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Abstract 22 

From Sol 750 to 1550, the Curiosity rover documented >100 m thick stack of fine-grained 23 

sedimentary rocks making up part of the Murray formation, at the base of Mt Sharp, Gale crater. 24 

Here, we use data collected by the ChemCam instrument to estimate the level of chemical 25 

weathering in these sedimentary rocks. Both the Chemical Index of Alteration (CIA) and the 26 

Weathering Index Scale (WIS) indicate a progressive increase in alteration up section, reaching 27 

values of CIA of 63 and WIS of 25%. The increase in CIA and WIS values is coupled with a decrease 28 

in calcium abundance, suggesting partial dissolution of Ca-bearing minerals (clinopyroxene and 29 

plagioclase). Mineralogy from the CheMin X-ray diffraction instrument indicates a decrease in 30 

mafic minerals compared with previously analyzed strata and a significant proportion of 31 

phyllosilicates consistent with this interpretation. These observations suggest that the sediments 32 

were predominantly altered in an open system, before or during their emplacement, contrasting 33 

with the rock-dominated conditions inferred in sedimentary deposits analyzed at Yellowknife Bay.  34 

  35 
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1. Introduction 36 

Gale crater was formed in the ancient crust of Mars close to the topographic dichotomy boundary 37 

ca. 3.6-3.7 Ga, i.e. near the Late Noachian-Early Hesperian boundary (Anderson and Bell, 2010, Le 38 

Deit et al., 2013). The site was selected as a landing site for the Mars Science Laboratory (MSL) 39 

Curiosity rover for its ~5 km-high central mound composed of sedimentary deposits, where clay 40 

and sulfate mineral signatures were detected by orbital spectrometry in the lower units (Milliken 41 

et al., 2010). Although the Curiosity rover has not yet accessed the orbitally-detected clay 42 

minerals, previous analyses from the CheMin X-Ray diffractometer (XRD) showed that clay 43 

minerals were present in the lacustrine mudstones at Yellowknife Bay (Vaniman et al., 2014, 44 

Bristow et al., 2015). These rocks are part of a succession which also includes fluvial sandstones 45 

and conglomerates (Grotzinger et al., 2014). After 750 Sols (martian days) and 9-km of traverse, 46 

clay minerals were detected again by CheMin in the sedimentary rocks of the Murray formation, 47 

the basal unit of the Mt Sharp group, informally named the Pahrump Hills member (Rampe et al., 48 

2017, Bristow et al., 2017).  49 

At Pahrump Hills, variations in chemistry and mineralogy over a ~10-meter high sequence 50 

indicated transitions from hematite-dominated to magnetite-dominated mineralogical 51 

assemblages interpreted as due either to diagenetic episodes from multiple influxes of 52 

groundwater (Rampe et al., 2017) or variations in pH and Eh of the lake waters (Hurowitz et al., 53 

2017). From Sol 750 to Sol 1550, the rover traversed six more km of various terrains, dominated 54 

by the Murray formation totaling ~130 m of stratigraphy, enabling a more in-depth assessment 55 

of this sedimentary unit (Fig. 1).  56 

Our study focuses on the chemical indices of alteration through the whole column of Murray 57 

sedimentary rocks in the studied sol range (750-1550). Data collected by the ChemCam 58 

instrument suite are used to assess the chemistry of Murray rocks. The ChemCam Laser Induced 59 

Breakdown Spectrometer (LIBS) provides elemental analyses of rocks and soils from their ablation 60 

by a pulsed laser, and the Remote Micro-Imager (RMI) provides images for context and textural 61 

analysis (Wiens et al., 2012, Maurice et al., 2012). CheMin X-ray diffraction data (Blake et al., 62 

2012) are used to assess locally the mineralogy of the Murray formation in order to better 63 

understand the type of aqueous alteration observed on these sedimentary rocks.  Results of both 64 

instruments are consistent, showing that significant aqueous alteration took place at Gale crater. 65 

We discuss further the origin and significance of this alteration. 66 

 67 

 68 
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 69 

Fig. 1: (a) Context orbital image of the Curiosity traverse from the Bradbury Landing Site to sol 1600.  (b) 70 

High Resolution Imaging Science Experiment (HiRISE) color image of Gale crater along the traverse of the 71 

rover showing the areas of Murray formation outcrops analyzed in this study. The Murray formation was 72 

divided in four members: (1) Pahrump Hills (sols 750-920); (2) Hartmann’s Valley (sols 1170-1250 and sols 73 

1350-1400); (3) Karasburg (sols 1410-1467); (4) Sutton Island (sols 1468-1550). Green disks indicate 74 

locations of ChemCam analyses along the rover traverse. 75 

 76 

 77 
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 78 

2. Dataset 79 

 80 

2.1 Chemcam data 81 

The ChemCam instrument suite consists of a LIBS coupled with the RMI which provides images 82 

for context and textural analysis (Wiens et al., 2012, Maurice et al., 2012). The LIBS technique 83 

uses a pulsed laser to ablate the rocks, producing a plasma. The atomic emission spectrum of the 84 

plasma is analyzed by three spectrometers in the spectral ranges of the ultra-violet (240–342 nm), 85 

visible violet (382–469 nm), and visible/near-infrared (474–906 nm). By using ChemCam LIBS 86 

spectra, the emission lines of all major elements (Si, Al, K, Na, Ca, Mg, Fe, Ti), as well as several 87 

minor and trace elements (Li, Mn, Cr, Zn, Ni, Sr, Rb, Ba, Cu) can be identified (e.g., Ollila et al., 88 

2014). Volatiles and halogens (O, S, P, H, Cl, F) can also be identified if present in sufficient 89 

proportions (i.e., >1-10% depending on elements, Meslin et al., 2013, Forni et al., 2015). Carbon 90 

is detected in all targets analyzed and corresponds to the contribution of atmospheric carbon 91 

dioxide (Meslin et al., 2013).  92 

 93 

Quantification of major elements is achieved by multivariate analyses using a range of emission 94 

lines and comparing them to 450 standards analyzed in a testbed (Clegg et al., 2017). The 95 

ChemCam laser beam focuses to a small spot, typically ~350-550 m in diameter (medium sand 96 

in size) at distances of 2–5 m. LIBS data are usually collected in lines of 5 to 20 points or matrices 97 

of 3 by 3 to 5 by 5 points. A series of 30 laser shots (or more to investigate the rock deeper) are 98 

used to collect spectra at a given point (Fig. 2). However, to avoid dust contamination, the first 5 99 

spectra are removed before processing for quantification, and the last 25 spectra are averaged to 100 

give the mean chemistry of this point (Fig. 2).  101 

 102 

In the case of large grains, such as phenocrysts or diagenetic concretions, the small footprint of 103 

the individual LIBS observations allows individual mineral chemistry to be obtained (e.g., Nachon 104 

et al., 2014, Sautter et al., 2015, Rapin et al., 2016). In contrast, in the case of 105 

mudstones/siltstones (<62 m) and fine-grained sandstones (<250 m), each point provides the 106 

average chemical composition of multiple grains (Mangold et al., 2017). A single point therefore 107 

provides a composition representative of the bulk chemistry. Here, the composition is averaged 108 

across all points in a given target (with a minimum of four points), further increasing the 109 

representativeness of the calculated bulk chemistry. In addition, this approach allows us not to 110 

bias the dataset with targets over which many points have been analyzed compared to targets 111 

