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HIGHLIGHTS 

 

 3D reconstruction of trees can be performed using terrestrial laser scanner data. 

 The ideal level of detail can be validated thanks to a reference mock-up. 

 The RATP model can simulate tree transpiration rates from 3D tree mock-ups. 

 Promising results can be obtained with two different tree mock-ups. 

 Three main characteristics appear essential for accurate transpiration simulation. 
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Abstract 

The aim of this paper is to investigate the minimal level of detail of the tree geometry 

reconstruction required to enable an accurate estimate of the evaporative cooling effect of an 

individual tree. 

The Functional Structural Plant Modeling approach, which links the 3D tree structure 

to its functioning, is used to investigate the impact of the level of detail of a tree reconstruction 

on its simulated transpiration. Based on terrestrial laser scanning point cloud data of a nine-

meter-high silver linden tree (Tilia tomentosa Moench), several methods of reconstruction of 

its crown were considered. They can be divided into three groups: (i) tree branching structure 

reconstructions where leafy shoots are reconstructed; (ii) envelope reconstructions such as 3D 

convex/concave envelopes; and (iii) voxel reconstructions where leaves are uniformly 

distributed within the given volume. Based on these methods, several mock-ups of resolved tree 

crowns from low to high level of details were created. The cooling performance of each tree 

mock-up was compared by simulating its transpiration rate with a validated 3D 

ecophysiological model based on the turbid medium approach. 

The resulting mock-ups differ in several characteristics related to tree metrics and light 

interception: volume, projected leaf area, leaf area index, leaf area density, leaf clumping and 

silhouette-to-total area ratio. An inter-comparison of the transpiration rates provided by these 

mock-ups shows that tree branching structure reconstruction methods perform better than 

envelope computation methods and that these differences are related to the light interception 

property of the reconstructed trees. 

This study provides guidelines to determine which structural characteristics of tree 

crowns must be measured and taken into account in order to carry out accurate estimates of the 

transpiration rates of individual trees. 
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Key words: Branching skeleton; Envelope; Light interception; Transpiration; Urban tree; 

Voxels. 

 

1. INTRODUCTION 

1.1. Trees in cities to cool the urban atmosphere 

Cities are mainly composed of mineral materials (ground, buildings) and are very 

sensitive to climatic heat waves through the “urban heat island” effect (Oke, 1982). Among the 

adaptation strategies of cities to climate change, “greening” , i.e., reintroducing vegetation and, 

in particular, trees within cities, is a promising way (Rosenzweig et al., 2009). Through 

transpiration and shading, trees have a significant impact on the heat balance of the surrounding 

atmosphere (Peters et al., 2011) and may reduce air temperature by several degrees (Bowler et 

al., 2010). This positive impact is strengthened by ecosystem services that trees could provide 

to city dwellers: pollution clean-up (air and soil), carbon sequestration, social well-being and 

biodiversity (Mullaney et al., 2015).  

1.2. Integrating trees into urban climate models  

To mitigate the expected increase in heat waves frequency and intensity resulting from 

global climate change (IPCC, 2007) and to provide guidelines for urban planners, specific tree 

modules are added to urban climate models to simulate the interactions between trees and urban 

climate (Redon et al., 2017). The ability of trees to intercept light is strongly linked to their 

geometry, which determines the surface area and the intensity of the shade and, indirectly, their 

transpiration rate (Ross, 1981). Therefore, the integration of trees into urban climate models 

raises the question about the minimal level of detail (LOD) required for tree geometry 

reconstruction that would allow an accurate estimate of light interception and, consequently, of 

the shading and evaporative cooling processes. Trees are rarely integrated into urban climate 

models at this time. The reconstruction is usually very coarse with simple geometric shapes that 
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do not permit the good simulation of tree radiation properties and functions (Redon et al., 2017). 

A better reconstruction of trees is therefore needed that may require fine-scale measurements 

of tree geometry. However, in view of the large number of urban trees and their diversity in 

terms of structure, which changes during the growing season, it is necessary to find a trade-off 

between the LOD of tree reconstruction, and the relevancy of the simulated processes. 

Identifying the most relevant tree shape characteristics that drive tree functions is therefore 

crucial. 

1.3. Tree crown characteristics 

Light interception and transmission by tree canopies has been studied for many years, 

both experimentally and theoretically (Chartier, 1966; Monsi and Saeki, 1953; Nilson, 1971; 

Ross, 1981). More recently, these studies have become numerical with 3D virtual trees based 

on functional structural plant models (Da Silva et al., 2012; Green, 1993; Sinoquet et al., 2001; 

Wang and Jarvis, 1990). All of these studies provide some useful tree canopy characteristics 

that directly impact light interception and transmission. Results differ between the continuous 

canopies that can be observed in parks and forest stands, and individual trees that can be 

observed in cities, such as those along the streets. For continuous canopies and for a given leaf 

angle distribution, the Leaf Area Index (LAI = TLA/PLA, where TLA (m²) is the Total Leaf 

Area and PLA (m²) is the ground Projected Leaf Area) is the main characteristic that can be 

linked to the amount of light intercepted by the entire foliage (Breda, 2003). Moreover, the LAI 

is generally used to predict transpiration and photosynthetic rates (Caldwell et al., 1986). For 

individual trees, the light can be intercepted from many directions. Consequently, other 

characteristics related to the 3D geometry of the tree crown are important. A recent study by 

Sinoquet et al. (2007) shows that the Projected Envelope Area (PEA – m²), the clumping factor 

(), the TLA and the Leaf Area Density (LAD – m²/m3) are all important characteristics for 

estimating light interception by an isolated tree crown. 
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1.4. 3D tree reconstruction  

Tree functions are known to depend on the spatial distribution of the leaf surface. An 

efficient tree reconstruction method should therefore be able to reproduce the right leaf surface 

area and its distribution within a canopy as closely as possible. From a plant-atmosphere 

modeling point of view, a tree can be viewed as a 2D surface that shades a fraction of the ground. 

