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Abstract

Inspired by the work of Resnikoff, which is described if full details in the first part
of this two-part paper, we give a quantum description of the space P of perceived
colors. We show that P is the effect space of a rebit, a real quantum qubit, whose
state space S is isometric to the hyperbolic Klein disk K. This chromatic state
space of perceived colors can be represented as a Bloch disk of real dimension
2 that coincides with the Hering disk given by the color opponency mechanism.
Attributes of perceived colors, hue and saturation, are defined in terms of Von
Neumann entropy.
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1 Introduction
“The structure of our scientific cognition of the world is decisively determined

by the fact that this world does not exist in itself, but is merely encountered

by us as an object in the correlative variance of subject and object” [1].

The mathematical description of human color perception mechanisms is a longstand-

ing problem addressed by many of the most influential figures of the mathematical

physics [1], [2], [3], [4]... The reader will find an overview of the main historical con-

tributions at the beginning of [5] where H. L. Resnikoff points out that the space,

that we denote P, of perceived colors is one of the very first examples of abstract

manifold mentioned by B. Riemann in his habilitation [6], “a pregnant remark”.

As suggested by H. Weyl [1], it is actually very tempting to characterize the in-

dividual color perception as a specific correlative interaction between an abstract

space of perceived colors and an embedding space of physical colors. This raises the

question of defining intrinsically, in the sense of Riemannian geometry, the space

of perceived colors from basic largely accepted axioms. These axioms, which date

back to the works of H. G. Grassmann and H. Von Helmhotz [2], [7], state that P
is a regular convex cone of dimension 3. It is worth noting that convexity reflects

the property that one must be able to perform mixtures of perceived colors or, in

other words, of color states [8]. What makes the work of H. L. Resnikoff [5] par-

ticularly enticing is the remarkable conclusions that he derives by adding the sole

axiom that P is homogeneous under the action of the linear group of background

illumination changes [9]. We will discuss at the end of this work, in section 6, the

relevance of this statement. To the best of our knowledge, this axiom, which in-

volves an external context, has never been verified by psychophysical experiments.
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It endows P with the rich structure of a symmetric cone [10]. With this additional

axiom, and the hypothesis that the distance on P is given by a Riemannian met-

ric invariant under background illumination changes, H. L. Resnikoff shows that P
can only be isomorphic to one of the two following Riemannian spaces: the product

P1 = R+×R+×R+ equipped with a flat metric, namely the Helmhotz-Stiles metric

[11], and P2 = R+×SL(2,R)/SO(2,R) equipped with the Rao-Siegel metric of con-

stant negative curvature [12], [13]. Let us recall that the quotient SL(2,R)/SO(2,R)

is isomorphic to the Poincaré hyperbolic disk D. The first space is the usual metric

space of the colorimetry, while the second one seems to be relevant to explain psy-

chophysical phenomena such as the ones described by H. Yilmaz in [14] and [15].

In the sequel, we focus on the latter.

The starting point of this work originates from the second part of [5] dedicated to

Jordan algebras. Contrary to H. L. Resnikoff we suppose at first that the perceived

color space P can be described from the state space of a quantum system character-

ized by a Jordan algebra A of real dimension 3 [16], [17], [18], [19]. This is our only

axiom. Jordan algebras are non associative commutative algebras that have been

classified by P. Jordan, J. Von Neumann and E. Wigner [20] under the assump-

tions that they are of finite dimension and formally real. They are considered as

a fitting alternative to the usual associative noncommutative algebraic framework

for the geometrization of quantum mechanics [21], [22], [23]. Not so surprisingly

in view of what precedes, A is necessarly isomorphic to one of the two following

Jordan algebras: the algebra R ⊕ R ⊕ R or the algebra H(2,R) of symmetric real

2 by 2 matrices. It appears that the two geometric models of H. L. Resnikoff can

be recovered from this fact by simply taking the positive cone of A. The Jordan

algebra H(2,R) carries a very special structure being isomorphic to the spin factor

R⊕ R2. It can be seen as the non associative algebra linearly spanned by the unit

1 and a spin system of the Clifford algebra of R2 [19], [24]. The main topic of this

work is to exploit these structures to highlight the quantum nature of the space P
of perceived colors. Actually, the quantum description that we propose gives its full

meaning to the relevant remark of [25], p. 5.

Although the geometry of the second model P2 of H. L. Resnikoff is much richer

than the geometry of the first model P1, very few works are devoted to the possible

implications of hyperbolicity in color perception. One of the main objectives of

this contribution is to show that the model P2 is perfectly adapted to explain the

coherence between the trichromatic and color opponency theories. We show that the

space P is the effect space of a so-called rebit, a real quantum qubit, whose state

space S is isometric to the hyperbolic Klein disk K. Actually, K is isometric to

the Poincaré disk D, but its geodesics are visually very different, being the straight

chords of the unit disk. Klein geometry appears naturally when considering the spin

factor R⊕R2 and the 3-dimensional Minkowski future lightcone L+ whose closure

is the state cone of the rebit. We show that the chromatic state space S can be

represented as a Bloch disk of real dimension 2 that coincides with the Hering disk

given by the color opponency mechanism. This Bloch disk is an analog, in our real

context, of the Bloch ball that describes the state space of a two-level quantum

system of a spin- 12 particule. This suggests that the processing performed by the

color opponent ganglion cells is similar to spin inversions.
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Following this quantum interpretation, we give precise definitions of the two chro-

matic attributes of a perceived color, hue and saturation, in terms of Von Neumann

entropy.