with fewer points (e.g., Figure 2, Tab. 1).  112 

 113 
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This approach was previously applied to the mudstones and sandstones of Yellowknife Bay, where 114 

low deviations around mean values were observed over >500 analysis points collected (Mangold 115 

et al., 2015). At that location, an analysis of laser ablation cavities was done for both sandstones 116 

and mudstones (Arvidson et al., 2014). Results show that mudstones pits range from 0.2 to 0.6 117 

mm, well above the grain size in these fine-grained rocks (<62 m). Thus, each analysis point can 118 

be used as a bulk rock analysis for mudstones. Pits in sandstones are often larger, from 0.4 to 0.8 119 

mm in the sandstones analyzed at Yellowknife Bay (Arvidson et al., 2014). At this scale, the laser 120 

spot on fine-grained to medium sandstones (<0.5 mm) still enable good average estimations, 121 

explaining for instance that the Gillespie lake sandstones did not show significantly larger 122 

standard deviations than the Sheepbed mudstones (Mangold et al., 2015). Over the 205 targets 123 

studied hereafter, only 5 correspond to medium to coarse sandstones, while the other 200 124 

correspond to mudstones and fine-grained sandstones for which the average of four points is 125 

sufficient to provide a representative bulk chemistry.     126 

 127 

A strength of LIBS is its ability to exclude points that probed diagenetic features instead of the 128 

bedrock itself.  All points on resolvable diagenetic features have been removed by a systematic 129 

cross-analysis of RMI images, as, for example, point 5 in figure 2. The chemistry corresponding to 130 

point 5 (Tab. 1) displays a low total wt.% of oxides because this point is enriched in sulfur, which 131 

is an element that is difficult to detect, and so, it is not taken into account in the sum of major 132 

element oxides like most volatiles (H, C, P, etc.). The majority of points with low totals were 133 

removed after the RMI analyses. Many individual points have still low totals that we interpret as 134 

diagenetic features too small for visual determination. There is no definitive method to define the 135 

threshold (in total oxides wt.%) between the presence and absence of volatiles due to diagenetic 136 

phases, because the bedrock itself can display various abundances of volatiles (such as hydrogen 137 

inside clays, etc.). We choose here to use the maximum total of the major element wt.% oxides 138 

observed for targets for which diagenetic features were actually identified on images, found as 139 

~90 wt.% in a couple of examples. While some amount of volatiles may still be present in targets 140 

with major element totals above 90 wt. %, this technique enables us to minimize the effect of 141 

diagenetic features enriched in volatiles, and thus provides a composition as close as possible to 142 

the bulk rock unaffected by diagenetic episodes.  143 

By applying these criteria, 1660 points belonging to 205 different targets were retained in our 144 

analysis. The 205 bulk compositions were then normalized to total weight oxides of 100% to 145 

obtain volatile-free compositions (Tab. S1), which are useful for comparisons with other datasets, 146 

e.g., Mars average crust composition (Tab. S2). Note that this normalization has no consequence 147 

on the ternary diagrams shown later, which plots elements relative to the others.      148 

  149 
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 150 
 151 

Fig. 2: Example of a RMI image of a Murray formation target (Upper Hadlock, sol 1505) crossed by a light-152 

toned vein sampled on point 5. Table 1 displays the chemical results of this target. 153 

  154 
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 155 

 156 

 157 

Fig. 3: (a) Stratigraphic column of the Murray formation highlighting the four areas of Murray used in this 158 

study. The gap above Pahrump Hills is related to the predominance of Si-rich outcrops of Murray formation 159 

and of the overlying Stimson formation. The stratigraphic framework shown here was established and 160 

refined through the efforts of the MSL sedimentology/stratigraphy working group (Fedo et al., 2017). (b) 161 

CIA plotted in filled circles along the stratigraphy for the four areas studied. PIA values are plotted next to 162 

CIA values in open circles. (c) WIS along the stratigraphy. WIS values calculated for starting composition 163 

corresponding to the average Mars crust. Starting from the average of Gale crater conglomerates would 164 

translate the diagram by 6% to the left.  165 

 166 

 167 

 168 

 169 

 170 

 171 

 172 



9 
 

2.2 CheMin data 173 

 174 

CheMin collects X-Ray Diffraction (XRD) data using Co K radiation in transmission geometry 175 

(Blake et al., 2012). More details of instrument operation and sample analysis conditions can be 176 

found in in Bristow et al. (2018). Abundances of crystalline phases were determined by Rietveld 177 

analysis using Jade software. The results presented here are products of modeling that 178 

incorporate measured standards of clay minerals in addition to structures of crystalline phases 179 

(see Bristow et al., 2018 for more details). The abundances of amorphous components and poorly 180 

crystalline clay minerals are determined using the program FULLPAT (Chipera and Bish, 2002). 181 

3. Geologic context and stratigraphy  182 

 183 

From landing to sol 750, the traversed terrains are associated with the Bradbury group (Fig. 1). 184 

This formation consists of fluvial sandstones and conglomerates with local exposures of lacustrine 185 

mudstones. At Yellowknife Bay, the Sheepbed member of the Bradbury group corresponds to 186 

mudstones with basaltic chemical composition that are overlain by coarse sandstones divided 187 

into three members with basaltic composition as well (McLennan et al., 2014, Mangold et al., 188 

2015, Anderson et al., 2015). At Kimberley, sedimentary rocks are potassic (up to 5 wt.% of K2O) 189 

and consist of fine-grained sandstones and mudstones overlying conglomerates (Le Deit et al., 190 

2017). In the Bradbury group, rocks are diverse and heterogeneous in grain size, in agreement 191 

with rocks derived mainly from alluvial/deltaic environments (Grotzinger et al., 2015), but 192 

relationships with the Mt. Sharp sequence are unclear due to the predominance of regolith and 193 

lack of contacts. Starting sol 750, at Pahrump Hills, rocks correspond to well-defined outcrops at 194 

the base of Mount Sharp that are exposed nearly continuously from there onto Mount Sharp on 195 

the orbital images, and have been named the Murray formation. As a consequence of this 196 

continuity and near-horizontal bedding, the stratigraphic section is described with elevation as a 197 

proxy for geologic time, allowing us to localize targets analyzed along the section (Fig. 3). 198 

 199 

For the purpose of this study, the Murray formation was divided into four members from their 200 

geographic location and textural analysis (Fig. 1, Fedo et al., 2017). Part I of our study corresponds 201 

to the base of the Murray formation that was analyzed at the location named Pahrump Hills, a 202 

~10-m high outcrop (sols 750-920, area I on Figs. 1 and 3) composed of interbedded lacustrine 203 

laminated mudstones and fluvial fine- to coarse-grained sandstones with local cross-bedding 204 

(Grotzinger et al., 2015). This location was analyzed with 36 ChemCam bedrock targets and 3 drill 205 

samples analyzed by CheMin (Confidence Hills, Mojave, Telegraph Peak, Figure 3). 206 

 207 

After Pahrump Hills, the rover crossed hilly terrains of Marias Pass (sols 990-1050) and Bridger 208 

Basin (sols 1050-1150). At these locations, ChemCam analyses of the Murray formation were 209 
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discontinuous because the Murray formation was partially covered by lags and unconformably 210 

overlain by eolian cross-bedded fine-grained sandstones of the Stimson formation (Banham et al., 211 

