β−1u dYu −

1

2

∫ t

s
πu(bu)′β−1u πu(bu) du

)
We also consider the normalized stochastic semigroup

Qs,t(f)(x) := (f ◦Xs,t)(x) Zs,t(x) = Ps,t(f)(x) Zs,t(x)

Arguing as above, for any s ≤ u ≤ t we check that

Qs,t = Qs,u ◦Qu,t and Zs,t(x) = Zs,t(x)/πsQs,t(1)

Consider the semigroup

Qs,t(f)(x) := E0

(
Qs,t(f)(x)

)
= E0

(
f(Xs,t(x)) Zs,t(x)

)
= Qs,t(f)(x)/πsQs,t(1)

In this notation, using the same arguments as in the proof of Proposition 3.1 we have the
following forward evolution equations.

Proposition 3.2. For any given time horizon s and for any t ≥ s we have the forward stochastic
evolution equation

dQs,t(f) = Qs,t(Lt(f)) dt+ Qs,t(f b
′
t) β

−1
t dY t + Qs,t((∇f)′ σt) dWt

with initial condition Qs,s(f) = f , when t = s. In particular, we have the forward equation

dQs,t(f) = Qs,t(Lt(f)) dt+Qs,t(f b
′
t) β

−1
t dY t

with the initial condition Qs,s(f) = f , when t = s.

The above proposition yields the weak form of the Kushner-Stratonovich equation defined by

dπt(f) = πt(Lt(f)) dt+ πt(f bt)
′ β−1t dY t (3.7)

Formally, using the same notation as in (3.11) we have the forward approximation equation

πu+h(f) ' πu(f) + πu(Lu(f))h+ πu(f bu)′ β−1u
(
Y u+h − Y u

)
(3.8)
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3.3 Backward evolution equations

This section is concerned with the backward evolution equation associated with the unnormalized
semigroup Qs,t and its normalized version. The main result of this section is the following theorem:

Theorem 3.3. For any twice differentiable function f with bounded derivatives and for any s ≤ t
we have the backward evolution equation

dQs,t(f)(x) = −
(
∇Qs,t(f)(x)′ as(x) +

1

2
Tr
(
∇2Qs,t(f)(x) αs(x)

))
ds

−Qs,t(f)(x) bs(x)′β−1s dYs −∇Qs,t(f)(x)′ σs(x) dWs (3.9)

with terminal condition Qt,t(f) = f , when s = t. In particular, we have the backward equation

dQs,t(f) = −
(
Ls(Qs,t(f)) ds+Qs,t(f) b′s β

−1
s dYs

)
(3.10)

with terminal condition Qt,t(f) = f , when s = t.

Proof. We use a direct approach combining the backward filtering calculus developed in [23, 41]
based on the backward Itô calculus developed in [10, 11, 21, 25], see also the more recent article [13]
and references therein.

Consider the stochastic flow χs,t (x) starting at

χs,s (x) = x :=

(
x
z

)
∈ (Rm × R)

on the time interval [s,∞[ and given for any t ≥ s by

χs,t (x) :=

(
Xs,t(x)
Zs,t(x) z

)
∈ (Rm × R)

We set

Bt (x) :=

(
at(x)

0

)
Ut :=

(
Wt

Yt

)

Λt (x) :=

(
σt(x) 0

0 z bt(x)′β−1t

)
and At (x) := Λt (x) Λt (x)′

Assume that the sensor function bu(x) is uniformly bounded on [s, t] × Rm, for any s ≤ t. Then,
the process (Zs,u(x), χs,u (x)) has continuous partial derivatives and also has uniformly bounded
absolute moments of any order on ([s, t]× Rm), for any s ≤ t. In this situation, we have the
forward stochastic evolution equation

dχs,t (x) = Bt (χs,t (x)) dt+ Λt (χs,t (x)) dUt

For any twice differentiable function F on (Rm × R) with bounded derivatives we also have the
backward equation

d(F ◦ χs,t) (x)

= −
(
∇(F ◦ χs,t) (x)′ Bs (x) +

1

2
Tr
(
∇2(F ◦ χs,t) (x) As (x)

))
ds−∇(F ◦ χs,t) (x)′ Λs (x) dUs
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A proof of the above formula can be found in the articles [10, 11], see also [13]. Choosing the
function F (x) = f(x) z, for some twice differentiable function f on Rm with bounded derivatives
and letting z = 1 we check that

d(f(Xs,t(x))Zs,t(x))

= −
(
∇(f(Xs,t(x))Zs,t(x))′ as(x) +

1

2
Tr
(
∇2(f(Xs,t(x))Zs,t(x)) αs(x)

))
ds

− (f(Xs,t(x))Zs,t(x)) bs(x)′β−1s dYs −∇(f(Xs,t(x))Zs,t(x))′ σs(x) dWs

This ends the proof of (3.9). By localization arguments, the above result is also true for unbounded
sensor functions. Integrating the flow of the signal we obtain (3.10). This ends the proof of the
theorem.