As explained by P. A. M. Dirac in [26], p. 18, physical phenomena justify the

need for considering complex Hilbert spaces in quantum mechanics. Alternatively,

the structures we deal with in the sequel are real and we may consider the space

P as a non trivial concrete example of an effect space of a real quantum system.

The reader will find more information on real-vector-space quantum theory and its

consistency regarding optimal information transfer in [27].

Finally, since the spin factors and the corresponding Clifford algebras share the

same representations (and the same squares), one may envisage to adapt to the

present context the tools developed in [28] for the harmonic analysis of color images.

2 Mathematical preliminaries
We introduce in this section the mathematical notions needed in the sequel. They

mainly concern the properties of Jordan algebras. The reader will find more detailed

information on this subject in [16], [18], [19], [29] or in the seminal work of P. Jordan

[30]. A Jordan algebra A is a real vector space equipped with a commutative bilinear

product A×A −→ A, (a, b) 7−→ a ◦ b, satisfying the following Jordan identity:

(a2 ◦ b) ◦ a = a2 ◦ (b ◦ a) . (1)

This Jordan identity ensures that the power of any element a of A is well-defined

(A is power associative in the sense that the subalgebra generated by any of its

elements is associative). Since a sum of squared observables never vanishes, one

logically requires that if a1, a2 ,..., an are elements of A such that:

a21 + a22 + · · ·+ a2n = 0 , (2)

then a1 = a2 = · · · = an = 0. The algebra A is then said to be formally real. This

property endows A with a partial ordering: a ≤ b if and only if b − a is a sum of

squares, and therefore the squares of A are positive. Formally real Jordan algebras

of finite dimension are classified [20]: every such algebra is the direct sum of so-

called simple Jordan algebras. Simple Jordan algebras are of the following types:

the algebras H(n,K) of hermitian matrices with entries in the division algebra K
with K = R, C, H (the algebra of quaternions), the algebra H(3,O) of hermitian

matrices with entries in the division algebra O (the algebra of octonions), and the

spin factors R ⊕ Rn, with n ≥ 0. The Jordan product on H(n,K) and H(3,O) is

defined by:

a ◦ b =
1

2
(ab+ ba) . (3)

The spin factors form “the most mysterious of the four infinite series of [simple]

Jordan algebras” [31]. They were introduced for the first time under this name by

D. M. Topping [32] and are defined as follows. The spin factor J(V ) of a given
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n-dimensional real inner product space V is the Jordan algebra freely generated by

V with the relations:

v2 = ‖v‖2 , (4)

for all v in V . Due to commutativity, this implies:

v ◦ w = 〈v, w〉 , (5)

for all v and w in V . Consequently, J(V ) is isomorphic to the direct sum R ⊕ V
with the product:

(α+ v) ◦ (β + w) = (αβ + 〈v, w〉+ αw + βv) , (6)

where α and β are reals. The following result is well known [31].

Proposition 1 Let K be the division algebra R, C, H or O. The spin factor J(K⊕
R) is isomorphic to the Jordan algebra H(2,K).

Proof. An explicit isomorphism is given by the map:

φ : H(2,K) −→ J(K⊕ R) (7)(
α+ β x

x∗ α− β

)
7−→ (α+ x+ β) , (8)

with x in K and x∗ the conjugate of x. �

Now, we focus on the algebra H(2,R) and the spin factor J(R ⊕ R), both being

isomorphic to R⊕ R2. The latter is equipped with the Minkowski metric [33]:

(α+ v) · (β + w) = αβ − 〈v, w〉 , (9)

where α and β are reals and v and w are vectors of R2. It turns out that Proposition

1 has a fascinating reformulation: the algebra of observables of a 2-dimensional real

quantum system is isomorphic to the 3-dimensional Minkowski spacetime. Let us

recall that the lightcone L of R⊕R2 is the set of elements a = (α+ v) that satisfy:

a · a = 0 , (10)

and that a light ray is a 1-dimensional subspace of R⊕R2 spanned by an element of

L. Every such light ray is spanned by a unique element of the form (1 + v)/2 with

v a unit vector of R2. Actually, the space of light rays coincides with the projective

space P1(R). In other words, we have the following result.

Proposition 2 There is a one to one correspondance between the light rays of the

spin factor R⊕ R2 and the rank one projections of the Jordan algebra H(2,R).

Proof. The correspondance is given by:

(1 + v)/2 7−→ 1

2

(
1 + v1 v2

v2 1− v1

)
, (11)
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where v = v1e1 + v2e2 is a unit vector of R2. �

We will see in the next section that this result has a meaningful interpretation:

there is a one to one correspondance between the light rays of the spin factor R⊕R2

and the pure state density matrices of the algebra H(2,R).

The positive cone C of the Jordan algebra A is the set of its positive elements,

namely:

C = {a ∈ A, a > 0} . (12)

It can be shown that C is the interior of the positive domain of A defined as the

set of squares of A. The convex cone C is symmetric: it is regular, homogeneous

and self-dual [10]. The positive cone H+(2,R) of the algebra H(2,R) is the set of

positive-definite symmetric matrices.