2016, 2018). Eolian sandstones from the Stimson formation formed well after the Murray 212 

formation (Banham et al., 2018), and are not included in this work for this reason. Outcrops of 213 

the Murray formation in these areas are locally enriched in silica (>60 wt.% SiO2). XRD showed 214 

the presence of various phases of silica, including tridymite, which were interpreted as detrital 215 

components of silicic volcanic rocks in the drill target Buckskin (Morris et al., 2016). Light-toned 216 

halos (enriched in SiO2 up to 80 wt.%) are frequently observed, suggesting a diagenetic episode 217 

due to Si-rich fluid circulation and related cementation (Frydevang et al., 2017). To avoid the bias 218 

that would be introduced by these diagenetically imprinted rocks on the weathering indices, we 219 

chose to exclude these few outcrops of the Murray formation from our study. This explains the 220 

gap in observation points between elevations -4450 and -4437 m in Fig. 3. Neither ChemCam 221 

data, nor CheMin mineralogy data of the Murray formation strata above this area indicate any 222 

further silica enrichment in bedrock apart from diagenetic halos (Bristow et al., 2018). 223 

Part II of Murray formation (Fig. 2) is referred to as Hartmann’s Valley member hereafter. The 224 

Hartmann’s Valley member includes two areas at similar elevation (sols 1150-1270 and sols 1350-225 

1400) separated by the Naukluft plateau composed of the overlying Stimson formation. Rocks in 226 

these two areas of Murray formation have a similar texture, with silt to very fine-sand sized grains, 227 

and local meter-scale cross-beds, interpreted as potential fluvial and eolian deposits (Fedo et al., 228 

2017) (Fig. 3). The Hartmann’s Valley member was analyzed using 63 ChemCam targets and 1 drill 229 

sample delivered to CheMin (Oudam, Figure 3). 230 

Part III of our study is the Karasburg member (sols 1410-1468) which starts approximately at the 231 

southern edge of the plateau composed of the Stimson unit in a location with remaining residual 232 

buttes of the Stimson formation discontinuously capping the Murray formation (at a location 233 

named Murray buttes). The Karasburg member is composed of regularly mm-scale laminated 234 

mudstones interpreted as lacustrine deposits (Fedo et al., 2017). 46 ChemCam targets of the 235 

Karasburg member were analyzed as well as 2 drill holes (Marimba and Quela, Fig. 3). 236 

Part IV of our study is the Sutton Island member (sols 1468-1550). Targets of this member are 237 

located in terrains with gentle slopes going upward, along Mt Sharp ascent route. In this area, the 238 

Murray formation consists of more heterolithic mudstones and sandstones (Figs. 1 and 3). 239 

Interpretations of the facies suggest that rocks were deposited in lacustrine and lacustrine-margin 240 

environments (Fedo et al., 2017) with evidence in the form of desiccation cracks indicating 241 

episodes of at least partial drying out (Stein et al., 2018). The Sutton Island member was analyzed 242 

using 60 ChemCam targets and 1 drill hole (Sebina, Fig. 3). A drill attempt, at Precipice, close to 243 

the desiccation cracks, was unsuccessful due to a mechanical fault. 244 
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A detailed description of stratigraphy and sedimentary facies is not the aim of this study. Further 245 

work on the facies will be the subject of detailed articles in the near-future. Nevertheless, we 246 

have analyzed the texture of targets using RMI images. A large majority of targets analyzed for 247 

this study are fine-grained sediments, with few or no grains visible at the usual scale of RMI 248 

images, i.e. 120-300 m resolution for 3 pixel features, at 2 to 5 m distance (see Tab. 1 in Mangold 249 

et al., 2017). One exception is a horizon in the Pahrump Hills member where medium to coarse 250 

sandstones are observed in 5 targets. Independent, more in-depth assessments of the 251 

stratigraphy also point to the predominance of fine-grained sediments in Murray formation, 252 

either mudstones or fine-grained sandstones (Fedo et al., 2017, Rivera-Hernandez et al., 2018).  253 

 254 

4. Chemical weathering indices 255 

 256 

4.1 The Chemical Index of Alteration (CIA) 257 

 258 

On Earth, many studies have attempted to estimate the degree of weathering based on chemical 259 

compositions of soils and sedimentary rocks. Weathering indices are based on the differential 260 

mobility of elements during alteration processes. Therefore, they reflect open-system weathering 261 

rather than isochemical alteration (Parker, 1970, Nesbitt and Young, 1982, Fedo et al., 1995, 262 

Meunier et al., 2013).  263 

 264 

The Chemical Index of Alteration (CIA, see Methods) is the most commonly used index (Nesbitt 265 

and Young, 1982). It is based on the leaching of Ca, Na and K relative to Al. Al is an immobile major 266 

element in supergene alteration, thus taken as a reference. The CIA is calculated using the 267 

following relationship: CIA = [Al2O3 / (Al2O3 + Na2O +CaO* + K2O)] × 100, calculated in molar 268 

proportions. CaO* corresponds to CaO from silicates excluding CaO from carbonates, sulfates and 269 

phosphates. The filtering procedure explained in section 2 enables us to minimize the effect of 270 

these volatile-rich phases such as sulfates and phosphates, if present. Still, this correction is 271 

conservative, which means that our value of CaO is higher that the true CaO*. As a result, and 272 

because CaO is in the denominator of the equation, our calculated CIA values is underestimated 273 

compared to the actual CIA of each target.  274 

 275 

In addition to the CIA, the Plagioclase Index of Alteration (PIA) (Fedo et al., 1995) is also calculated: 276 

PIA=(Al2O3-K2O)/(Al2O3+CaO*+Na2O-K2O). This index helps to remove the effect of potential K-277 

enrichment during burial and diagenesis (Fedo et al., 1995). CIA and PIA indices are represented 278 

in Fig. 3. PIA values are slightly higher than CIA values at Sutton Island by one or two CIA units at 279 

maximum, but overall PIA values are close to the CIA values of the corresponding targets. Thus, 280 

we focus most of the description on CIA values hereafter. 281 

 282 
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The point-to-point variations in these figures represents variations from one bedrock target to 283 

another bedrock target (thus from compositions averaged across an entire raster and not from 284 

one analysis point to another analysis point). In both indices, igneous rocks have CIA from 35 285 

(ultramafic) to 50 (granite), and fully weathered rocks reach 100. A strength of the CIA is that it 286 

can be plotted as a vertical axis on a A–CN–K ternary diagram (Fig. 4a). This diagram is useful for 287 

comparing parent rocks and their weathering products because unaltered rocks and primary 288 

minerals plot with CIA≤50 below the plagioclase-K-feldspar join (50-50 line in Fig. 4a), and 289 

weathering products plot on a systematic trend predicted by thermodynamic and kinetic 290 

considerations. The A-CNK-FM diagram, where the alteration line joins the middle of the A-CNK 291 

line to the FM end-member, is provided for comparison (Fig. 4b).  292 

 293 

Figure 4 displays two possible average source rocks for the sediments in the rocks of the Murray 294 

formation: (i) the widely-used average Mars crust composition (Taylor and McLennan, 2009) (Tab. 295 