Moreover, this surface can be capable of releasing water vapor at a given rate that correlates 

with its LAI (Noilhan and Planton, 1989). A tree can also be considered as a 3D object with a 

reconstruction of the tree crown that can vary from simple 3D geometrical shapes such as 

spheres, cubes and pyramids (Da Silva et al., 2012), to a fine 3D reconstruction of the branching 

structure and leaves (Boudon et al., 2014). This kind of reconstruction requires the use of 

specific 3D acquisition techniques. In the literature, three main techniques are used for 

acquiring 3D tree point clouds, i.e., a set of vertices in a three-dimensional coordinate system: 

manual electromagnetic digitizing, photogrammetric techniques and laser scanning techniques. 

The first technique is based on the measurement of the 3D location of a pointer that enables to 

retrieve 3D coordinates of specific points of the tree components (shoots, fruits, leaves), as 

explained in (Sinoquet and Rivet, 1997). This technique is largely used in tree structure 

measurement especially for acquiring the tree topology (i.e. branching patterns) (Sellier and 

Fourcaud, 2005) or estimating the leaf surface distribution (Sonohat et al., 2006). Although this 

technique is adapted for accurate reconstructions, the acquisition step remains manual and 

tedious. Photogrammetric and laser scanning techniques are faster and require less manual 

interventions than the first one and do not require any contact with the object under study. Based 

on terrestrial photographs, a tree point cloud can be generated by dense image matching from 

which global tree metrics such as the tree crown volume, height and diameter or 3D mesh 

reconstructions can be obtained (Morgenroth and Gomez, 2014; Phattaralerphong and Sinoquet, 

2005). Even small tree structures can be detected with terrestrial photographs (Miller et al., 
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2015). This technique is easily operated and is a very cheap alternative to laser scanning (Miller 

et al., 2015). A drawback of the photogrammetric technique is that a huge number of points of 

view is required to obtain enough data for the reconstruction of only one tree. Finally, the 

terrestrial laser scanning technique seems to be the most adequate solution since Terrestrial 

Laser Scanning (TLS) allows a fast and accurate acquisition of dense point clouds (van 

Leeuwen and Nieuwenhuis, 2010). Moreover, a dense point cloud can now be associated with 

efficient reconstruction methods of the crown branching structure (Boudon et al., 2014; Mei et 

al., 2017) and foliage characteristics (Béland et al., 2011). 

1.5. Scope of the paper 

This study proposes an in-depth examination of the impact of the level of detail of tree 

crown reconstruction on the simulated evaporative cooling effect of an individual tree. For this 

purpose, several leafy mock-ups of the crown of a nine-meter-high silver linden tree (Tilia 

tomentosa Moench) with different levels of detail were made using TLS data. The cooling 

performance of each tree mock-up was estimated by simulating its transpiration rate with the 

RATP (Radiation Absorption, Transpiration and Photosynthesis) model, a validated 3D 

ecophysiological model based on the turbid medium approach (Sinoquet et al., 2001). The 

performance of each mock-up in terms of transpiration was compared to a reference mock-up 

in order to determine the required level of detail that should be reached to properly simulate the 

tree transpiration. The differences in transpiration rates are linked to the differences in some 

tree crown characteristics taken from the literature that were considered to drive light 

interception of individual tree canopies. In addition to determining the best reconstruction 

strategy to be adopted, this study highlights the relevant characteristics to be measured in the 

field to ensure a good estimate of the tree transpiration rate. 

In the following section, the different processes leading to the simulation of the 

transpiration rate of a silver linden tree based on several tree mock-ups are discussed. In 
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Section 3, the impact of the LOD on tree crown characteristics and transpiration is studied on 

the basis of the results obtained for each mock-up. The relationships between differences in 

transpiration rates and tree characteristics are also discussed. Section 4 is devoted to a 

discussion on the benefits and drawbacks of the tree reconstruction methods according to the 

simulated transpiration rates, and Section 5 presents the conclusion with perspectives for the 

future. 

 

2. MATERIALS AND METHODS 

2.1. Tree point cloud acquisition 

The tree under study is a silver linden tree pruned in a short head shape (Clair-Maczulajtys and 

Bory, 1988), i.e., all vegetative shoots are removed at branch extremities. Fig. 1a shows the 

silver linden tree under study in winter (at the right) and in summer (at the left). The extremity 

of a branch and its vegetative shoots are known as “short head". All of the reconstructions 

carried out in this study are based on two distinct point clouds (Fig. 1c) acquired during field 

measurements with a TLS sensor (Faro Focus 3D X330) (Landes et al., 2014). All point clouds 

cover the same tree but were captured at different times: (i) the tree with leaves at the end of 

the summer (Fig. 1c at the left) and (ii) in winter when all the leaves have fallen and only annual 

shoots can be seen (Fig. 1c at the right). As shown in Fig. 1b, at least four stations are realized 

around the tree under study in order to acquire a point cloud covering the whole tree. The point 

spacing has been set to 6 mm at 10 m range for the tree with leaves and to 3 mm at 10 m range, 

for the leafless tree with shoots.  

(Place of Fig. 1 without color in print) 

2.2. Tree crown reconstruction methods 

To simulate linden tree transpiration, two different tree reconstructions were made, one 

with the aim of obtaining accurate simulations at the tree scale and the other one in view of 
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being able to simulate the transpiration rates of several trees simultaneously. For this purpose, 

a detailed mock-up with leaves on shoots and a coarse mock-up consisting of an envelope with 

leaves uniformly distributed inside, respectively, were created. Mock-ups with intermediary 

LODs were then made in order to validate or not some assumptions on the leaf distribution in 

the crown. As depicted below, each point cloud is useful to create mock-ups and helps to 

produce specific LODs. 

Reconstructed 3D mock-ups are classified into three groups according to the method of 

reconstruction used, as illustrated in Fig. 2: Group I is composed of tree branching structure 

reconstructions, Group II of envelope reconstructions such as 3D convex/concave envelopes, 

and Group III of voxel reconstructions. In the end, a total of 15 mock-ups of the same tree with 

different LODs was produced. The different codes developed to reconstruct the mock-ups were 

written in Matlab software (MathWorks). Also the AutoCAD software (Autodesk) has been 

used for manual reconstruction.  