3 Quantum preliminaries
The positive cone C is the set of positive observables. A state of A is a linear

functional:

〈·〉 : A −→ R , (13)

that is nonnegative: 〈a〉 ≥ 0, ∀a ≥ 0, and normalized: 〈1〉 = 1. Since A is formally

real, the pairing:

〈a, b〉 = Trace(L(a)(b)) = Trace(a ◦ b) , (14)

is a real-valued inner product and one can identify any state with a unique element

ρ of A by setting:

〈a〉 = Trace(ρ ◦ a) , (15)

where ρ ≥ 0 and Trace(ρ) = 1. Such a ρ, for A = H(2,R), is a so-called state

density matrix [8] and describes a mixed state or mixture. Formula (15) gives the

expectation value of the observable a in the state with density matrix ρ.

Regarding Proposition 1, the positive state density matrices of the algebraH(2,R)

are in one to one correspondance with the elements of the future lightcone:

L+ = {a = (α+ v), α > 0, a · a > 0} . (16)

that are of the form a = (1 + v)/2. One way to qualify states is to introduce the

Von Neumann entropy [8], [34]. It is given by:

S(ρ) = −Trace(ρ log ρ) . (17)

It appears that S(ρ) = 0 if and only if ρ satisfies ρ ◦ ρ = ρ. The zero entropy state

density matrices characterize pure states that afford a maximum of information.
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Among the other state density matrices, one is of particular interest. It is given by

ρ0 = Id2/2 or ρ0 = (1 + 0)/2 (Id2 is the identity matrix) and is characterized by:

ρ0 = argmax
ρ

S(ρ) . (18)

The mixed state with density matrix ρ0 is called the state of maximum entropy,

S(ρ0) being equal to log 2. It provides the minimum of information. Using (15), we

have:

〈a〉0 =
Trace(a)

2
. (19)

Now, given an observable a, a acts on the state 〈·〉0 by the formula:

a : 〈·〉0 7−→ 〈a ◦ ·〉 = 〈·〉0,a , (20)

Since for any state ρ, the element 2ρ is an observable, we get:

〈a〉0,2ρ = 〈2ρ ◦ a〉0 = Trace(ρ ◦ a) = 〈a〉 , (21)

for all observable a. This means that any state with density matrix ρ can be obtained

from the state of maximal entropy with density matrix ρ0 using the action of the

observable 2ρ.

The pure state density matrices of the algebra A = H(2,R) are of the form:

1

2

(
1 + v1 v2

v2 1− v1

)
, (22)

where v = v1e1 +v2e2 is a unit vector of R2. They are in one to one correspondance

with the light rays of the 3-dimensional Minkowski spacetime, see Proposition 2.

A classical representation of quantum states is the Bloch body [35]. An element

ρ of H(2,R) is a state density matrix if and only if it can be written as:

ρ(v1, v2) =
1

2
(Id2 + v · σ) =

1

2
(Id2 + v1σ1 + v2σ2) , (23)

where σ = (σ1, σ2) with:

σ1 =

(
1 0

0 −1

)
σ2 =

(
0 1

1 0

)
, (24)

and v = v1e1 + v2e2 is a vector of R2 with ‖v‖ ≤ 1. The matrices σ1 and σ2 are

Pauli-like matrices. In the usual framework of quantum mechanics, that is when the

observable algebra is the algebra H(2,C) of 2 by 2 hermitian matrices with complex

entries, the Bloch body is the unit Bloch ball in R3. It represents the states of the

two-level quantum system of a spin- 12 particule, also called a qubit. In the present

context, the Bloch body is the unit disk of R2 associated to a rebit. We give now
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more details on this system using the classical Dirac notations [26], bra, ket, etc...

Let us denote |u1〉, |d1〉, |u2〉 and |d2〉 the four state vectors defined by:

|u1〉 =

(
1

0

)
, |d1〉 =

(
0

1

)
, |u2〉 =

1√
2

(
1

1

)
, |d2〉 =

1√
2

(
−1

1

)
. (25)

We have:

σ1 = |u1〉〈u1| − |d1〉〈d1| , σ2 = |u2〉〈u2| − |d2〉〈d2| . (26)

The state vectors |u1〉 and |d1〉, resp. |u2〉 and |d2〉, are eigenstates of σ1, resp. σ2,

with eigenvalues 1 and −1.

Using polar coordinates v1 = r cos θ, v2 = r sin θ, we can write ρ(v1, v2) as:

ρ(r, θ) =
1

2

(
1 + r cos θ r sin θ

r sin θ 1− r cos θ

)
(27)

=
1

2
{(1 + r cos θ)|u1〉〈u1|+ (1− r cos θ)|d1〉〈d1|+ (r sin θ)|u2〉〈u2| (28)

−(r sin θ)|d2〉〈d2|} . (29)

This gives, for instance:

ρ(1, 0) = |u1〉〈u1| =

(
1 0

0 0

)
, (30)

ρ(1, π) = |d1〉〈d1| =

(
0 0

0 1

)
, (31)

ρ(1, π/2) = |u2〉〈u2| =
1

2

(
1 1

1 1

)
, (32)

ρ(1, 3π/2) = |d2〉〈d2| =
1

2

(
1 −1

−1 1

)
. (33)

More generally:

ρ(1, θ) = |(1, θ)〉〈(1, θ)| , (34)

with:

|(1, θ)〉 = cos(θ/2)|u1〉+ sin(θ/2)|d1〉 . (35)

This means that we can identify the pure state density matrices ρ(1, θ) with the

state vectors |(1, θ)〉 and also with the points of the unit disk boundary of coordinate

θ. The state of maximal entropy, given by the state density matrix:

ρ0 =
1

2

(
1 0

0 1

)
, (36)
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is the mixture:

ρ0 =
1

4
|u1〉〈u1|+

1

4
|d1〉〈d1|+

1

4
|u2〉〈u2|+

1

4
|d2〉〈d2| (37)

=
1

4
ρ(1, 0) +

1

4
ρ(1, π) +

1

4
ρ(1, π/2) +

1

4
ρ(1, 3π/2) , (38)

with equal probabilities. Using (27), we can write every state density matrix as a

mixture:

ρ(r, θ) = ρ0 +
r cos θ

2
(ρ(1, 0)− ρ(1, π)) +

r sin θ

2
(ρ(1, π/2)− ρ(1, 3π/2)) . (39)

Such a mixture is given by the point of the unit disk of polar coordinates (r, θ). It

is important to notice that the four state density matrices ρ(1, 0), ρ(1, π), ρ(1, π/2)

and ρ(1, 3π/2) correspond to two pairs of state vectors (|u1〉, |d1〉), (|u2〉, |d2〉), the

state vectors |ui〉 and |di〉, for i = 1, 2, being linked by the “up and down” Pauli-like

matrix σi.

In the usual framework, that is when A is H(2,C), the three Pauli matrices are

associated to the three directions of rotations in R3. In our case, there are only two

Pauli-like matrices. The interpretation in terms of rotations ceases to be relevant

since there is no space with a rotation group of dimension 2. This makes rebits

somewhat strange. We show in Section 5 that the opponency color mechanism of

E. Hering is given by such a rebit when dealing with chromatic opponencies.

The pure and mixed states play a crucial role in the measurements: “... that is,

after the interaction with the apparatus, the system-plus-apparatus behaves like a

mixture... It is in this sense, and in this sense alone, that a measurement is said

to change a pure state into a mixture” [36] (see also the cited reference [37]). It

seems actually that the problem of measurements in quantum mechanics was one of

the main motivations of P. Jordan for the introduction of his new kind of algebras:

“Observations not only disturb what has to be measured, they produce it... We

ourselves produce the results of measurements” [36] p. 161, [38], [39].

4 The Riemannian geometry of C and L+

Now, we give further information on the underlying geometry of the Jordan algebra

A from both the points of view discussed above, that is A as the algebra H(2,R)

and A as the spin factor R⊕ R2. We consider the level set:

C1 = {X ∈ H+(2,R),Det(X) = 1} , (40)

Every X in C1 can be written as:

X =

(
α+ v1 v2

v2 α− v1

)
, (41)

with v = v1e1 + v2e2 a vector of R2 satisfying α2 − ‖v‖2 = 1 and α > 0. Using the

one to one correspondance:

X =

(
α+ v1 v2

v2 α− v1

)
7−→ (α+ v) , (42)
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the level set C1 is sent to the level set:

L1 = {a = (α+ v) ∈ L+, a · a = 1} , (43)

of the future lightcone L+. It is well known that the projection:

π1 : L1 −→ {α = 0} , (44)

defined by:

π1(α+ v) = (0 + w) , (45)

with w = w1e1 + w2e2 and:

wi =
vi

1 + α
, (46)

for i = 1, 2, is an isometry between the level set L1 and the Poincaré disk D [40].

Simple computations show that the matrix X can be written:

X =


1 + 2w1 + (w2

1 + w2
2)

1− (w2
1 + w2

2)

2w2

1− (w2
1 + w2

2)
2w2

1− (w2
1 + w2

2)

1− 2w1 + (w2
1 + w2

2)

1− (w2
1 + w2

2)

 , (47)

in the w-parametrization.

Proposition 3 Let X be an element of C1 written under the form (47), we have:

Trace
[
(X−1dX)2

]
2

= 4

(
(dw1)2 + (dw2)2

(1− (w2
1 + w2

2)2

)
= ds2D . (48)

Proof. Cayley-Hamilton theorem implies the following equality, where A denotes a

2 by 2 matrix:

(Trace(A))2 = Trace(A2) + 2Det(A) . (49)

We apply this equality to the matrix A = X−1dX. The matrix X can be written

as:

X =

(
1 + |z|2

1− |z|2

)
I2 +

X1

1− |z|2
, (50)

where:

X1 =

(
2w1 2w2

2w2 −2w1

)
, (51)

and z = w1 + iw2. We have:

X−1 =

(
1 + |z|2

1− |z|2

)
I2 −

X1

1− |z|2
, (52)
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and:

dX = d

(
1 + |z|2

1− |z|2

)
I2 +

dX1

1− |z|2
+

d(|z|2)

(1− |z2|)2
X1 . (53)

Consequently:

X−1dX =
2d(|z|2)

(1− |z|2)2
I2 −

d(|z|2)

(1− |z|2)2
X1 +

(1 + |z|2)dX1

(1− |z|2)2
− X1dX1

(1− |z|2)2
.