S2) with a basaltic composition and a CIA of ~38, and (ii) the average composition of 296 

conglomerates analyzed by ChemCam at Gale crater, representing the least altered component 297 

of the sedimentary rocks analyzed at Gale crater (Mangold et al., 2016). Conglomerates are more 298 

felsic than Mars average crustal composition, explaining the higher CIA of ~45. At Yellowknife Bay,  299 

lacustrine mudstones (Sheepbed member) and fluvial sandstones have CIA values between 35 300 

and 45 close to these two potential source rocks, a result that has been interpreted as a lack of 301 

open-system weathering (McLennan et al., 2014). In contrast, the CIA values of most Murray rocks 302 

plot well above 45 for all outcrops (Figs. 3 and 4).  303 

 304 

CIA values display variations between the four areas considered (Fig. 3). The lowermost Pahrump 305 

Hills member appears slightly altered with an average of 49.8±5.1, in good agreement with values 306 

of ~50 reported there using APXS data (Hurowitz et al., 2017). The lowermost CIA values 307 

correspond to the group of coarser sandstones identified in this area. Hartmann’s Valley member 308 

has CIA values similar to Pahrump Hills member (except one point at 61), with an average of 309 

51.0±3.7.  310 

 311 

The Karasburg member displays CIA values that are predominantly >50, with an average of 312 

52.1±3.2, reaching up to 57. A difference with the underlying group is the much lower amount of 313 

values below 50. The Sutton Island member reports the highest group of CIA values with an 314 

average of 55.5±3.6 and several targets above 60, reaching up to 63. Overall, CIA values are 315 

increasing going up stratigraphy, and are above 50 for a large majority of the targets of the two 316 

upper members. The fact that a majority of points are above a CIA of 50 suggests that significant 317 

aqueous alteration took place. 318 

  319 
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 320 

 321 

 322 
Fig. 4: (a) A-CN-K ternary diagram (molar values) with CIA values plotted on the vertical axis. Targets display 323 

many points above the 50-50 join, suggesting a limited contribution of primary minerals. Mars crust (black 324 

square) and average of Gale crater conglomerate (green triangle) represent potential source rock 325 

compositions with CIA values typical of unaltered rocks. Note that the drift towards higher potassium of 326 

Murray targets is correlated with higher CIA values. (b) Ternary molar A-CNK-FM diagram of the different 327 

sedimentary rocks of Gale crater. The line joining FM to the middle of the A-CNK join indicates the 328 

boundary between altered and non-altered rocks, the latter being below the line. As in Fig. 4a most Murray 329 

rocks plot above the alteration line though the evolution shown does not provide a clear trend suggesting 330 

a mixing of alteration phases. 331 
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 333 
 334 

 335 

Fig. 5: (a) Ternary diagram of M+/R2+/4Si showing the difference between potential source rocks 336 

composition and actual Murray formation composition to obtain the values of the WIS (difference of 4Si 337 

in %. see Methods). (b) Diagram showing R3+/(R3++R2++M+) vs 4Si% compared to the empirical trends 338 

observed for terrestrial mafic and felsic rocks.   339 
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 340 
 341 

Fig. 6 : (a) Diagram plotting CIA vs CaO abundance showing a correlation between high CIA and low CaO. 342 

(b) Diagram plotting WIS and CaO abundance showing a similar relationship. (c) and (d) Same diagrams 343 

with Al2O3. (e) and (f) Same diagrams with Na2O. (g) and (h) Same diagrams with K2O. No obvious variations 344 

are observed with increasing weathering indices compared to that observed for CaO. 345 

 346 

 347 

 348 

 349 

4.2 The Weathering Intensity Scale (WIS) 350 

 351 

Most other weathering indices have usually good correlations with the CIA (Yang et al., 2006). 352 

However, the CIA does not take into account Si variations. For this reason, we have also used the 353 

Weathering Intensity Scale (WIS) (Meunier et al., 2013). The main components of the WIS are (1) 354 

4Si, which is the molar proportion of Si4+ divided by 4 to refer to the formula of phyllosilicates; (2) 355 

M+, which is the sum of the molar proportion of alkali and earth alkali elements (Na++K++2Ca2+); 356 

(3) R2+, which groups the bivalent elements (Mg2++Fe2++Mn2+), and (4) R3+ which groups the 357 

trivalent cations (Al3+ + Fe3+). This method enables to sort the mobile elements (M+ and R2+) from 358 

the elements stable in soils (R3+). For the R2+, we neglect the effect of Mn2+ because it is not 359 

systematically taken into account in the quantification of major elements by ChemCam. High Mn 360 

values (>3%) have been observed locally on Mars in fracture fills (Lanza et al., 2014), but average 361 

values are ca. 0.4% corresponding to a minor shift from the much larger contribution of Fe and 362 

Mg (totaling >25 wt.% for most targets).  363 

The M+, 4Si and R2+ amounts are first normalized to 100% (see Meunier et al., 2013) and plotted 364 

in a ternary diagram (Fig. 5a). The 4Si% (referred to as WIS for simplicity) is then a parameter 365 
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varying from 0 to 100% measured by the difference between the compositions of unweathered 366 

and weathered samples : 4Si%=((4Sialtered rock-4Siunaltered parent rock)*100)/(100-4SiUnaltered parent rock). 367 

It can be visualized on the ternary diagram by the distance from the reference unaltered source 368 

rock (Fig. 5a). Any index aiming to measure weathering must also take into account the 369 

progressive concentration of trivalent chemical components (R3+)(Meunier et al., 2013). The 370 

second diagram (Fig. 5b) plots the 4Si% obtained versus the increase in trivalent cations 371 

calculated from the ratio R3+/(R3++R2++M+).  372 

 373 

The R2+ and R3+ in the WIS calculation requires an estimation of the Fe2+/Fe3+ ratio, which is not 374 

directly accessible from ChemCam data. It was recognized as a weakness of the method (Meunier 375 

et al., 2013). CheMin XRD data have been used locally to estimate this ratio in the Murray 376 

mudstones, at the drill hole Marimba (Tab. 2). Result shows a strong predominance of the ferric 377 

oxides with Fe2+/Fe3+ (molar)=0.00301/0.0509=0.059. Given large assumptions on the mineralogy 378 

of ferrous minerals and the fact that the amorphous component cannot be determined by this 379 

method, we have used a conservative value of Fe2+/Fe3+ of 0.1. Comparison of chemistry and 380 

mineralogy in previous drill holes has argued for the presence of ferrihydrite in the amorphous 381 

component (Dehouck et al., 2017) suggesting a large part of the iron of this component is indeed 382 

ferric, so it would not change this ratio significantly. We have also performed tests at various 383 

Fe2+/Fe3+ ratio to estimate the impact of these variations to the WIS, showing that the difference 384 

in 4Si% is minor whatever the Fe2+/Fe3+ ratio taken (Fig. S1).  385 

 386 

The ternary diagram using the three first components M+-4Si-R2+ shows that the targets from the 387 

Karasburg and Sutton Island members plot away from the two potential source rocks yielding WIS 388 

values of up to 26% at Sutton Island using Mars crust composition as the initial source, or 20% 389 

taking the conglomerate average composition as the source. These results are consistent with 390 

those using the CIA although the WIS calculation includes SiO2. The diagram plotting the WIS 391 

versus the trivalent cations shows a progressive increase similar to the empirical trends observed 392 

for terrestrial felsic and mafic rocks. The trends are significant in both diagrams although the 393 

alteration is relatively limited and far from reaching the kaolinite end-member. In contrast, 394 

Bradbury group mudstones (Sheepbed member) do not show any substantial increase in the WIS 395 

(Fig. 5), in agreement with their low CIA (Fig. 4). For simplicity, we have used the same 396 