(Place of Fig. 2 without color in print) 

The first group of reconstruction methods provides the most detailed and faithful to 

reality mock-ups, as it is characterized by a leaf distribution around the shoots. The assessment 

of two existing reconstruction methods based on cylinder adjustments (Hackenberg et al., 2015) 

and skeletonization (Landes et al., 2014; Boudon et al., 2014) led us to choose the latter method 

for shoot reconstruction. A skeleton is considered as a compact and efficient representation of 

a solid shape, faithfully representing the geometry and topology shapes (Jiang et al., 2013). The 

methods implemented therefore consist in reconstructing shoots using skeletonization methods 

based on leafless tree point clouds (Bournez et al., 2016). Then, for all these methods, leaves 

are reconstructed on each reconstructed shoot using allometric statistics. These statistics 

connect leaf surface area and number of leaves borne by a shoot to the shoot length. It is 

therefore necessary to sample shoots for each tree or tree species studied (Sonohat et al., 2006). 
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A leafy point cloud could also be used to retrieve the 3D branching structure and the position 

of leaves (Xu et al., 2007). Unfortunately, the problem is unsolvable for tree crowns with dense 

foliage, such as the linden tree studied. Seven mock-ups compose this first group. Their 

branching structures are depicted in the first row of Fig. 2. A reference mock-up called 

LOD ref(I) was performed by manual digitalization of the shoots bearing leaves inside the point 

cloud in the software AutoCAD. LOD ref(I) therefore provides a true reconstruction of the 

shoots with their real position, number (919 shoots), length (958.9 m) and curvature. The 

skeleton of LOD 4(I) is very close to the reference skeleton but with some simplifications 

according to the number (1326 shoots) and the length (925.5 m) of reconstructed shoots. The 

automatic process leads to reconstruct +44% more branches compared to the reference. 

However, the total length of shoots compared to the reference is only about -3%. These 

differences are due to the method of reconstruction used for obtaining LOD 4(I). For this mock-

up, the automatic skeletonization algorithm of Xu et al. (2007), also integrated into the 

PlantScan3D tool (Boudon et al., 2014), is used to reconstruct shoots. In Bournez et al. (2017), 

the evaluation of the accuracy of the reconstructed shoots, which led to the choice of 

PlantScan3D for the reconstruction, is presented. Concerning LOD 2(I), not only the number 

(1092, i.e. +19% compared to the reference) and length (851.0 m, i.e. -11% compared to the 

reference) of shoots are generalized but their position as well. Finally, in addition to the previous 

characteristics, LOD 1(I) considers straight shoots instead of curved shoots. The number of 

reconstructed shoots is therefore equal to the LOD 2(I), and the total length of shoots is reduced 

to 822.2 (-3% and -14%, compared to the LOD 2(I) and the reference, respectively). The semi-

automatic methods used for generating the two last mock-ups were presented in 

Bournez et al. (2016). Shoots of one reconstructed short head (by manual digitalizing) was 

duplicated as many times as there are branches, at their extremities. As illustrated in Fig. 2, the 

consequences of all of these generalizations are that shoot characteristics (length, position, etc.) 
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are different from one mock-up to another, even for a same short head. Accordingly, the TLA 

of each mock-up varies as well. In order to exclude the effect of TLA variation in the analyses, 

three duplicates of LOD 4(I), LOD 2(I) and LOD 1(I), referred to as LOD 4-TLAref(I), LOD 2-

TLAref(I) and LOD 1-TLAref(I), were produced. These new mock-ups for Group I make it 

possible to have the same TLA as the reference mock-up. 

The second group of reconstruction methods uses a simpler methodology than the 

previous group with an envelope-based approach. Firstly, the process involves the creation of a 

convex or a concave envelope that drapes the point cloud as closely as possible (Zhu et al., 

2008). Envelops were reconstructed with the alpha shape function in Matlab. Then leaves are 

uniformly spaced in the envelope. Based on TLS data, some methods make it possible to 

determine TLA and LAD per tree (Kong et al., 2016; Kumakura et al., 2010; Oshio et al., 2015). 

However, in this study, the choice was made to simplify the reconstruction process with a 

uniform leaf distribution in the envelope. As illustrated in the second row of Fig. 2, this second 

group contains four mock-ups referred to as LOD 0.8(II), LOD 0.6(II), LOD 0.5(II) and LOD 0(II). 

The particularity of these mock-ups is the use of different types of envelopes for characterizing 

the tree crown geometry. The tree reconstruction is coarser from LOD 0.8(II) to LOD 0(II). In 

LOD 0.8(II), convex envelopes around the shoots on short heads, available on the leafless point 

cloud were reconstructed. There are as many reconstructed envelopes as there are branch 

extremities. The same leaf area as the reference case was uniformly distributed in each 

envelope. Regarding the creation of the other mock-ups, the leafy point cloud is used for the 

envelope computations. Both LOD 0.6(II) and LOD 0.5(II) leaves are located in an envelope that 

encompasses the entire tree crown (dark green envelope in Fig. 2) except in a central part that 

is considered to be free from leaves (light green envelope in Fig. 2). Based on the branch 

extremities, this central part was removed from the envelope. The main difference between 

LOD 0.6(II) and LOD 0.5(II) is the type of envelope (concave for LOD 0.6(II) and convex for 
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LOD 0.5(II)). The concave envelope allows a more reliable and realistic reconstruction of the 

crown shape than the convex envelope. Finally, in LOD 0(II), leaves are positioned in the whole 

convex envelope of the crown, without taking a central hole in the crown into account. 

Concerning the third group of reconstruction methods, a voxel-based approach was used 

to create four mock-ups: LOD 0.5-Vox20(III), LOD 0-Vox20(III), LOD 0.5-Vox50(III) and LOD 0-

Vox50(III). The point cloud of the leafy tree crown is discretized into several voxels according 

to a given voxel size (width = length): 20 cm and 50 cm. Obviously, the accuracy of the created 

mock-ups depends on the voxel size used. The leaf area is uniformly distributed in each voxel. 

The third row of Fig. 2 presents LOD 0.5-Vox50(III) and LOD 0-Vox50(III) created with a voxel 

size of 50 cm with a volume with or without leaves, respectively, as in the second group of 

mock-ups.  