(54)

Since Trace(X1) = Trace(dX1) = 0 and Trace(X1dX1) = 4d(|z|2), then:

[
Trace(X−1dX)

]2
= 0 , (55)

and:

Trace
[
(X−1dX)2

]
= −2Det(X−1dX) = −2Det(dX) . (56)

We have also:

dX =
d(|z|2)

(1− |z|2)2

(
1 + |z|2 + 2w1 2w2

2w2 1 + |z|2 − 2w1

)
(57)

+
1

(1− |z|2)

(
d(|z|2) + 2dw1 2dw2

2dw2 d(|z|2)− 2dw1

)
. (58)

Simple computations lead to:

Det(dX) = −4

(
(dw1)2 + (dw2)2

(1− |z|2)2

)
, (59)

and end the proof. �

This proposition means that C1 equipped with the normalized Rao-Siegel metric,

i. e. Trace
[
(X−1dX)2

]
/2, is isometric to the Poincaré disk D of constant negative

curvature equal to -1. Actually C is foliated by the level sets of the determinant

with leaves that are isometric to D. This description, which is analog to the one

considered by H. L. Resnikoff in [5], does not take into account the specific role of

the state density matrices of the algebra H(2,R).

Another classical result of hyperbolic geometry asserts that the projection:

$1 : L1 −→ {α = 1} , (60)

defined by:

$1(α+ v) = (1 + x) , (61)
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with x = x1e1 + x2e2 and:

xi =
vi
α
, (62)

for i = 1, 2, is an isometry between the level set L1 and the Klein disk K, the

Riemannian metric of which is given by:

ds2K =
(dx1)2 + (dx2)2

1− (x21 + x22)
+

(x1dx1 + x2dx2)2

(1− (x21 + x22))2
, (63)

see [40]. An isometry between K and D is defined by:

xi =
2wi

1 + (w2
1 + w2

2)
, (64)

wi =
xi

1 +
√

1− (x21 + x22)
, (65)

for i = 1, 2. In other words, we have the following commutative diagram of isome-

tries:

L1
//

$1

��

L1
//

π1

��

C1

��
K // D // D

(66)

Let us recall that the state density matrices of the quantum system we consider

can be identified with the elements:

a = (1 + v)/2 , (67)

of the spin factor R⊕ R2 with ‖v‖2 ≤ 1. Let us denote:

$1/2 : L1/2 = {a = (α+ v)/2, α > 0, a · a = 1/4} −→ {α = 1/2} , (68)

the projection given by:

$1/2((α+ v)/2) = (1 + v/α)/2 . (69)

We have:

$1/2((α+ v)/2) = $1(α+ v)/2 . (70)

This means that the map:

ϕ : K 7−→ K1/2 , (71)

defined by:

ϕ(x1, x2) = (x1, x2)/2 , (72)
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is an isometry between K and:

K1/2 = {x/2 ∈ R2, ‖x‖2 < 1} , (73)

the Riemannian metric on the latter being given by:

ds2K1/2
= (ϕ−1)∗ds2K =

(dx1)2 + (dx2)2

1/4− (x21 + x22)
+

(x1dx1 + x2dx2)2

(1/4− (x21 + x22))2
. (74)

One can verify that L+ is foliated by the level sets α = constant with leaves that

are isometric to the Klein disk K. This description is more appropriate than the

above one to characterize perceived colors from real quantum states since the state

space S is naturally embedded in L+, see (78) below.

Let us recall some basic facts about the geometry of the Klein disk. Contrary

to the Poincaré disk, the geodesics of K are straight lines and more precisely, the

chords of the unit disk. An important feature of the Klein metric is that it coincides

with the Hilbert metric defined as follows. Let p and q be two interior points of the

disk and let r and s be the two points of the boundary of the disk such that the

segment [r, s] contains the segment [p, q]. The Hilbert distance between p and q is

defined by:

dH(p, q) =
1

2
log[r, p, q, s] , (75)

where:

[r, p, q, s] =
‖q − r‖
‖p− r‖

× ‖p− s‖
‖q − s‖

, (76)

is the cross-ratio of the four points r, p, q and s [41] (in (76), ‖ · ‖ is the Euclidean

norm).

5 Perceived colors and chromatic states
We describe the space P of perceived colors under the only hypothesis that P can

be described from the state space of a quantum system characterized by the Jordan

algebra H(2,R). As explained before, we exploit the fact that H(2,R) is isomorphic

to the spin factor R ⊕ R2. Let us recall that this description does not involve any

reference to physical colors or to an observer.

The state space S is the unit disk embedded in the space of state density matrices

by:

s = (v1, v2) 7−→ ρ(v1, v2) =
1

2

(
1 + v1 v2

v2 1− v1

)
. (77)

and in the Klein disk K1/2 of the closure L+ of the future lightcone L+ by:

s = (v1, v2) 7−→ 1

2
(1 + v) = 1/2 + (v1/2, v2/2) . (78)
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In order to describe perceived colors, i.e. measured colors, it is necessary to char-

acterize all the possible measurements that can be performed on the states. We

adopt here the viewpoint of the generalized probability theory [42].