We can also check (3.10) considering a discrete time interval [s, t]h := {t0, . . . , tn−1} associated
with some refining time mesh ti+1 = ti + h from t0 = s to tn = t, for some time step h > 0. By
(3.4), for any u ∈ [s, t]h we compute Qu,t(f) from Qu+h,t(f) using the backward equation

Qu,t(f) = Qu+h,t(f) + (Qu,u+h − I) (Qu+h,t(f))

' Qu+h,t(f) + Lu(Qu+h,t(f))h+Qu+h,t(f) b′u β
−1
u (Yu+h − Yu) (3.11)

For null sensor functions the evolution equation (3.9) coincides with the backward Itô formula
discussed in [10, 11, 13, 23, 24].

Choosing f = 1 in (3.10) we recover the backward evolution of the likelihood function presented
in [3, 33] (see formula (5.9) in [3] and equation (3.15) in [33]). Arguing as in (3.6), using (3.10) we
check the perturbation formulae given for any s < t by,

Qs,t(f) = Ps,t(f) +

∫ t

s
Ps,u

(
Qu,t(f) b′u

)
β−1u dYu

Thus, for any s < t the integral operator Qs,t(x0, dx1) has a density (x0, x1) 7→ qs,t(x0, x1) given by
(3.6) and the integral formula,

qs,t(x0, x1) = ps,t(x0, x1) +

∫ t

s

[∫
ps,u(x0, z) qu,t(z, x1) b

′
u(z) dz

]
β−1u dYu (3.12)

Using the same arguments as in the proof of Theorem 3.3 we also have the following backward
evolution equation.

Proposition 3.4. For any twice differentiable function f with bounded derivatives and for any s ≤ t
we also have the backward equation

dQs,t(f)(x) = −
(
∇Qs,t(f)(x)′ as(x) +

1

2
Tr
(
∇2Qs,t(f)(x) αs(x)

))
ds

−Qs,t(f)(x) bs(x)′β−1s dY s −∇Qs,t(f)(x)′ σs(x) dWs

with terminal condition Qt,t(f) = f . In particular, we have the backward equation,

dQs,t(f) = −
(
Ls(Qs,t(f)) ds+Qs,t(f) b

′
s β
−1
s dY s

)
(3.13)

with terminal condition Qt,t(f) = f .

Using the same notation as in (3.11), we also have the approximating backward equation

Qu,t(f) ' Qu+h,t(f) + Lu(Qu+h,t(f))h+Qu+h,t(f) b
′
u β
−1
u

(
Y u+h − Y u

)
(3.14)
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4 Smoothing semigroups and proof of the main result

This section is concerned with forward-backward evolution equations for the conditional smoothing
distribution and the proof of our main result.

Let Kt,s be the backward integral operator defined by,

Kt,s(f)(x) :=

∫
πs(dz)

dQs,t(z, ·)
dπt

(x) f(z) (4.1)

For any s ≤ u ≤ t we have the backward semigroup property,

Kt,s = Kt,uKu,s (4.2)

which follows via,

(Kt,uKu,s)(f)(x) =

∫
πs(dx0) Qs,u(x0, dx1)

dQu,t(x1, ·)
dπt

(x) f(x0)

=

∫
πs(dx0)

dQs,t(x0, ·)
dπt

(x) f(x0) = Kt,s(f)(x)

and where we exploit the semigroup properties of the operators Qs,t.
Also observe that for any t > s > 0 the integral operator Kt,s(x1, dx0) has a density (x1, x0) 7→

ks,t(x1, x0) w.r.t. the Lebesgue measure on Rm given by,

kt,s(x1, x0) := ps(x0) qs,t(x0, x1)/pt(x1) with qs,t(x0, x1) = qs,t(x0, x1)/πs(Qs,t(1))

The function qs,t denotes the density of the integral operator Qs,t discussed in (3.6) and (3.12).
Now, for any pair of functions (f, g) we readily check the duality formula,

πs
(
f Qs,t(g)

)
= πt (Kt,s(f) g) (4.3)

The following technical result is key in the proof of Theorem 2.1.