For the 15 mock-ups, the leaf angle distributions (inclination and azimuth) were 

considered to be the same. Moreover, the TLA of LOD ref(I) is used for the reconstruction of all 

the mock-ups, except for LOD 4(I), LOD 2(I) and LOD 1(I), in order to exclude the effect of TLA 

variation in the analyses. The created mock-ups therefore only differ according to the crown 

volumes and regarding the way the leaves are distributed inside the crown. 

2.3. Tree crown characteristics  

In order to analyze the impact of the different LODs on the foliage properties in terms 

of their spatial distribution and their ability to intercept light, several characteristics were 

computed and are presented in Table 1. Based on a discretization of each mock-up into cubic 

voxels of 20 cm in size, as explained in Subsection 2.4, the PLA, the volume and the TLA were 

retrieved. On the basis of these primary characteristics, the LAI and the LAD were also 

computed. For light interception properties, two characteristics were computed according to the 

methodology of Sinoquet et al. (2007): the  and the diffuse Silhouette-to-Total Area Ratio 

(STAR). The  accounts for the effect of non-random and non-uniform distribution of LAD in 
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a crown volume. Deviation from random dispersion (µ = 1) usually occurs in actual tree 

canopies that generally present a leaf clumping (µ < 1). STAR is a sky-integrated value that 

characterizes the overall interception properties of the trees: 

STAR = ∑ 𝜔𝑆𝑇𝐴𝑅
46
𝑖=1                                                                                                          (1) 

Where 𝜔 and 𝑆𝑇𝐴𝑅 are the weight and the STAR value, respectively, associated with the 

direction Ω. 𝜔 are computed according to the Standard OverCast sky radiance distribution, 

which was discretized into 46 solid angle sectors of equal area (Den Dulk, 1989). 

2.4. Tree crown transpiration rate 

The tree crown transpiration was estimated with the RATP model. A complete 

description and assessment of the model can be found in Sinoquet et al. (2001). Its main 

characteristics are summarized below. It was designed to simulate the spatial distribution of 

radiation and leaf-gas exchanges within vegetation canopies as a function of canopy geometry, 

microclimate within the canopy and physical and physiological leaf properties. It is based on a 

turbid medium analogy for radiation transfers in the canopy, described as a set of voxels. The 

radiative transfer sub-model is aimed at (i) sending beams into the canopy according to the 

directional distribution of incident radiation, by taking into account for the sun direction and 

the distribution of incident radiation into direct and diffuse radiation; radiance distribution for 

diffuse radiation is assumed to obey the standard overcast sky (Moon & Spencer 1942); (ii) 

identifying the 3D sequence of cells crossed by any light beam; (iii) determining the beam path 

length within each crossed cell; and (iv) applying Beer’s law to calculate beam extinction within 

each crossed voxel (Sinoquet et al. 2001). Radiation sources are the sky, including direct and 

diffuse (i.e. scattered by clouds and atmospheric gases) fraction of incident radiation, as well as 

foliage components and soil surface which scatter a fraction of radiation they intercept. The 

spatial distribution of leaf temperature is estimated by closing the energy balance equation 

between incoming and outgoing fluxes. The local transpiration rate of the leaves within a voxel 
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is driven by the physiological response of the plant (stomatal conductance) and the evaporative 

demand (Monteith and Unsworth, 1990). In the RATP model, the stomatal conductance is 

controlled by the microclimate surrounding the leaves (intercepted PAR, CO2 and VPD) and 

the leaf temperature according to the Jarvis model (Jarvis, 1976). The input data for simulating 

the transpiration of one tree are: (i) a grid of 20-cm voxels dimensioned according to the tree 

crown size; (ii) a set of functional parameters; and (iii) meteorological data. A more detailed 

description of all the parameters used in RATP is not shown for the sake of briefness, but whole 

parameters are based on field measurements (Bournez et al., 2016). For instance, forcing 

meteorological variables were taken from a subset of meteorological data measured in the city 

of Strasbourg where the silver linden tree studied is located (Najjar et al., 2015). The dataset is 

composed of 19 days in the summer of 2014. The time step is one hour and was chosen to 

ensure a high variability in the simulated transpiration rate of LOD ref(I). In practice, each mock-

up, reconstructed with individual leaves as described above, is immersed in a grid composed of 

cubic voxels with 20-cm-long sides. The voxels are then filled with a certain quantity of leaf 

area determined according to the number of leaves they contain. For each meteorological time 

step, the tree transpiration rate of a tree mock-up is finally computed by summing the 

transpiration rate of all of the voxels. 

2.5. Statistical analyses 

All the statistical analyses carried out in this article were performed with 

STATGRAPHICS Centurion XVI software (StatPoint Technologies, Inc.).  

An analysis of variance (ANOVA) followed by a Fisher’s LSD test were performed to 

compare the mean foliage characteristics of the three groups of reconstruction methods. In each 

group, four mock-ups (n = 4) were used in order to have the same number of samples for each 

group. In the results, letters indicate the significance of homogeneous groups with the p-value 

level set to 0.05.  
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Multiple linear regression analyses were done to relate the simulated transpiration 

deviations of the mock-ups from the reference case to foliage characteristics. Both forward and 

backward methods were used and statistical models were compared in terms of adjusted 

coefficients of determination (R²) and Mean Absolute Error (MAE). In the case of simple linear 

regression analysis, the MAE, the Mean Square Error (MSE), the Mallow’s coefficient (Cp), 

the slope (a), the intercept (b), and the R2 of the regression fit were estimated. The significance 

of each simple linear regression was assessed with an F-test with a significant p-value level set 

to 0.05.  

 

3. RESULTS 

Based on the LOD of each mock-up, three comparisons were carried out in terms of: (i) 

the tree crown characteristics; (ii) the tree crown transpiration; and (iii) the relationship between 

the two. 

3.1. Comparison of the tree crown characteristics between LODs 

Based on the same point cloud dataset, the three groups of reconstructions definitively 

lead to different tree crown mock-ups (Fig. 2) and related characteristic values (Table 1). This 

is confirmed in Fig. 3 by the statistical comparison of mean values of tree crown characteristics 

between the reconstruction groups. To ensure the same number of samples between groups, 

LOD 4-TLAref(I), LOD 2-TLAref(I) and LOD 1-TLAref(I) were removed from this statistical 

analysis. Four mock-ups (n = 4) are therefore used for each group.  

