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Laurent Soucasse1†, Bérengère Podvin2, Philippe Rivière1 and
Anouar Soufiani1
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This paper investigates the large-scale flow reorientations of Rayleigh-Bénard convection
in a cubic cell using Proper Orthogonal Decomposition (POD) analysis and modelling.
A Direct Numerical Simulation (DNS) is performed for air at a Rayleigh number of 107

and shows that the flow is characterized by four quasi-stable states, corresponding to a
Large-Scale Circulation (LSC) lying in one of the two diagonal planes of the cube with a
clockwise or anticlockwise motion, with occasional brief reorientations. POD is applied
to the joint velocity and temperature fields of an enriched database which captures the
statistical symmetries of the flow. We found that each quasi-stable state consists of a
superposition of four spatial modes representing three types of structures: (i) a mean-
flow mode consisting of two stacked counter-rotating torus-like structures; (ii) two large-
scale 2D-rolls (pair of degenerated modes) which form large-scale diagonal-rolls when
combined together; (iii) an eight-roll mode that transports fluid from one corner to the
other and strengthens the circulation along the diagonal. In addition, we identified three
other modes that play a role in the reorientation process: two boundary-layer modes (pair
of degenerated modes) that connect the core region with the horizontal boundary layers
and one mode associated with corner rolls. The symmetries of the different POD modes
are discussed, as well as their temporal dynamics. A description of the reorientation
process in terms of POD modes is provided and compared with other modal approaches
available in the literature. Finally, Galerkin projection is used to derive a POD-based
reduced order model. Unresolved modes are accounted for in the model by an extra
dissipation term and the addition of noise. A seven-mode model is able to reproduce the
low frequency dynamics of the large-scale reorientations as well as the high frequency
dynamics associated with the LSC rotation. Linear stability analysis and sensitivity
analysis confirm the role of the boundary-layer modes and the corner-rolls mode in the
reorientation process.

Key words: cubic Rayleigh-Bénard cell, flow reorientation, Proper Othogonal Decom-
position
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1. Introduction

Turbulent buoyancy-driven convection is an ubiquitous phenomenon, occurring in the
atmosphere or the ocean and controlling various engineering applications. Rayleigh-
Bénard convection is a simple configuration for studying such processes, in which a
fluid is confined between two horizontal plates, heated from the bottom and cooled from
above. One of the main features of interest of the convective transport is the large-scale
motion from bottom hot to top cold walls, because it carries most of the kinetic energy
and most of the heat. The structure of this large-scale motion, referred to as Large Scale
Circulation (LSC) in the literature, strongly depends on the shape of the container. It is
made of one or several rolls depending on the ratio between the vertical and the horizontal
characteristic lengths. The position and the shape of these large-scale coherent structures
may vary over time and are affected by the small scale properties of the turbulence.

In a cylindrical container with aspect ratio of unity (diameter equal to height), the
LSC is made of a single dominant roll lying in a vertical square section. The LSC
experiences irregular azimuthal displacements called reorientations, consisting of either
a rotation of the LSC around the centreline or a cessation of the LSC (Brown et al.
2005; Benzi & Verzicco 2008; Mishra et al. 2011). These reorientation events follow a
Poisson distribution over a wide range of time scales (Sreenivasan et al. 2002; Brown
et al. 2005). A specific effort has been devoted to discriminating the physical mechanisms
beyond rotation-led and cessation-led reorientations. The latter phenomenon is often
reproduced using quasi-square experimental devices (Sugiyama et al. 2010) or performing
2D numerical simulations in a square Rayleigh-Bénard cell (Castillo-Castellanos et al.
2016). The growth of counter-rotating corner rolls is shown to be responsible for the
cessation and reorientation of the LSC in this configuration.