Lemma 4.1. For any time parameter s ≤ t we have the forward-backward differential equation

∂s
(
πs
(
f Qs,t(g)

))
= −πs

(
Qs,t(g) Ls,πs(f)

)
(4.4)

with the second order differential operator

Ls,πs(f) := −Ls(f) +
1

ps

∑
1≤i,j≤m

∂xi
(
ps α

i,j
s ∂xjf

)
Proof. Observe that (4.4) does not involve the derivatives of the function g. Thus, up to a smooth
mollifier’s type approximation of the function g, it suffices to check (4.4) for any pair of bounded
and twice differentiable functions f, g with bounded differentials. Arguing as in the proof of Propo-
sition 3.1 and Theorem 3.3, it suffices to prove the result for uniformly bounded sensor functions
bu(x) on [s, t]× Rm, for any s ≤ t.

In this situation, for any time horizon t, combining the Kushner-Stratonovich equation (3.7)
with the backward equation (3.13) for any s ≤ t, we check the forward-backward evolution equation

∂s
(
πs
(
f Qs,t(g)

))
= πs

(
Ls(f Qs,t(g))− f Ls(Qs,t(g))

)
(4.5)
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The above equation can be proved using the backward Itô-Ventzell formula in [13]. We use the
same notation as in the proof of Theorem 3.3. Let Zs,t(x) be the multiplicative functional defined
as Zs,t(x) by replacing the function bu and the observation Itô-increment dYu by the centered
function bu and the innovation increment dY u.

Consider the backward random field Fs,t with terminal condition Ft,t (x) = f(x)g(x)z defined
by the formula

Fs,t (x) := f(x) Qs,t(g)(x) z and we set χs :=

(
Xs

Zs

)
∈ (Rm × R) .

In this notation, we have

E0 (Fs,t(χs)) = E0

(
f(Xs) Zs E0

(
Qs,t(g)(Xs)| (Xs, Zs)

))
= πs(f Qs,t(g))

Observe that
Fs,t (x) = f(x) (F ◦ χs,t) (x)

with the function

F (x) := g(x) z and the stochastic flow χs,t(x, z) :=

(
Xs,t(x)

Zs,t(x) z

)
Following the proof of Theorem 3.3, we check that

dFs,t (x) = f(x) d(F ◦ χs,t) (x) = − (Gs,t (x) ds+Hs,t (x) dUs)

with the drift function

Gs,t (x) := f(x) z

(
∇Qs,t(g)(x)′ as(x) +

1

2
Tr
(
∇2Qs,t(g)(x)′ αs(x)

))
and the diffusion term

Hs,t (x) dUs := f(x) z
(
∇Qs,t(g)(x)′ σs(x) dWs + Qs,t(g)(x) bs(x)′β−1s dYs

)
Applying the backward Itô-Ventzell formula [13] we check that

dFs,t(χs) = (dFs,t)(χs) +∇Fs,t(χs)′ dχs +
1

2
Tr
(
∇2Fs,t(χs)

′ At (χs)
)
ds

from which we conclude that

dFs,t(χs) = Zs

(
∇ (Qs,t(g)(x) f(x))′|x=Xs

− f(Xs) Zs ∇Qs,t(g)(Xs)
′
)
σs(Xs) dWs

− f(Xs)Zs

(
∇Qs,t(g)(Xs)

′ as(Xs) ds+
1

2
Tr
(
∇2Qs,t(g)(Xs) αs(Xs)

))
ds

+ Zs

(
∇ (Qs,t(g)(x) f(x))′|x=Xs

as(Xs) ds+
1

2
Tr
(
∇2 (Qs,t(g)(x) f(x))′|x=Xs

αs(Xs)
))

ds

We end the proof of (4.5) by simple integration.
To take the final step, we recall the integration by parts formula

Lt(fg) = f Lt(g) + g Lt(f) + ΓLt(f, g)
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with the carré-du-champ (a.k.a. square field) operator ΓLt associated with the generator Lt defined
by

ΓLt(f, g) := (∇f)′αt∇g

Combining (4.5) with the above formula we check that

∂s
(
πs
(
f Qs,t(g)

))
= πs

(
Ls(f) Qs,t(g)