(Place of Table 1 and Fig. 3 without color in print) 

As depicted in Fig. 3, trees reconstructed from branching structure reconstructions 

(Group I) present smaller crown volumes and PLAs than trees with crown shapes estimated by 

envelopes (Group II) or voxels (Group III). The order is reversed when considering the LAD. 

Referring to Table 1, this result sounds logical since the TLA is nearly constant between mock-
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ups (about 215.2 m² for the Group I and 233.4 m² for the Group II and III), whereas the volume 

of the crowns decreases (about 34.4 m3, 68.5 m3 and 73.3 m3 for the Group I, the Group II and 

the Group III, respectively). On the contrary, the use of envelopes or voxels does not lead to 

significant differences in any of the characteristics, except for the clumping factor (about 0.73 

and 0.85 for the Group II and the Group III, respectively). Even if the LAI and the STAR values 

are different for all groups, they only differ significantly between the voxel reconstructions and 

the branching structure reconstructions. The highest LAI (about 10.8 m²/m²) and lowest STAR 

(about 0.15) were obtained with the reconstructions based on the branching structure. 

Although the number of samples in each reconstruction group is low, the intra-method 

variations of these characteristics reveal different trends according to the LOD, as indicated in 

Table 1. For trees reconstructed from branching structure reconstructions, the tree crown 

volumes, the PLA and the STAR decrease with decreasing LOD values. Inversely, the LAD and 

the clumping factor increase. The LAI seems to be roughly constant over the LODs. These 

results do not depend on the TLA since mock-ups with the same TLA values (LODs-TLAref(I)) 

present the same trends. The transition from curved (LOD 2(I)) to straight shoots (LOD 1(I)) 

does not considerably change the characteristic values compared to the changes induced by 

moving from LOD 4(I) to LOD 2(I) or to LOD 1(I). For the tree crowns reconstructed from an 

envelope, trends are reversed, except for the clumping factor. Indeed, values of the volume, the 

PLA, the STAR and the clumping factor increase, and values of the LAD and LAI decrease 

when the LOD of the mock-ups decreases. Finally, and for the trees reconstructed with voxels, 

the voxel size has a greater effect on characteristic values than when taking the space without 

leaves in the tree crown into account (LOD 0.5(III) vs. LOD 0(III)). When the voxel size decreases 

the volume, the PLA, the STAR and the clumping factor decrease, whereas the LAD and the 

LAI increase. 

3.2. Comparison of the tree crown transpiration rate between LODs 
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To estimate the impact of the LOD on the whole tree crown transpiration rate, hourly 

transpiration rates of each LOD were plotted against hourly transpiration rates computed with 

the reference case, LOD ref(I). As an illustration of the deviation from LOD ref(I), the average 

values of hourly transpiration rates among groups compared to LOD ref(I) values are presented 

in Fig. 4. A linear regression with the intercept forced to zero was performed for each LOD. 

The slopes, aT, of each linear regression are listed in Table 1. R² coefficients are not indicated 

in Table 1 because they are all higher than 0.99. This analysis shows that the deviation from the 

reference case depends on the reconstruction group. As expected, the best group is the first one, 

based on the tree branching structure reconstruction, with an average deviation of -7% (from -

13% to +2% between LODs). The third group, using the voxelization of the leafy tree point 

cloud, gives the worst results, with an average deviation of +30% (from +16% to +44% between 

LODs). The envelope reconstruction group (Group II) falls in the middle with an average 

deviation of +10% (from -6% to +20% between LODs). 

(Place of Fig. 4 without color in print) 

In Table 1, it can also be noted that the intra-variability of the transpiration rate is high 

for a given reconstruction group. It depicts the sensitivity of the tree transpiration rate to several 

tree crown characteristics. Table 1 shows that the transpiration rate simulated with LOD 4(I) 

differs from LOD 2(I) and LOD 1(I) simulations. In particular, LOD 4-TLAref(I) with the same 

TLA as the reference provides a very good estimate of the tree transpiration rate. In contrast, 

consideration of curved or straight shoots (LOD 2(I) vs. LOD 1(I)) does not change the whole 

tree transpiration rate. Between the tree mock-ups based on the envelope reconstruction, the 

transpiration rates simulated with LOD 0.5(II) and LOD 0(II) deviate more from the reference 

case than the transpiration rate simulated with LOD 0.8(II) and LOD 0.6(II). Moreover, the space 

without leaves in the tree crown (LOD 0.5(II)) does not impact the transpiration rate since only 

a tiny difference is simulated compared to the crown filled with leaves (LOD 0(II)). Finally, the 
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voxel size (LODs-Vox50(III) vs. LODs-Vox20(III)) has a greater effect on the transpiration rate 

than taking the space without leaves in the inner part of the tree crown into account 

(LODs 0.5(III) vs. LODs 0(III)).  

3.3. Relationship between differences in transpiration rates and tree foliage characteristics 

In order to link the deviation of the simulated transpiration rates from the reference, i.e., 

the aT slope, with the foliage characteristics of the different LODs, a stepwise multiple 

regression analysis was initially performed with structural characteristics and the aT slope 

values. The best model that fits the data is a combination of the tree crown volume (V), the PLA 

and the LAI: 

𝑎𝑇 = 0.15708 − 0.00209307 × 𝑉 + 0.0588658 × 𝑃𝐿𝐴 − 0.0274783 × 𝐿𝐴𝐼                    (2) 

with an adjusted R² of 0.986 and a MAE of 0.0128. Both backward and forward regression 

methods gave the same results. However, since the LAI is directly linked to the PLA (LAI = 

TLA/PLA), and since the PLA is easier to measure in the field than the LAI, the LAI was 

removed from the analysis. The best model was obtained with the V and the PLA only:  

𝑎𝑇 = −0.349398 − 0.00209135 × 𝑉 + 0.0687618 × 𝑃𝐿𝐴                                                 (3) 

with an adjusted R² of 0.985 and a MAE of 0.0165. However, with this model, two 

characteristics have to be measured in the field and the matrix correlation between variables 

revealed high correlations between the PLA and the V (correlation coefficient = - 0.9388).  