The study of the large-scale motion of turbulent natural convection in cubic Rayleigh-
Bénard cells has received only a recent interest compared to the cylindrical or square
configurations. Unlike the cylindrical geometry, the cubic container does not possess an
azimuthal symmetry and the LSC stabilizes in one of the two diagonal vertical planes
leading to four potential quasi-stable states for the flow (the two diagonal planes combined
with clockwise or anticlockwise motion). Random low-frequency reorientations between
these quasi-stable states have been observed in experiments (Vasiliev et al. 2016) and
numerical simulations (Foroozani et al. 2017) which consist in a rotation of the LSC from
one diagonal plane to the other. No cessation-led reorientation events have been reported
yet, although the study of Giannakis et al. (2018) suggests that reversals (reorientations
of an angle π) can happen.

Several models have been proposed to explain the dynamics of the reorientations in
the cube. Bai et al. (2016) derived a low-order model for predicting the time evolution
of the orientation angle θ of the LSC in a horizontal plane. They extended a previous
model predicting the reorientations in the cylinder (Brown & Ahlers 2007) by adding a
potential term corresponding to the pressure of the sidewalls. This potential is minimum
when the LSC lies in the diagonal planes (when the horizontal characteristic length of the
LSC is the heighest) and drives the orientation angle towards one of the four corners of
a horizontal cross section which corresponds to the four quasi-stable states. A Gaussian
stochastic noise is injected in the equation for modelling the turbulent fluctuations and
reorientations from one corner to another occur when a fluctuation is high enough to
cross the potential barrier corresponding to a mid-square vertical plane.

Another mechanism for explaining flow reorientations has been suggested by Vasiliev
et al. (2018). These authors considered the diagonal LSC rolls as the superposition of
two large scale 2D rolls lying in the two orthogonal vertical mid-planes of the cube with
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clockwise or anticlockwise motion. A reorientation event is understood as the cessation
and the reversal of one of these two planar rolls. Following previous works in the square
cell (Chandra & Verma 2011, 2013), they modelled the 3D velocity field by superposing
a two-modes description (a single-roll mode and a quadrupolar mode) for each of the
planar flows. They performed a Fourier analysis of this model flow which compares well
with numerical simulation data.

Giannakis et al. (2018) performed a Koopman analysis of direct numerical simulation
data in a cubic Rayleigh-Bénard cell. The Koopman analysis offers a modal description
of the velocity and temperature fields in terms of eigenmodes that evolve periodically in
time according to their complex eigenvalue (Rowley et al. 2009). The authors extracted
four primary Koopman eigenmodes which were necessary to reconstruct the four quasi-
stable macroscopic states. Two of these primary modes are a complex conjugate pair
and correspond to single-roll modes lying in the two diagonal planes. Eight secondary
Koopman eigenfunctions (four complex conjugate pairs) were also identified and each
pair was shown to be associated with one of the quasi-stable states. The analysis was
however limited by the time integration (though very large for a DNS) because of the low-
frequency of the reorientation events. Especially the four stable states were not equally
sampled and the Koopman eigenfunctions did not follow expected symmetry properties.

Unlike the Koopman analysis, the Proper Orthogonal Decomposition (POD) is a modal
decomposition method which extracts pure spatial modes from a statistical analysis of
sampled numerical data without any assumption about a temporal connection between
the different samples. The method is efficient in capturing the large-scale coherent struc-
tures as POD modes are selected using an energy-based criterion. In addition, POD-based
low order models can be easily derived using Galerkin projection of the Navier-Stokes
equations onto a reduced set of POD modes, since they form an orthogonal basis. POD
has been applied to Rayleigh-Bénard convection in cylindrical configuration (Bailon-Cuba
et al. 2010) or in rectangular cavities (Verdoold et al. 2009; Podvin & Sergent 2012). In
the square cell, the POD analysis has provided a better understanding of the reversal
mechanism and has led to the development of low order models, able to reproduce the
dynamics of the large-scale motion (Podvin & Sergent 2015, 2017). However, the method
has not been applied to study the reorientation mechanisms in the cubic cell so far.