)
+ πs

(
ΓLs

(
Qs,t(g), f

))
On the other hand, by an integration by parts we have

πs
(
ΓLs

(
Qs,t(g), f

))
= −

∑
i,j

∫
ps(x) Qs,t(g)(x)

1

ps(x)
∂xi

(
ps(x) αi,jt ∂xjf(x)

)
dx

This ends the proof of the lemma.
Another approach for finding (4.5) is to use for any u ∈ [s, t]h the decomposition

πu+h
(
f Qu+h,t(g)

)
− πu

(
f Qu,t(g)

)
= πu

(
f
(
Qu+h,t −Qu,t

)
(g)
)

+ (πu+h − πu)
(
f Qu+h,t(g)

) (4.6)

Note that πu depends on the observations (Ys − Y0) from s = 0 up to time s = u, while the
increment Qu,t is computed backward in time and only depends on the observations (Ys−Yu) from
s > u up to s = t. Conversely, πu+h depends on the observations (Ys − Y0) from s = 0 up to
time s = u+ h, while Qu+h,t is computed backward in time and only depends on the observations
(Ys − Yu+h) from s > u+ h, up to time s = t.

Following the two-sided stochastic integration calculus developped by Pardoux and Protter
in [36] (see also [13] for extended versions to interpolating stochastic flows), combining the forward
(3.8) with the backward equation (3.14), when h ' 0 we can check the approximation,∑
u∈[s,t]h

{
πu+h

(
f Qu+h,t(g)

)
− πu

(
f Qu,t(g)

)
− πu

(
Lu(f Qu+h,t(g))− f Lu(Qu+h,t(g))

)
h
}
' 0

4.1 Proof of Theorem 2.1

With the definition in (4.1) we have,

πt,s(dx) = (πtKt,s)(dx) = πs(dx)Qs,t(1)(x) (4.7)

The formulation of the conditional distribution πt,s of Xs given Yt in (4.7) is rather well known,
see e.g. Theorem 3.7 and Corollary 3.8 in [34], as well as equation (3.9) in [3]. The proof of this
formula is a direct consequence of (4.1). With (4.2) we have,

πtKt,s = πt,uKu,s = πt,s

Thus with Kt,s as defined in (4.1) we immediately have the transport equation in (2.1).
It remains to show that this integral operator (as defined in (4.1)) is also the Markov transition

kernel of the backward diffusion flow in (2.2). The rest of the proof of Theorem 2.1 is a consequence
of the duality formula (4.3) and Lemma 4.1.

Rewritten in a slightly different form, the duality formula (4.3) reads as follows,

E (f(Xs) g(Xt) | Yt) = E (Kt,s(f)(Xt) g(Xt) | Yt)
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This implies that
Kt,s(f)(Xt) = E (f(Xs) | Xt, Yt)

Finally, combining (4.4) with the duality formula (4.3) we have

πt (g ∂sKt,s(f)) = −πt (g Kt,s(Ls,πs(f)))

Since the above formula is valid for any test function g and πt has a bounded positive density, we
check the backward Kolmogorov equation

∂sKt,s(f)(x) = −Kt,s(Ls,πs(f))(x) (4.8)

with terminal condition Kt,t(f) = f , when s = t, for almost every x ∈ Rm (and almost surely w.r.t.
the law of the observation process from the origin up to the time t). Since both terms in (4.8) are
continuous, the above equality holds for any x ∈ Rm, almost surely.

We now complete the proof by showing that the integral operator Kt,s(x, dz) (defined in (4.1))
does indeed coincide with the transition kernel associated with the flow Xt,s(x) in (2.2). Firstly,
observe that (4.8) coincides with the backward Kolmogorov equation (2.11) associated with the
transition semigroup of the stochastic flow Xt,s(x). Denote this transition semigroup by Kt,s(x, dz)
temporarily.

By the semigroup properties of Kt,s, for any s ≤ u ≤ t and any smooth function f we have

∂uKt,s(f) = 0 = ∂u(Kt,u(Ku,s(f))) = −Kt,u(Lu,πu(Ku,sf)) +Kt,u(∂uKu,s(f))

Choosing u = t we obtain the forward equation

∂tKt,s(f) = Lt,πt(Kt,s(f))

Arguing as above, this implies that

∂u(Kt,u(Ku,s(f))) = −Kt,u(Lu,πu(Ku,sf)) +Kt,u(Lu,πu(Ku,s(f))) = 0

Integrating over the interval [s, t] we check that Kt,s = Kt,s. This ends the proof of Theorem 2.1.
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