(Place of Table 2 without color in print) 

In order to determine if the transpiration can be obtained with only one characteristic 

and which one is the most relevant, simple regression analyses were done for each structural 

and light characteristic. The adjusted R², MSE, MAE, Cp, a, and b of each linear regression are 

listed in Table 2. All linear regressions are significant (p-value <0.05). Since PLA and STAR 

are the main characteristics that may explain aT values with the best R² coefficients, the 

relationships between aT and PLA, and aT and STAR are plotted in Figs. 5 and 6, respectively.  
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(Place of Fig. 5 and 6 without color in print) 

As shown by Table 2 and illustrated in Figs. 5 and 6, an increase in the whole tree 

transpiration rate is correlated with an increase in the ground surface area (PLA) and in the leaf 

surface area that intercepts the light (STAR). This observation indicates that the deviation from 

the transpiration rate of the reference case can be explained by the difference in the ability of 

light interception by the tree crown according to its LOD. Thus, mock-ups that provide trees 

with low STAR and PLA values, i.e., LODs(I) and LOD 0.8(II), lead to underestimations of the 

transpiration rate compared to the reference case. On the other hand, the mock-ups that provide 

trees with high STAR and PLA values, i.e., LODs lower than 1 (Groups II and III) except for 

the LOD 0.8(II), overestimate the transpiration rate compared to the reference case. The LOD 4(I) 

and the LOD 4-TLAref(I) involve reverse transpiration rate in comparison with the LODs in the 

Group I. The same trend is observed for the LOD 0.8(II) in comparison with the LODs in the 

Group II. It could be explained by their characteristic differences compared to their group. The 

LOD 4(I) and the LOD 4-TLAref(I) have almost the same PLA than the reference but a higher 

STAR. These LODs involve a transpiration rate almost similar to the reference case, with an 

overestimation of +2% with the LOD 4(I). Contrary to the LODs of Group II, the LOD 0.8(II) 

have a lower PLA and STAR than the reference case, therefore it involves a transpiration rate 

underestimation of -6% compared to the reference case. Among LOD 4(I) to LOD 1(I), setting 

the TLA to the LOD ref(I) case leads to a decrease in the STAR values and, consequently, a 

decrease in the transpiration rate, whereas the PLA remains constant. Among the LODs 

obtained with the envelope reconstructions, LOD 0.8(II) performs the best with PLA, STAR and 

aT values because they are close to the reference case values. 

Based on the results presented above, a discussion of the overall study is proposed 

below. 
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4. DISCUSSION 

Analysis of the mock-ups created in this study has shown that the reconstruction 

methods proposed in Group I provide leaf surface distribution characteristics that are closer to 

the reference case than with the mock-ups created with the reconstruction methods of Group II 

and III (Fig. 3). Many theoretical studies have shown the high correlation between foliage 

properties and light interception ability of homogeneous or complex 3D trees (Ross, 1981; 

Sinoquet et al., 2007). Thus, the better light interception ability (STAR values) of trees 

reconstructed from the underlying branching structure (Table 1 and Fig. 6) is probably a direct 

consequence of the tree crown characteristics. The relationship between the tree transpiration 

and its crown reconstruction has not been investigated in depth. Indeed, the transpiration results 

from a coupling between the physiological response of the leaves and the microclimate 

(Campbell and Norman, 1998; Monteith and Unsworth, 1990). Consequently, the only way to 

investigate this relationship is to use numerical models that spatialize the leaf surface and the 

microclimate (Green, 1993; Saudreau et al., 2013). The use of the RATP model in this paper 

makes it possible to carry out such investigations. The analysis of the transpiration performance 

of each mock-up compared to the reference case indicated that the mock-ups of Group I involve 

better estimations of the transpiration (-7% deviation from the reference) than with the mock-

ups of Group II and III (+10% and +30% deviation from the reference, respectively). In order 

to explain these differences, a regression analysis between the deviation of the simulated 

transpiration rate from the reference case and the tree crown characteristics was carried out to 

correlate the deviation of transpiration with crown characteristics. Results revealed that the tree 

crown volume, the PLA and the diffuse STAR are highly correlated with these deviations and, 

consequently, with the transpiration rate of the whole tree (Table 2). These results support the 

findings of the experimental work of Kong et al. (2016) on the cooling effect of urban trees. 

They reported that the tree crown volume and the shade (PLA) provide a good indication of the 
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climatic impact of the tree canopy through transpiration and shading effects. This information 

is therefore crucial for estimating tree functions or ecosystem services provided by trees (such 

as the cooling effect in urban areas) on the basis of geometrical characteristics that can be easily 

estimated from in-field measurements. 

In view of the previous analyses, a detailed branching structure approach (Group I) 

should be used to create mock-ups in order to accurately simulate the tree transpiration rate 

compared to the reference case. Our study emphasizes that the tree mock-up that provides the 

best results (LOD 4(I)) is based on an automatic reconstruction of the shoots using PlantScan3D 

software (Boudon et al., 2014). This means that the reconstruction method of LOD 4(I) may be 

applied to other tree geometries and may provide satisfactory tree mock-ups. However, this 

reconstruction method presents some drawbacks and may have to be applied according to a 

given methodology. For instance, leafless trees rather than leafy trees have to be considered due 

to the occlusion of the branching structure by leaves and the high LAD. Moreover, some 

branches may not support the leaves. In that case, a methodology has to be developed to 

reconstruct only the shoots that might bear leaves. Finally, information about leaf area 

distribution and leaf angle distribution on shoots has to be provided in order to reconstruct 3D 

mock-ups of trees with leaves.  