This paper aims at giving a novel insight into the large-scale flow reorientations in
the cubic Rayleigh-Bénard cell from POD analysis and modelling. We have performed
a long term Direct Numerical Simulation (DNS) of temperature and velocity fields at a
Rayleigh number of 107 in air at room temperature (Prandtl number of 0.707) whose
results are given in section 2. Section 3 discusses in detail the empirical POD spatial
modes extracted from the simulation in light of their role in the reorientation process. A
6 modes reduced order model that captures the dynamics of the large-scale reorientations
is then derived in section 4.

2. Direct numerical simulations

2.1. Problem setup and governing equations

We consider a cubical cavity of size L filled with air at ambient temperature, heated
from below and cooled from above. Top and bottom walls are maintained at uniform
temperature Tc and Th and the four lateral walls are assumed to be adiabatic. Governing
equations under Boussinesq approximation are

∇ · u = 0, (2.1)
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∂u

∂t
+ u ·∇u = −∇p+ Pr θ ez +

Pr√
Ra
∇2u, (2.2)

∂θ

∂t
+ u ·∇θ =

1√
Ra
∇2θ, (2.3)

where u = (u, v, w) is the dimensionless velocity vector, p is the dimensionless pressure
and θ is the reduced temperature. A no-slip velocity condition (u = 0) is prescribed on
the six walls of the cavity and thermal boundary conditions are written as follows

θ = 0.5 on z = 0,

θ = −0.5 on z = 1,

∇θ · n = 0 on x = 0, x = 1, y = 0, y = 1

 (2.4)

where x, y and z are the dimensionless Cartesian coordinates. The Rayleigh number
which controls the flow regime is set to 107 and is given by Ra = gβe∆TL

3/(νκ),
where g is the gravitational acceleration, βe is the thermal expansion coefficient, ν is the
kinematic viscosity, κ is the thermal diffusivity and ∆T = (Th − Tc) the temperature
difference between hot and cold walls. The Prandtl number is set to 0.707 and is given
by Pr = ν/κ. Equations are made dimensionless using the length of the cavity L, the
reference time L2/(κ

√
Ra) and the reduced temperature θ = (T − T0)/∆T , T0 being the

mean temperature between hot and cold walls.
The problem satisfies four independent reflection symmetries Sx, Sy, Sz and Sd with

respect to the planes x = 0.5, y = 0.5, z = 0.5 and x = y (Puigjaner et al. 2008). These
symmetries act on the velocity and temperature fields as follows

Sx :
(x, y, z)→ (1− x, y, z)
(u, v, w, θ)→ (−u, v, w, θ)

}
(2.5)

Sy :
(x, y, z)→ (x, 1− y, z)
(u, v, w, θ)→ (u,−v, w, θ)

}
(2.6)

Sz :
(x, y, z)→ (x, y, 1− z)
(u, v, w, θ)→ (u, v,−w,−θ)

}
(2.7)

Sd :
(x, y, z)→ (y, x, z)
(u, v, w, θ)→ (v, u, w, θ)

}
(2.8)

These four elementary symmetries generate a symmetry group of sixteen elements. In
unsteady regime, we expect these symmetries to be satisfied by the time-averaged flow
field.

2.2. Numerical methods

Equations (2.1-2.3) are solved using a Chebyshev collocation method for the three
dimensions of space (Xin & Le Quéré 2002). The pressure-flow coupling is ensured by a
projection method, in two steps. First, momentum and energy equations are solved using
the previous time step pressure field. Then, a pressure correction term is calculated from
a Poisson equation and the predicted velocity is corrected in order to force the velocity
divergence free condition. Time integration is performed through a second order temporal
scheme combining a Backward Differentiation (BDF2) scheme for the linear terms with
an Adams Bashforth extrapolation of convective terms. This algorithm is implemented for
parallel computations applying domain decomposition along the z-vertical direction (Xin
et al. 2008).
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Figure 1. Diagram of the four quasi-stable flow states and associated sign of x and y
components of the global angular momentum.