Fe2+/Fe3+ratio for all targets, although it creates an overestimation of the X-axis of the unaltered 397 

targets, which are naturally more ferrous. This assumption explains why the trend provided by all 398 

targets is slightly shifted between felsic and mafic from the empirical lines drawn in Fig. 5 399 

(bottom).  400 

 401 

4.3 Chemical variations in relation to alteration indices  402 

 403 
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Leaching of sodium, calcium, or potassium, or a combination of these elements, is needed to 404 

explain CIA values greater than 50. The CaO abundance is low in all Murray formation (2-5 wt.%, 405 

Tab. S1) compared to average Mars crust (at ~7 wt.%, Tab. S2).  Calcium is also the only cation 406 

that decreases significantly with higher CIA and WIS (Fig. 6). CaO abundance is as low as 1.5-2.5 407 

wt.% for targets with CIA>55, by comparison with rocks displaying CIA<50 that have CaO>4 wt.% 408 

(Fig. 6a). CaO shows a progressive decrease from Pahrump Hills (4.8±1.2 wt.% in average, see Tab. 409 

S1) to Hartmann’s Valley (3.3±1.0 wt.%) then Karasburg (2.8±0.9 wt.%) and Sutton Island (2.6±1.0 410 

wt.%). In contrast to CaO, no obvious trend is observed with the other elements used for the CIA 411 

calculation (Fig. 6c, 6e, 6g), although K2O displays a slight increase with CIA. Al2O3 displays a 412 

variability in abundance that may be related to natural variations in clastic sedimentation 413 

processes. These variations do not show a correlation with the highest CIA values, showing that 414 

these variations in Al are not the cause of the high CIA values, which is based instead on trends in 415 

cation abundances within each rock. 416 

 417 

Similarly, values of WIS>20% correspond to low abundance of CaO (<2.5 wt.%, Fig. 6b), and not 418 

of other elements, confirming the trend observed with the CIA with an index less dependent on 419 

calcium. A comparison between the CIA and the WIS (Fig. 3) also shows that the Karasburg and 420 

Sutton Island members are those where the alteration is the most developed for both alteration 421 

indices. The WIS exhibits slightly larger variations, indicating a diversity that could be related to 422 

local variations in the intensity of alteration.  423 

 424 

 425 

5. Results from mineralogy 426 

 427 

CheMin analyzed three drill samples at Pahrump Hills (Confidence Hills, Mojave and Telegraph 428 

Peak, Rampe et al., 2017), one at Hartmann’s Valley (Oudam), and three in the two upper 429 

members (Marimba, Quela and Sebina) where both the CIA and WIS are the highest (Fig. 3, Tab. 430 

3). In these latter three drill samples, CheMin data indicate the presence of abundant clay 431 

minerals (~16 to 28 wt.% of the whole rock) (Tab. 3). Clay minerals in these three samples are 432 

interpreted as a mixing of phases such as  di-octahedral smectites (with Al3+ and Fe3+) and tri-433 

octahedral smectites (with Mg2+). The presence of these phases is consistent with the enhanced 434 

alteration observed from chemistry (Bristow et al., 2018). By comparison, drill samples in the 435 

Pahrump Hills and Hartmann’s Valley members do not contain large proportions of phyllosilicates 436 

(~3%), suggesting a lower imprint of alteration – at this point, either from detrital input or in situ 437 

alteration, or both -, in agreement with the lower CIA and WIS in these areas.  438 

The three uppermost drill samples also display a lower proportion of primary minerals (olivine, 439 

pyroxene, plagioclase and alkali feldspar) than the previous drill samples. Plagioclase is the most 440 

abundant primary mineral everywhere, but it is present in lower proportion in the three upper 441 
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drill holes (10 to 14 wt.%) than in the four lower drill ones (20 to 27 wt.%) (Tab. 3). Mafic minerals 442 

are in very low proportion in the three upper drill holes, with no olivine and pyroxenes 443 

representing only ~0.7 wt.% at Marimba, 2.7 wt.% at Quela and 2.8 wt.% at Sebina, compared to 444 

5 to 13 wt.% of pyroxenes (and 1% of olivine) in the four previous drill holes. These trends are still 445 

valid when removing the amorphous component from the balance, i.e. the low abundance of 446 

primary minerals in the three upper drills is not due to a higher proportion of amorphous 447 

component. Thus, CheMin data display an increase in clay mineral abundances going up section 448 

where the alteration indices are the highest. 449 

6. Discussion 450 

 451 

6.1 Alteration versus provenance effects 452 

 453 

The increase in clay minerals, decrease in primary mafic minerals and decrease in CaO abundance 454 

are all specific to the two upper members (Karasburg and Sutton Island), which display the highest 455 

alteration indices, thus favoring a role of enhanced alteration up section. Before discussing the 456 

origin of the potential alteration (sections 6.2 and 6.3), we discuss hereafter potential links 457 

between mineralogy and chemistry to understand if these trends are related to provenance or 458 

alteration, or both.  459 

A potential explanation of the low calcium abundance up section is that this element could have 460 

been leached from Ca-bearing minerals, such as plagioclase and clinopyroxene. We can test this 461 

hypothesis by comparing the mineralogy and chemistry of the relevant locations. It must be 462 

recalled, nevertheless, that drill holes are not numerous, and so, do not enable a statistically 463 

representative comparison between chemistry and mineralogy. 464 

Plagioclase is the dominant primary mineral in all drill samples, but with lower proportions in the 465 

three upper drill holes. We can estimate the variations in CaO abundance linked to these 466 

variations of mineralogy, assuming a plagioclase stoichiometry of An40, as estimated among the 467 

Pahrump Hills member drill holes (Morrison et al., 2017). The CaO abundance due to 20-27 wt.% 468 

of plagioclase observed from Confidence Hills to Oudam corresponds to an abundance of CaO of 469 

1.7-2.3 wt.%. By comparison, the 10 to 14 wt.% plagioclase observed in the three upper drill 470 

samples represents 0.8-1.2 wt.% of CaO. Thus, net losses of CaO are in the range of 0.5-1.5 wt.%. 471 

These values are in agreement with the decrease in CaO abundance recorded by ChemCam, from 472 

the Pahrump Hills (4.8 wt.%) to the Sutton Island member (2.6 wt.%), although not sufficient to 473 

explain all the CaO loss.  474 

 475 

These differences in composition may be due to variations in provenance rather than alteration. 476 

In such a hypothesis, a lower proportion in plagioclase and alkali feldspar in the three upper drill 477 
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holes should be related to more mafic source rock(s). However, the very low proportion of 478 

pyroxene and lack of olivine does not argue for a more mafic source rock there, thus ruling out 479 

this possibility. The lower amount of plagioclase could instead be related to a partial dissolution 480 

of this mineral as highlighted by the higher CIA values, which is the most sensitive index to this 481 

process. Assuming a partial dissolution of plagioclase, this process should be visible by a coupled 482 

decrease in sodium, which is not clearly observed (Fig. 6). Nevertheless, plagioclase minerals are 483 

known to dissolve incongruently, which means that the ions in the mineral lattice do not dissolve 484 

according to their stoichiometry, enabling calcium to be leached preferentially (e.g., Wilson, 485 

2004). Note that a lower plagioclase abundance due to provenance effects would lead to a 486 

corresponding decrease in sodium. 487 

 488 

A striking observation is that the three upper drill holes display the lowest proportion of mafic 489 

minerals ever observed by Curiosity (<2.8wt% of pyroxene, no olivine). A decrease in the 490 

proportion of clinopyroxene can also contribute to the decrease in CaO abundance recorded by 491 