This is the reason why reconstruction methods with envelopes (Group II) and voxels 

(Group III) have to be considered and analyzed, even if our results show that they do not 

perform as well as the branching structure approach (Group I). Indeed, they are the only 

methods available for tree crowns scanned with low TLS acquisition accuracy. It occurs when 

trees have high LADs or when a large number of trees have to be scanned over a given 

timeframe. The use of a concave envelope (+7% transpiration deviation from the reference with 

LOD 0.6(II)) rather than a convex envelope (+19% deviation with LOD 0.5(II)) or the use of 

small voxels (about +18% deviation with LODs-Vox20(III)) rather than large voxels (about 
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+43% deviation with LODs-Vox50(III)) lead to better results for all of the characteristics because 

they favor reconstructed crown shapes that more closely follow the tortuosity of the real tree 

crown. This is consistent with previous studies on volume estimation by voxels (Béland et al., 

2014; Sinoquet et al., 2005). However, since a tree crown has a fractal geometry, the sensitivity 

of the volume to the choice of the size of the voxel may be more or less pronounced. This 

requires an a priori choice of the relevant voxel size that is difficult to determine (Da Silva et 

al., 2008; Sinoquet et al., 2005). Among mock-ups based on envelope reconstruction analyzed 

in this study, the use of one envelope per short head (LOD 0.8(II)) is efficient since this method 

favors a tree crown that is close to the reference case (-6% of transpiration deviation from the 

reference). However, it seems difficult to extract these leafy short heads without using the 

reconstructed branching structure (Da Silva et al., 2008). 

The previous analyses lead us to conclude that the deviations of transpiration are 

actually linked to the type of tree reconstruction approach implemented. The methods used in 

Group I can be linked to a first approach based on a bottom-up methodology where the leaf 

surface distribution emerges from the reconstruction of the branching structure that bears 

leaves. In contrast, the methods used in Group II and III can be associated with a second 

approach that is instead based on a top-down concept where the larger scale (i.e., the simple 

crown reconstruction) is first resolved and local information about leaves is added in a second 

step. Information about leaves can be inferred from a TLS dataset. The bottom-up approach 

seems to allow the reconstruction of more detailed characteristics in the tree crown than the 

top-down approach.  

Not one tree but several trees should be considered when determining the energy balance 

of a district with an urban climate model. As previously mentioned and according to the 

limitations of bottom-up approaches, a top-down approach for reconstructing trees would be 

preferable in this situation. However, and as highlighted in this study, the top-down approach 
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leads to an overestimation from +7% to +44% (without considering the exception of the 

LOD 0.8(II)) of the cooling effect of one tree, which may have a significant impact on the energy 

balance when several trees are considered. This is the reason why the reconstruction methods 

of top-down approaches, as proposed with the ones in Group II and III, could perhaps be 

improved. The focus of this study was not to perform a sensitivity analysis of all the input 

characteristics related to the tree reconstruction on the simulated transpiration, which is why, at 

this stage and for all the mock-ups of Group II and III, the leafy tree point cloud was not used 

to infer structural characteristics such as TLA, LAD and LAI (Béland et al., 2011; Kong et al., 

2016), and the leaf surface area was uniformly distributed inside the reconstructed crown 

volume. However, a LOD efficiency of less than 1 (Group II and III) in terms of their ability to 

reproduce structural characteristics and functional traits might be largely improved if 

information about leaf distribution within the tree crown is added.  

 

5. CONCLUSION 

 This paper presents the potential of different methods of tree crown reconstruction 

according to a reference method, for determining the transpiration rates of isolated trees from 

an ecophysiological model such as RATP. Based on several mock-ups with different LODs, it 

has been emphasized that three crown characteristics emerge as the most important 

characteristics to be measured or estimated: the PLA, the tree crown volume and the STAR. 

Indeed, these characteristics are strongly linked to the capacity of a tree crown to intercept light 

and, consequently, its transpiration rate. Among the mock-ups tested, the best result was 

obtained with a branching structure method that makes it possible to reconstruct the necessary 

characteristic values with high accuracy. 

Even if envelope reconstruction methods obviously produce more approximate results, 

they allow us to obtain mock-ups in an easier and faster way than with the branching structure 
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method. In the perspective of simulating a realistic transpiration of a large diversity of urban 

trees, the LOD obtained with envelope reconstruction methods is relevant. A rapid and reliable 

method for retrieving the LAI and the LAD directly from TLS data should therefore be further 

developed to improve the simulated results. Although this study focuses on only one tree with 

specific geometry and foliage density for the moment, it should make it possible to highlight 

interesting reconstruction methods. It will be extended in the near future in order to focus on 

several trees with different geometries. 
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Figures and table legends 

 

Fig. 1. The silver linden tree under study a) with leaves and without leaves and b) the field TLS 

acquisition, with at least four stations around the trees, in order to obtain c) tree point clouds. 

The point cloud used for the 3D reconstruction of the tree with leaves contains about 92 000 

points, and this one without leaves is composed of about 756 000 points. 

 

Fig. 2. Mock-ups reconstructed according to three groups of reconstruction methods, followed 

by methods used for leaf distribution. Group I contains seven mock-ups with a high LOD, 

decreasing from the reference (LOD ref
(I)

) to LOD 1
(I)

. All mock-ups were reconstructed based 

on different branching structure reconstruction methods and on (A) shoot allometry for leaf 

distribution around shoots. They therefore have different TLA values, except for LOD 4-

TLAref
(I)

, LOD 2-TLAref
(I)

 and LOD 1-TLAref
(I)

, which have a TLA equal to LOD ref
(I)

. 

Group II, using envelope reconstruction methods, is composed of four mock-ups with an LOD 

that is coarser than in Group I, decreasing from LOD 0.8
(II) 

to LOD 0
(II)

. A uniform leaf 

distribution in short head envelopes (B) and in crown envelopes (C), respectively, is used to 

reconstruct LOD 0.8
(II) 

and the other LODs of Group II. Group III, using voxel reconstruction 

methods and (D) uniform leaf distribution in each voxel, contains the four mock-ups that have 

the lowest LOD, from LOD 0.5-Vox20
(III) 

to LOD 0-Vox50
(III) 

. 

 

Fig. 3. Comparison of tree crown characteristics, i.e., Volume (m
3
), Projected Leaf Area (PLA) 

(m²), Leaf Area Index (LAI), Leaf Area Density (meanLAD) (m2/m
3
), clumping factor () and 

Silhouette-to-Total Area Ratio (STAR), between the three groups of tree reconstruction 

methods. These results were obtained on the basis of an analysis of variance and a Fisher’s LSD 

test. For each group, the same number of mock-ups was used, i.e., n = 4. LOD 4-TLAref
(I)

, 

ACCEPTED M
ANUSCRIP

T



29 
 

LOD 2-TLAref
(I)

 and LOD 1-TLAref
(I)

 were not used for this analysis. The letters a, b and ab 

indicate the significance of homogeneous groups with the p-value level set to 0.05.  