We denote C(S) the state cone defined by:

C(S) =

α
 v1

v2

1

 , α ≥ 0, s = (v1, v2) ∈ S

 . (79)

This cone is self-dual, that is:

C(S) = C∗(S) = {a ∈ A, ∀b ∈ C(S), 〈a, b〉 ≥ 0} , (80)

where 〈·, ·〉 denotes the inner product of A given by (14). By definition, an effect

is an element e of C∗(S) such that e(s) ≤ 1 for all s in S. Such an effect e can be

seen as an affine function e : S −→ [0, 1] with 0 ≤ e(s) ≤ 1 for all s. It is the most

general way of assigning a probability to all states. Effects correspond to positive

operator valued measures. In the present settings, every effect is given by a vector

e = (a1, a2, a3) such that:

0 ≤ e ·

 v1

v2

1

 ≤ 1 , (81)

for all s = (v1, v2) in S. The measurement effect associated to e is the operator:

E = a3Id2 + a1σ1 + a2σ2 , (82)

that must satisfy 0 ≤ E ≤ Id2. This last condition implies that 0 ≤ a3 ≤ 1, with

a21 + a22 ≤ a23 and a21 + a22 ≤ (1− a3)2. We denote E(S) the effect space of S, that is

the set of all effects on S. Note that the so-called unit effect, e1 = (0, 0, 1), satisfies

e1(s) = 1 for all s in S.

A perceived color c = (a1, a2, a3) is by definition an effect on S, that is an element

of the effect space E(S). Since C(S) = C∗(S), a perceived color c is an element of

the state cone of S, this one being the closure L+ of the future lightcone L+. The

element c/(2a3) = (a1/2a3, a2/2a3, 1/2), a3 6= 0, belongs to the Klein disk K1/2 of

L+. This suggests to define the colorimetric attributes of c as follows.

– The real a3, with 0 ≤ a3 ≤ 1, is the magnitude of the perceived color c.

– The element sc = (a1/a3, a2/a3) ∈ S is the chromatic state of c.

– A perceived color with a unit chromatic state is a pure perceived color.

– The saturation of a perceived color c is given by the Von Neumann entropy of

its chromatic state.

– A perceived color whose chromatic state is the state of maximal entropy is

achromatic.
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Given a state (v1, v2) ∈ S, the perceived colors which have this state as chromatic

state form the intersection:

cs = E(S) ∩


 a3v1

a3v2

a3

 , 0 ≤ a3 ≤ 1

 . (83)

The maximum value of a perceived color c = (a1, a2, a3) is: a1

a2

a3

 ·
 a1/a3

a2/a3

1

 =
a21 + a22
a3

+ a3 = a3(1 + r2) , (84)

with r2 = (a21 + a22)/a23. We must have:

0 ≤ r2 ≤ 1− a3
a3

≤ 1 . (85)

If 0 < a3 < 1/2, the measure of a perceived color c = (a1, a2, a3) on his chromatic

state (a1/a3, a2/a3) gives the probability a3(1+r2), this one being well defined for all

0 < r ≤ 1. In particular, primary colors are measured with the maximum probability

2a3. In this case, the magnitude is not high enough to allow measurements with

probability 1. In this case, the perceived color is under-estimated.

If a3 = 1/2, the measure of a perceived color c = (a1, a2, 1/2) on his chromatic

state (2a1, 2a2) gives the probability (1 + r2)/2. This probability is well-defined for

all 0 < r ≤ 1. It is maximal, equal to 1, if and only if c is a primary color. In this

case, the perceived color is ideally-estimated.

If 1/2 < a3 < 1, the measure of a perceived color c = (a1, a2, a3) on his chromatic

state (a1/a3, a2/a3) gives the probability a3(1+r2). This probability is well defined

if and only if equation (85) is satisfied. In particular, primary colors can not be

measured on their chromatic states. For instance, if a3 = 2/3, then r should be

less than or equal to
√

2/2 and perceived colors with chromatic states of norm

equal to
√

2/2 are measured with probability 1. In this case, the perceived color is

over-estimated.

An achromatic perceived color c = (0, 0, a3) measured on a chromatic state gives

the probability a3 and this independently of the considered chromatic state. Such

a perceived color does not take into account chromaticity. The unit perceived color

c = e1 is the saturated achromatic perceived color.

We explain now how to describe the Hering color opponency mechanism [43], [44],

from the rebit system introduced at the end of Section 3. Let us first quote D. H.

Krantz [44]: “E. Hering noted that colors can be classified as reddish or greenish

or neither, but that redness and greenness are not simultaneously attributes of a

color. If we add increasing amounts of a green light to a reddish light, the redness

of the mixture decreases, disappears, and gives way to greenness. At the point

where redness is gone and greenness is not yet present, the color may be yellowish,

bluish, or achromatic. We speak of a partial chromatic equilibrium, with respect to

red/green... Similarly, yellow and blue are identified as opponent hues...” We rename
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|g〉 = |u1〉, |r〉 = |d1〉, |b〉 = |u2〉 and |y〉 = |d2〉 the four state vectors characterizing

the rebit. The opponency mechanism is given by the two matrices σ1 and σ2. More

precisely, the state vector:

|(1, θ)〉 = cos(θ/2)|g〉+ sin(θ/2)|r〉 , (86)

satisfies:

〈(1, θ)|σ1|(1, θ)〉 = cos θ, 〈(1, θ)|σ2|(1, θ)〉 = sin θ . (87)

This means that if cos θ > 0, then the pure chromatic state s(θ) of the Bloch disk

with coordinate θ is greenish, and if cos θ < 0, then s(θ) is reddish. For θ = π/2, or

θ = 3π/2, s(θ) is achromatic in the opposition green/red. In the same way, if sin θ is

positive, then s(θ) is bluish, and if sin θ is negative, then s(θ) is yellowish. For θ = 0,

or θ = π, s(θ) is achromatic in the blue/yellow opposition. The phenomenon “that

redness and greenness are not simultaneously attributes of a color”, for instance,

is a trivial consequence of the fact that 〈(1, θ)|σ1|(1, θ)〉 can not be simultaneously

positive and negative.