ChemCam. The pyroxene structure in these drill holes is difficult to determine due to its low 492 

abundance (Bristow et al., 2018). So, we cannot provide a proper estimate of its contribution to 493 

the CaO abundance. Nevertheless, drill holes of the lower Murray members and of the Bradbury 494 

group include pigeonite, augite and some proportion of orthopyroxene (Morrison et al., 2018). In 495 

the Pahrump Hills member, the Confidence Hills drill hole contains pigeonite and orthopyroxene 496 

(with no Ca) accounting for 14 wt.% of the crystalline phases and augite accounting for 12 wt.% 497 

of the crystalline phases (Morrison et al., 2018). Note nevertheless that the augite stoichiometry 498 

was not computed and assumed to be similar to the Bradbury group with 18 wt.% CaO (Morrison 499 

et al., 2018). Accounting for the amorphous component comprising 35 wt.% at Marimba, the 500 

abundance of CaO corresponding to augite would then be ~1.4 wt.%. This value is of the same 501 

magnitude than the 0.5-1.5 wt.% of CaO loss from plagioclase for a total loss of 1.9-2.9 wt.%, 502 

consistent with the difference of CaO abundance (2.2 wt% in average, see Tab. S1) measured by 503 

ChemCam between Pahrump Hills and Sutton Island (Fig. 6a, b).   504 

The low proportion of mafic minerals in the drill holes from upper stratigraphic members can be 505 

due to provenance or sorting effects instead of dissolution. However, pyroxenes are common 506 

minerals of the Mars crust, both in Noachian or younger terrains (e.g., Poulet et al., 2009), and 507 

were identified in all previous drill samples, in much higher proportions (>10 wt.%) than in the 508 

three drill samples considered (Morrison et al., 2018). In addition, the chemistry does not point 509 

towards an increase in felsic or alkali components (K, Na) as it was observed in the initial part of 510 

the mission (Sautter et al., 2015, Mangold et al., 2016). Indeed, there is no coupled increase in Si, 511 

Al and K, and CheMin indicates that feldspars are not in higher proportion (alkali feldspar 512 

abundance is actually lower up section in CheMin analyses, Tab. 3). These observations show that 513 

a more felsic parent composition is not a valid explanation for the low proportion of mafic 514 

minerals. In addition, sorting of grains in fine-grained sedimentary rocks has been shown to 515 
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increase the proportion of dense, resistant mafic minerals rather than decrease it (Siebach et al., 516 

2017), a conclusion inconsistent with an effect of sorting in the studied locations. Thus, the low 517 

proportion of pyroxene in the three drill holes of Karasburg and Sutton Island members suggests 518 

that their partial dissolution contributed to the loss of CaO.  519 

Dissolution of pyroxenes would also result in Mg and Fe leaching too. While MgO is present at ~5 520 

wt.% abundance in the Karasburg and Sutton Island members (Tab. S1), this value is lower than 521 

in sedimentary rocks analyzed previously in the mission (~8 wt.% in the Sheepbed member of the 522 

Bradbury formation, at Yellowknife Bay, e.g., McLennan et al., 2014). In addition, there are not 523 

enough primary minerals remaining to explain the abundance of MgO: the abundance of 2.8 wt.% 524 

pyroxene would translate to <1 wt.% MgO. In contrast, magnesium is present in the tri-octahedral 525 

clay minerals (saponite) detected at Marimba, Quela and Sebina (Bristow et al., 2018). It is known 526 

on Earth that smectites formed during weathering are able to incorporate structural magnesium 527 

in octahedral sites while calcium cannot go into these sites (e.g., Nesbitt and Wilson, 1992), and 528 

can only be present as interlayer potentially explaining why calcium shows a net loss. By 529 

comparison to Mg, Fe is less mobile and is known to remain in soils during weathering. The high 530 

proportion of hematite (~6-7 wt.%) in the three drill holes could correspond to a byproduct of 531 

alteration (including diagenesis). In addition, both Fe and Mg are potentially present in the 532 

amorphous component as well, in phases such as hisingerite and ferrihydrite as it has been 533 

deduced from data earlier in the mission (Dehouck et al., 2014, 2017). From Tab. 2, we can deduce 534 

that only ~8 wt.% of FeOT is taken by crystalline phases identified by CheMin (especially 535 

hematite), therefore suggesting that the remaining ~10 wt.% are concentrated in the amorphous 536 

component.  537 

Possible variations in the composition of the amorphous component from one drill sample to 538 

another could have an impact on the chemistry analyzed by ChemCam. For instance, Al-rich 539 

phases (such as allophane) could have an impact on the CIA calculation by increasing the Al2O3 540 

abundance, while both Al and Si could have an impact on the WIS. So far, no Al-rich amorphous 541 

component has been identified (Dehouck et al., 2017, Morrison et al., 2018). The comparison 542 

between chemistry and mineralogy (Tab. 2) points towards an excess of FeO relative to the low 543 

abundance of identified mafic minerals, suggesting an iron-rich amorphous component, as in 544 

Dehouck et al., 2017. In this case, variations in the proportion of the amorphous component 545 

would have little impact on the CIA calculation.Concerning Si, no opal has been detected in the 546 

drill holes of the two upper members (Tab. 3), suggesting that these locations are distinct from 547 

the high-silica locations analyzed on sols 1000-1100, with the exception of the local presence of 548 

Si-rich diagenetic halos that have been analyzed punctually and clearly postdate the rock 549 

deposition as they cross also the overlying Stimson unit (Frydenvang et al., 2017). The good 550 

correlation between WIS and CIA, calculated using different cations, also points towards the 551 

limited influence of amorphous phases on the variability of these indices, although more work on 552 
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the amorphous component should be done to understand its origin and role in the processes of 553 

alteration.  554 

 555 

In summary, with limitations due to the lack of knowledge of the amorphous component and the 556 

limited number of drill holes, the high CIA and WIS targets in Karasburg and Sutton Island are 557 

consistent with a change in mineralogy related to a significant alteration by aqueous processes 558 

with partial dissolution of primary minerals such as pyroxene and plagioclase.  559 

 560 

6.2 Diagenetic imprint 561 

 562 

Post-depositional alteration during diagenesis may have modified the mineralogical assemblages. 563 

With that regard, another chemical trend observed is the slightly higher K2O abundance (up to 2 564 

wt.%) observed on the ternary diagram trending away from the A-CN axis (Fig. 4a). The Kimberley 565 

sandstones are plotted for comparison in Fig. 4a showing that these fluvial sandstones with 566 

anomalously high K-spar abundance (Le Deit et al., 2016, Treiman et al., 2016) (up to 5 wt.% K2O) 567 

cannot explain this trend by mixing or source rocks effects because for Murray formation rocks 568 

the trend towards higher K2O is correlated with the higher CIA 569 

 570 

In contrast, illite and interlayered illite/smectite are possible candidates for such an enrichment; 571 

they commonly form during burial and diagenesis (e.g., Fedo et al., 1995). It would also be in 572 

agreement with modeling of the burial of Mount Sharp sediments (Borlina et al., 2015). CheMin 573 

observations do not favor illite as the main phyllosilicate present (Bristow et al., 2018). The K2O 574 

abundance at Marimba is ~1.0 wt.% based on ChemCam data (Tab. S1).  Yet, the modeled 575 

proportion of sanidine in CheMin pattern is only 2.4±0.6 wt.% at Marimba (and less at Quela and 576 