 

Fig. 4. Comparison of the cooling performances of the tree mock-ups compared to the reference 

case, i.e., LOD ref
(I)

. Only the mean linear regressions obtained per group of reconstruction 

methods, i.e., Group I, II and III, are shown. The slopes, a
T
, of the linear regression curves 

obtained for each mock-up and each group are listed in Table 1.  

 

Fig. 5. Comparison of the a
T
 slope, obtained for each mock-up by comparing their deviation of 

the simulated transpiration rate with respect to the reference, and the Projected Leaf Area (PLA) 

characteristic deduced from each mock-up. On the basis of the mock-ups, the three 

reconstruction groups can be distinguished by three different symbols. The characteristics of 

the regression line (red line), i.e., the coefficient of determination R², the slope a and the 

intercept b, presented in this figure are also reported in Table 2. 

 

Fig. 6. Comparison of the a
T
 slope, obtained for each mock-up their deviation the simulated 

transpiration rate with respect to the reference, and the light interception ability estimated with 

the diffuse Silhouette-to-Total Area Ratio (STAR) characteristic deduced from each mock-up. 

On the basis of the mock-ups, the three reconstruction groups can be distinguished by three 

different symbols. The characteristics of the regression line (red line), i.e., the coefficient of 

determination R², the slope a and the intercept b, presented in this figure are also reported in 

Table 2. 
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Figures: 

 

Fig. 1. 
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Fig. 2. 
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Fig. 3. 
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Fig. 4. 
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Fig. 5. 
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Fig. 6. 
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Tables: 

 

Table 1 

The metrics, light and physiology characteristics of the 15 mock-ups according to the reconstruction method used. The primary metric 

characteristics, i.e., the Total Leaf Area (TLA), the volume and the Projected Leaf Area (PLA), make it possible to compute the other metric 

characteristics such as the mean Leaf Area Density (meanLAD) and the Leaf Area Index (LAI). The clumping factor (m) and the diffuse Silhouette-

to-Total Area Ratio (STAR) are linked to the tree foliage and the light interception in the crown. The physiology characteristics are obtained with 

the linear regression between the transpiration rates of all the mock-ups compared to the transpiration simulated with the reference mock-up. The 

slope, a
T
, of these linear regressions and the percentages of transpiration deviation with respect to the reference mock-up are depicted in the two 

last rows of this table. Values are given per mock-up and per reconstruction group. 

  Group I - Branching Structure Group II - Envelope Group III - Voxels 

 Characteristics 
LOD 

ref(I) 
LOD 4 LOD 2 LOD 1 

LOD 4 

TLAref 

LOD 2  

TLAref 

LOD 1  

TLAref 
LOD 0.8 LOD 0.6 LOD 0.5 LOD 0 

LOD 0.5-

Vox50 

LOD 0-

Vox50 

LOD 0.5-

Vox20 

LOD 0-

Vox20 

Metrics 

Total Leaf Area  (m²) 233.6 218.8 207.1 201.2 233.6 233.6 233.6 233.4 233.4 233.4 233.4 233.4 233.4 233.4 233.4 

Volume (m3) 38.8 41.0 30.0 28.0 41.0 30.0 28.0 50.8 61.7 73.2 88.2 81.3 81.9 61.2 69.0 

meanLAD (m²/m3) 6.0 5.3 6.9 7.2 5.7 7.8 8.4 4.6 3.8 3.2 2.6 2.9 2.9 3.8 3.4 
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PLA (m²) 20.9 20.7 19.0 19.1 20.7 19.0 19.1 20.8 22.5 24.9 25.1 28.5 28.5 23.9 23.9 

LAI (m²/m²) 11.2 10.6 10.9 10.6 11.3 12.3 12.3 11.2 10.4 9.4 9.3 8.2 8.2 9.8 9.8 

Light 

 (Clumping factor) 0.802 0.769 0.804 0.813 0.754 0.797 0.797 0.701 0.711 0.747 0.750 0.906 0.902 0.807 0.783 

Diffuse STAR 0.154 0.166 0.147 0.148 0.157 0.133 0.131 0.153 0.177 0.196 0.197 0.223 0.222 0.190 0.187 

Physiolog

y 

aT: Slope Transpiration Rate 

LODs vs. LOD ref(I) 
1.0000 1.0248 0.9123 0.9120 0.9969 0.8815 0.8693 0.9373 1.0715 1.1910 1.1987 1.4385 1.4244 1.1941 1.1623 

Deviation from the  

LOD ref(I) case 

By LOD +2% -9% -9% 0% -12% -13% -6% +7% +19% +20% +44% +42% +19% +16% 

By 

group 
-7% +10% +30% 
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Table 2 

Multiple regression analysis between the slopes, a
T
, representing the deviation of the simulated 

transpiration rates between all the mock-ups and the reference case and tree crown 

characteristics such as the Projected Leaf Area (PLA), the Silhouette-to-Total Area Ratio 

(STAR), the Leaf Area Index (LAI), the Volume, the Leaf Area Density (meanLAD) and the 

clumping factor (m). This analysis leads us to compute six statistical indices: the Mean Square 

Error (MSE), the Mean Average Error (MAE), the coefficient of determination (R²), the 

Mallow’s coefficient (Cp), the slope of the regression (a) and the intercept of the regression (b). 

The significance of each simple linear regression was assessed with an F-test with a significant 

p-value level set to 0.05.  

Characteristics MSE MAE R² Cp a b 

PLA 0.0007 0.0211 97.9991 1191.46 0.0558 -0.1702 

STAR 0.0011 0.0273 97.0533 1759.81 6.1167 0.0282 

LAI 0.0037 0.0451 89.7655 6139.43 -0.1380 2.5094 

Volume 0.0069 0.0602 81.0536 11374.90 0.0077 0.6699 

meanLAD 0.0093 0.0656 74.2273 15477.20 -0.0813 1.4847 

 0.0257 0.1312 28.9902 42662.50 1.7093 -0.2685 
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