It appears in consequence that the quantum model that we propose allows to

recover axiomatically that a chromatic pure state, that is a hue, is given by a pair

of splittings similar to the two spin up and down inversions of a rebit. Following L.

E. J. Brouwer, “Newton’s theory of color analyzed light rays in their medium, but

Goethe and Schopenhauer, more sensitive to the truth, considered color to be the

polar splitting by the human eye” [45] (see also [46] and [47]).

6 Group actions and homogeneity
Let us first recall that the special Lorentz group SO+(1, 2) is the identity component

of the group O(1, 2), this latter being the matrix Lie group that preserves the

quadratic form:

‖(α+ v)‖M = α2 − ‖v‖2, (88)

where (α+v) belongs to the spin factor R⊕R2. The fact that SO+(1, 2) acts linearly

on L+ means that it acts projectively on the set of lines of L+ and consequently

on the points of the Klein disk K1/2, [48]. Moreover, this projective action gives the

isometries of K1/2 .

The subgroup of SO+(1, 2) that fixes (1 + 0) may be identified with the group of

rotations SO(2) and in fact every element g of SO+(1, 2) can be decomposed in a

unique way as [49]:

g = bζrξ , (89)

where bζ is a boost map and rξ is a proper rotation. More precisely, if we consider

the coordinates (α, v1, v2) in L+, the matrix associated to bζ is given by:

M(bζ) =

 cosh(ζ0) ζx sinh(ζ0) ζy sinh(ζ0)

ζx sinh(ζ0) 1 + ζ2x(cosh(ζ0)− 1) ζxζy(cosh(ζ0)− 1)

ζy sinh(ζ0) ζxζy(cosh(ζ0)− 1) 1 + ζ2y (cosh(ζ0)− 1)

 , (90)
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where (ζx, ζy) is a unit vector of R2 and ζ0 is the rapidity of the boost. It should

be noted that the set of boosts is not a subgroup of the special Lorentz group. The

matrix associated to rξ is given by:

M(rξ) =

 1 0 0

0 cos ξ − sin ξ

0 sin ξ cos ξ

 , (91)

In order to illustrate the projective action of the boost bζ on the Klein disk K1/2,

let us consider a simple example (quite more complicated computations give similar

results in the general case). We choose ζx = 1, ζy = 0, and denote ζ = tanh(ζ0).

The image (α,w1, w2) of a vector (1/2, cos θ/2, sin θ/2) is given by:


2α = cosh(ζ0) + sinh(ζ0) cos θ

2w1 = sinh(ζ0) + cosh(ζ0) cos θ

2w2 = sin θ .

(92)

This means that the image of the boundary point (cos θ/2, sin θ/2) is the boundary

point (v1, v2) with:


2v1 =

ζ + cos θ

1 + ζ cos θ

2v2 =
(1− ζ2)1/2 sin θ

1 + ζ cos θ
.

(93)

One may notice that the map sending the point (cos θ/2, sin θ/2) to the point

(v1, v2) is an element of the group PSL(2,R).

Now, let us explain how these computations are related to the experiments 2 and

3 described by H. Yilmaz in [15]. The image of the point R = (1/2, 0) is the point

R
′

= R = (1/2, 0) (we use the notations of [15]). So, the point remains unchanged.

The image of the point Y = (0, 1/2) is the point Y
′

= (ζ/2, (1− ζ2)1/2/2) and the

point Y has moved on the boundary, the angle φ of [15] (p. 12) being given by:

sinφ = ζ. This means that the experiments 2 and 3 of H. Yilmaz can be interpreted

as a relativistic aberration effect on colors [50].

The fact that boost maps act on pure states with PSL(2,R) transformations is

not surprising in view on the following result[1].

Proposition 4 Every pure state generates a one parameter subgroup of boosts.

Proof. As seen before, the state density matrix of a pure state is given by:

ρ(v1, v2) =
1

2
(Id2 + v · σ) , (94)

where v = (v1, v2) is a unit vector and σ = (σ1, σ2). The matrices σ1 and σ2 are

symmetric traceless matrices that are usually chosen to be the two first generators

[1]It is tempting to draw parallels between this results and the more general point

of view of [51].
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of the Lie algebra sl(2,R) of the group SL(2,R). Note that they do not generate a

sub Lie algebra of sl(2,R). The matrix:

A(ρ, ζ0) = exp
(
ζ0
v · σ

2

)
, (95)

is a symmetric element of PSL(2,R), ζ0 being a real parameter. Let us recall that

the PSL(2,R) action on H(2,R) is defined by:

X 7−→ AXAt . (96)

We have clearly: Det(AXAt) = Det(X). Since σ1 and σ2 are elements of H(2,R),

we can consider the matrices given by:

σi 7−→ A(ρ, ζ0)σiA(ρ, ζ0) , (97)

for i = 0, 1, 2, with σ0 = Id2. It can be shown that the 3×3 matrix with coefficients:

M(ρ, ζ0)ij =
1

2
Trace (σiA(ρ, ζ0)σjA(ρ, ζ0)) , (98)

is a boost bζ with ζ = tanh(ζ0)(v1, v2). Let us verify it on a simple example where

v1 = 1 and v2 = 0. In this case:

A(ρ, ζ0) = exp
(
ζ0
v1σ1

2

)
= exp

(
ζ0
σ1
2

)
=

(
eζ0/2 0

0 e−ζ0/2

)
. (99)

We only need to compute the coefficient B(σ, ζ0)i,j for i ≤ j. We have:



M(σ, ζ0)00 = 1
2Trace

(
A2(ρ, ζ0)

)
= cosh(ζ0)

M(σ, ζ0)01 = 1
2Trace (A(ρ, ζ0)σ1A(ρ, ζ0)) = sinh(ζ0)

M(σ, ζ0)02 = 1
2Trace (A(ρ, ζ0)σ2A(ρ, ζ0)) = 0

M(σ, ζ0)11 = 1
2Trace (σ1A(ρ, ζ0)σ1A(ρ, ζ0)) = cosh(ζ0)

M(σ, ζ0)12 = 1
2Trace (σ1A(ρ, ζ0)σ2A(ρ, ζ0)) = 0

M(σ, ζ0)22 = 1
2Trace (σ2A(ρ, ζ0)σ2A(ρ, ζ0)) = 1 .

(100)

This means that M(ρ, ζ0) = M(bζ) with ζ = tanh(ζ0)(1, 0), see equation (90). �

One can easily verify that the image of the vector (1/2, 0, 0) of L+ by the boost

bζ = tanh(ζ0)(1, 0) is the vector (cosh(ζ0)/2, sinh(ζ0)/2, 0). In consequence, the state

of maximal entropy ρ0 = (0, 0) is sent to the state (tanh(ζ0)/2, 0). This extends to

general boosts.

We can summarize these computations in the following way. As before, we consider

the state space S as the Klein disk K1/2 of the closure L+ of the future lightcone

L+ by using the map:

s = (v1, v2) 7−→ 1

2
(1 + v) = 1/2 + (v1/2, v2/2) . (101)
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Every pure state ρ generates a one parameter subgroup of boosts, the parameter ζ0

being the rapidity. Actually, every boost can be obtained in this way. Boost maps

act on the Klein disk K1/2 by isometries. If we consider S as embedded in the space

of state density matrices by:

s = (v1, v2) 7−→ ρ(v1, v2) =
1

2

(
1 + v1 v2

v2 1− v1

)
, (102)

the one parameter subgroup of boosts is obtained by considering the action of

PSL(2,R) on H(2,R). It is important to notice that we use only the matrices σ0,

σ1 and σ2, i.e. only information from S. Since every state can be obtained from

the state of maximal entropy, boosts, or equivalently pure states, act transitively

on S. However, one has to pay attention to the fact that boost maps do not form

a subgroup of the special Lorentz group which is reflected by the fact that σ1 and

σ2 do not form a sub Lie algebra of the Lie algebra sl(2,R).

This point of view is quite different from the approach adopted in [5]. As men-

tioned in the introduction and explained in [9], one of the key arguments of H.

Resnikoff is the existence of a transitive action of the group denoted GL(P) on the

space P of perceived colors. This group is supposed to be composed of all linear

changes of background illumination. In what preceds, we make use of the action of

PSL(2,R) on H(2,R), see (96). But the matrices A(ρ, ζ0) of PSL(2,R) that are

used are also symmetric, due to the fact that σ1 and σ2 are symmetric. Actually,

the action (96) can be also viewed as the action:

X 7−→ AXA , (103)

of the Jordan algebra H(2,R) on itself. This is precisely the action:

Q(A) : X 7−→ (2L(A)2 − L(A2))X , (104)

of the quadratic representation of A on X [10]. But once again, the matrices X

that we consider are σ0, σ1 and σ2. The matrices σ1 and σ2 are not elements of the

positive cone H+(2,R). It appears in consequence that the homogeneity of H+(2,R)

is not so important in our approach. Instead of postulating the existence of a group

of linear changes of background illumination, we have shown that the quantum

description that we propose naturally leads to consider boost maps as illumination

changes. These illumination changes are isometries of the Klein disk K1/2.

7 Conclusion
We have shown that the space P of perceived colors can be interpreted as the

effect space of a real quantum system, more precisely a rebit. The state space S
of this system is isometric to the Klein disk K of constant negative curvature.

The chromatic state space of perceived colors is a Bloch disk of real dimension 2

that coincides with the Hering disk given by the color opponency mechanism. This

quantum description creates a deep connection between the works of H. Yilmaz [14],

[15] and H.L. Resnikoff [5]. In particular, it allows to recover in a natural way the
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following result of H. L. Resnikoff: the surface of constant magnitude are isometric

to the Klein disk of constant negative curvature equal to -1 [5]. Finally, one may

envisage to characterize the individual color vision from a convex subset of the effect

space E(S) and/or a convex subset of the state space S endowed with the Hilbert

metric. Further investigations will be devoted to the properties of this metric space

in connection with MacAdam ellipses [52].
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