Sebina; Bristow et al., 2018) while jarosite is below detection limit (<1%). The equivalent 577 

proportion of K2O of a sanidine (~14 wt.% as an average of the four lower Murray drills, Morrison 578 

et al., 2018) corresponds only to ~0.4 wt% K2O, thus not accounting for all the potassium present 579 

at Marimba. So, a contribution of illite or interlayered illite/smectite is possible, although difficult 580 

to demonstrate.   581 

 582 

The Plagioclase Index of Alteration (PIA) was proposed to correct for the addition of K2O during 583 

burial (Fedo et al., 1995) (Fig. 3). PIA values are usually slightly above CIA for Karasburg and Sutton 584 

Island, suggesting the actual CIA values before burial were slightly higher, but they remain close 585 

to CIA suggesting minor contributions. Thus, variations in K2O cause minor effects on the CIA, and 586 

diagenesis is unlikely to be the origin for the high CIA values.  587 

 588 

6.3 Origin of the alteration observed 589 
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Both alteration indices, CIA and WIS, show evidence for substantial alteration of the Murray 590 

formation. The CIA ranges from 50 to 63, strongly favoring that the alteration occurred in an open-591 

system, contrasting with the closed-system alteration observed in Sheepbed member mudstones 592 

(Bradbury group at Yellowknife Bay), with CIA of ~40 (McLennan et al., 2014). Indeed, closed-593 

system alteration, such as found in local hydrothermal circulation or deep diagenesis, does not 594 

increase the CIA index (remaining below the 50-50 line on figure 4). However, these chemical 595 

indices usually represent a combination of weathering in the source region, during transport, and 596 

in depositional areas (McLennan, 1993, Fedo et al., 1995, Cox et al., 1995, Nesbitt and Young, 597 

1996, Yang et al., 2006, Garzanti et al., 2013). Thus, it remains debatable whether this alteration 598 

predates or coincides with the deposition of the fine-grained sediments within Gale crater. 599 

On one hand, altered source rocks are possible contributors to the high alteration indices. In this 600 

case, the clay minerals present in high CIA Murray rocks are predicted to have a detrital origin. 601 

Their presence could have been favored by grain-size sorting during depositional processes with 602 

limited alteration during lake activity. Alteration of source rocks could have been in the form of 603 

crustal or hydrothermal alteration related to the Gale impact crater, either by exhumation of deep 604 

crustal rocks or by hydrothermal activity immediately after its formation. However, no high-T 605 

secondary minerals indicative of hydrothermal conditions have been detected by CheMin in the 606 

three upper drill holes or in previous clay-rich samples (Bristow et al., 2015). Only some of the 607 

small fraction (3 wt.%) of clay minerals at Oudam (Hartmann’s Valley) may be interpreted as of 608 

pyrophyllite/talc type mixed within eolian deposits (Bristow et al., 2018). In contrast, the presence 609 

of substantial proportions of di-octahedral phyllosilicates in the three upper drill holes is 610 

consistent with an open-system, low-T alteration. Here too, the low proportion of mafic minerals, 611 

usually sorted in higher proportion in finer-grained sediments (Siebach et al., 2017) does not favor 612 

a pure detrital assemblage as these minerals should have been transported from unaltered 613 

sections of the crater rim as observed in the Bradbury group. Thus, we do not favor the scenario 614 

of rocks altered hydrothermally before or immediately after Gale crater’s formation. 615 

Nevertheless, it is still possible that weathering processes postdating Gale crater’s formation 616 

could have reprocessed hydrothermal clays into the smectites that are observed, or that 617 

weathering affected source rocks after the emplacement of Gale crater but prior to the formation 618 

of the lake deposits. On the other hand, some observations argue for in-situ weathering linked to 619 

fluvial and lacustrine processes. The depletion of calcium interpreted by leaching is consistent 620 

with observations of calcium sulfate cements (Newsom et al., 2017, Vaniman et al., 2017). The 621 

Old Soaker outcrop (Sutton Island member), displays evidence for desiccation cracks that 622 

demonstrate a subaerial exposure of these sediments (Stein et al., 2018). We have no constraint 623 

on the frequency, duration, and repetition of such episodes, but the presence of these cracks 624 

requires that the lake was shallow enough to permit local subaerial exposure of sediments where 625 

additional weathering could have occurred, thus providing a possible explanation for targets that 626 

display higher alteration in this section of Murray formation.  627 
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In summary, the weathering process(es) evidenced in this study could have taken place in the 628 

source region, during transport or after deposition, or at these three stages and coevally in the 629 

whole basin, and we cannot give more precision about this activity. However, we can exclude the 630 

possibility that the observed mineralogy and chemistry consists only of detrital material of 631 

hydrothermally altered rocks transported and deposited in a lake without further alteration.   632 

 633 

6.4 Climate conditions recorded by alteration indices 634 

Several terrestrial studies have shown the link between climate and variations in alteration 635 

indices. Although the WIS has not been studied at the same level of detail as the CIA, maximum 636 

values of the WIS of 20-25% are in agreement with conditions required by CIA of ~55-60 (Meunier 637 

et al., 2013)(Table 4). Studies in the Arctic (Nesbitt and Young, 2016) and in Antarctica (Salvatore 638 

et al., 2013) have shown that a cold and dry climate is unlikely to generate alteration indices >50. 639 

Analyses of loess deposits in China and southeastern Europe indicate a CIA index of 60-65, after 640 

semi-arid conditions during Pleistocene glacial-interglacial climates, with active weathering 641 

during wet seasons over geologically long durations (Yang et al., 2006, Buggle et al., 2011).  In 642 

contrast, empirical laws extracted from a database of US soils (Sheldon et al., 2002) show that a 643 

CIA of ~55-60 would translate into a temperate climate with high annual precipitation of ~600 644 

mm. Alteration indices vary a lot according to parameters such as local climate, elevation, bedrock 645 

composition and texture, not enabling the determination of a unique environment at a given 646 

index value. In particular, felsic rocks such as the terrestrial continental crusts have higher starting 647 

values of CIA (unaltered rocks ca. 45-50, e.g. Nesbitt and Young, 1996, Fedo et al., 1995) than 648 

starting values for mafic rocks (unaltered rocks ca. 35-40, e.g. Babechuk et al., 2014) as observed 649 

for Mars average crust, Sheepbed mudstones (Bradbury group) or soils, which all range from 35 650 

to 40 (McLennan et al., 2014) as shown in Figure 4 and Table 4. Thus, at a similar CIA value, 651 

alteration is underestimated for mafic rocks (which are found predominantly in Gale crater 652 

sediments), supporting the idea that the Murray sediments are significantly altered. For instance, 653 

basaltic sediments analyzed in Iceland, a currently wet and cold climate, have been estimated at 654 

only 45-50, despite the high rate of precipitation in this region (Thorpe et al., 2017).  655 

In summary, climate conditions required to explain our observations involve substantial liquid 656 

water at the surface that a cold, dry climate cannot explain, although a specific climate cannot be 657 

specified. Previous results from Curiosity indicated the presence of substantial fluvial and 658 

lacustrine sedimentation, in what appeared to be relatively cold and dry environment according 659 

to geochemical markers, i.e. CIA values at ~40 (Grotzinger et al., 2014, McLennan et al., 2014). 660 

The finding of substantial weathering from chemical variations fills a gap in this history, and 661 

suggests that the lacustrine activity was coupled with, or was preceded, by a period of open-662 

system weathering.  663 
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7. Conclusions 664 

From Sol 750 to 1550, the Curiosity rover documented >130 m of stratigraphy during its 6 km 665 

traverse of fine-grained sedimentary rocks of the Murray formation, at the base of Mt Sharp. 666 

ChemCam data were used to estimate the level of weathering in these sedimentary rocks. Both 667 

the Chemical Index of Alteration (CIA) and the Weathering Index Scale (WIS) indicate a 668 

progressive increase in alteration up section, in the range of 55-60, locally reaching CIA values of 669 

63 and WIS of 25% contrasting with limited weathering observed in the primary phase of the 670 

mission (McLennan et al., 2014). To date, alteration indices of this magnitude have never been 671 

observed in-situ on Mars. This enhanced alteration is consistent with abundant clay minerals of 672 

both di-octahedral and tri-octahedral nature (Bristow et al., 2018). The increase in CIA and WIS 673 

values is coupled with a decrease in calcium abundance, suggesting partial dissolution of 674 

clinopyroxene and plagioclase, which both are observed in lower abundances in the drill holes up 675 

section. In contrast to deep diagenetic or hydrothermal processes that occur in closed systems, 676 

these observations indicate alteration in an open system with the presence of liquid water, at or 677 

near the surface.  678 
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Tab 1: Example of a single target with 10 observation points (Upper Hadlock, sol 1505). The target average 849 

chemistry is obtained by removing point 5 which targeted a diagenetic feature (see Figure 2), and 850 

averaging the remaining points. Note that the deviation around the average is relatively limited as 851 

expected for homogeneous rocks with small grain size. 852 

 853 

Upper Hadlock SiO2 TiO2 Al2O3 FeOT MgO CaO Na2O K2O Sum 

Point 1 56.4 1.03 12.50 17.0 4.60 2.70 2.52 0.93 97.79 

Point 2 55.30 0.94 12.90 18.50 4.20 2.60 3.24 1.56 99.22 

Point 3 57.20 0.99 11.80 15.80 4.20 2.30 2.73 1.66 96.71 

Point 4 54.60 0.99 11.20 18.10 4.70 2.00 2.25 2.44 96.26 

Point 5 1.20 0.20 0.70 4.40 1.50 34.80 0.46 0.01 43.33 

Point 6 51.40 0.91 9.20 21.00 4.30 1.60 1.74 2.81 92.88 

Point 7 53.30 0.91 10.00 20.60 4.00 1.70 1.85 2.74 95.08 

Point 8 55.50 0.94 12.70 18.20 4.00 2.50 2.48 1.17 97.52 

Point 9 55.80 0.98 12.50 17.20 4.30 2.50 2.84 1.17 97.22 

Point 10 55.70 0.92 11.50 17.70 4.50 2.10 2.06 2.33 96.85 

Average  
(without point 5) 

55.02 0.96 11.59 18.23 4.31 2.22 2.41 1.86 96.6 

Std Deviation 1.74 0.04 1.27 1.66 0.24 0.39 0.48 0.72 1.79 

 854 

 855 

 856 

  857 
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Tab. 2: CheMin quantitative mineralogy at Marimba used for mass balance calculation for estimating the 858 

Fe2+/Fe3+ ratio for the WIS calculation (from Bristow et al., 2018). The mineral abundances modeled and 859 

presented here were updated compared to results currently available in the Planetary Data System. 860 

 861 

 862 

Mineral 
Whole 

rock 
(%) 

FeO (wt%) 
in pure 

minerals 

Fe2O3 (wt%) 
in pure 

minerals 

FeO (wt%) 
contribution 

to sample 

Fe2O3 (wt%) 
contribution 

to sample 

Fe2+ (molar)  
in sample 

Fe3+ (molar) 
in sample 

Plagioclase 14.0 N/A N/A     

Hematite 6.4 0 100 0 6.400 0 0.0401 

Ca-sulfates 7.0 N/A N/A - - - - 

Sanidine 2.4 N/A N/A - - - - 

Pyroxene* 0.7 30.9 0 0.2163 0 0.00301 0 

Jarosite** 
0.7 

 
0 
 

47.83 0 0.335 0 0.0021 

Quartz** 0.7 N/A N/A - - - - 

Amorphous 40 ? ? ? ? ? ? 

Clay 
minerals*** 

28 
 

0 5.0 0 1.40 0 0.0088 

Whole Rock 
iron content 

99.9 N/A N/A 0.2163 8.135 0.00301 0.0509 

 863 

*Pyroxene composition assumed to be similar to the pigeonite from lower Murray drills (Morrison et al., 864 

2017). 865 

**At detection limit. We use here a value of 0.7 wt.%, which is the typical lowest abundance quantifiable. 866 

***Clay minerals assumed with 5% Fe2O3 from CheMin diffractometer modeling (Bristow et al., 2018). 867 

  868 
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Tab. 3 : Mineral abundances from CheMin data (Rampe et al., 2017, Bristow et al., 2018). Note that Mojave 869 

and Telegraph Peaks compositions are strongly modified by diagenetic phases (jarosite, silica). Buckskin is 870 

not included, given its presence in the high-silica region where ChemCam targets are excluded from the 871 

present work. 872 

 873 

Mineral 

Confidence 
Hills 

(Pahrump Hills) 

Mojave 
(Pahrump 

Hills) 

Telegraph 
Peak 

(Pahrump 
Hills) 

Oudam  
(Hartmann’s 

Valley) 
Marimba  

(Karasburg) 
Quela  

(Karasburg) 

Sebina  
(Sutton 
Island) 

Plagioclase 20.4 23.5 27.1 27.8 14.0 13.5 10.7 

Sanidine 5.0 - 5.2 - 2.4 2.3 1.4 

Olivine 1.2 0.2 1.1 - - - - 

Pyroxenes 13.8 7.0 7.6 5.3 0.7 2.7 2.8 

Quartz 
0.7 0.8 0.9 0.7 At detection 

limite 
At detection 

limit 
At detection 

limit 

Hematite 6.8 3.0 1.1 13.9 6.4 7.1 6.9 

Magnetite 3.0 3.0 8.2 - - - - 

Ca-sulfates - - - 6.3 7.0 5.5 7.4 

Apatite 1.3 1.8 1.9 - - - - 

Jarosite 1.1 
3.1 1.5 

- 
At detection 

limit 
At detection 

limit 
0.9 

Silica - - 18.2 - - - - 

Clay minerals 7.6 4.7 - 3 28 16 19 

Amorphous 39.2 53 27.2 43 40 52 51.1 

 874 

 875 
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Table 4: Summary of various CIA values found on Mars with Earth as comparison. 877 

 878 

Rock type Value Reference 

Fresh basaltic rock, Earth 35-40 Babechuk et al., 2014 

Fresh continental crust, Earth 45-50 Nesbitt and Young, 1996 

Average Mars crust 37 McLennan et al., 2014 

Bradbury formation, Sheepbed member, Mars 35-40 McLennan et al., 2014 

Bradbury formation conglomerates, Mars 44 This study 

Bradbury formation, Kimberley, Mars 30-40 This study 

Murray formation, Pahrump Hills member, Mars ~50 Hurowitz et al., 2017 

Murray formation, Sutton island member, Mars 48-63 This study 

 879 