The spatial mesh is made of 81 Chebyshev collocation points in the x and y directions
and 4×21 Chebyshev collocation points (4 spatial domains discretized with 21 points)
in the z direction. The number of spatial collocation points in the kinetic and thermal
boundary layers (Nu,BL and Nθ,BL) is about 10 in the x and y directions and about 6 in
the z direction, which is satisfactory regarding the criterion proposed by Shishkina et al.
(2010) (Nu,BL = 0.31Ra0.15 andNθ,BL = 0.35Ra0.15 for Pr ' 0.7). The thicknesses of the
kinetic and thermal boundary layers have been estimated using the correlations provided
by the same authors and are respectively equal to δu/L = 0.027 and δθ/L = 0.031 at
Ra = 107.

The dimensionless time step is 2.5 × 10−3. Starting from a fluid at u = 0 and θ = 0,
equations are first integrated over a dimensionless time period of 2,000 in order to reach
the asymptotic regime and then integrated over a dimensionless time period of 10,000 to
conduct the analysis. The time-averaged Nusselt number over this second period is equal
to 16.24, which is consistent with the value of 16.57 found by Giannakis et al. (2018) for
the same Rayleigh number and a nearly identical Prandtl number of 0.7.

2.3. Large-scale flow structures

Four quasi-stable flow states are observed in the numerical simulation. The Large Scale
Circulation (LSC) associated with these states consists of a dominant roll in one of the
two diagonal planes x = y or x = 1 − y with a clockwise or anticlockwise motion as
shown in figure 1. These four flow states have been reported by other researchers in
numerical studies (Foroozani et al. 2017; Giannakis et al. 2018; Vasiliev et al. 2018) and
experimental studies (Bai et al. 2016; Vasiliev et al. 2016)).

The switches between these states can be monitored with the time evolution of the
x and y components of the global angular momentum with respect to the centre of the
cavity r0 = (0.5; 0.5; 0.5)

L =

∫
(r − r0) ∧ u dr (2.9)



6 L. Soucasse, B. Podvin, Ph. Rivière and A. Soufiani

0 2000 4000 6000 8000 10000
time

-0.04

-0.02

0

0.02

0.04
an

g
u

la
r 

m
o

m
en

tu
m

L
x

L
y

L
z

Figure 2. Time evolution of the three components of the angular momentum.

that is plotted in Fig. 2. Both components Lx and Ly display quasi-stable periods with
moderate oscillations around a mean value of ±0.2 separated by abrupt aperiodic sign
switches. A sign switch of one of the x or y components of the global angular momentum
corresponds to a rotation of the LSC of π/2 from one diagonal plane to another. Such
transition will be referred to as a reorientation of the LSC in the remainder of the
paper. Interestingly, a simultaneous sign switch of both Lx and Ly is never observed
in the simulation. This would be equivalent to a flow reversal (as observed in a square
Rayleigh-Bénard cell by Podvin & Sergent (2015)) where the direction of rotation of the
LSC changes within the same diagonal plane. While the switching mechanism between
states is a non periodic phenomenon, the average time spent in a quasi-stable flow state
can be estimated by tracking the sign switches of angular momentum components. About
12 switches were identified in the simulation, which corresponds to a mean period of about
830 units. A more systematic analysis will be carried out in the next section.

The structure of the flow in one of the quasi-stable states (Lx < 0 and Ly < 0)
can be observed in figure 3 where an instantaneous flow field at t = 4610 and a time-
averaged flow-field during the period [4500-5500] are shown. A fluid parcel rotates in the
diagonal LSC in approximately 50 time units if we take a reference velocity of 0.076,
obtained by averaging the absolute value of the vertical velocity in the horizontal mid-
plane, and a reference travel path length of 3.85, estimated by an ellipsoid trajectory in
the diagonal plane. This estimate agrees well with the dominant oscillatory time scale
Tc ∼ 45 identified in the temporal spectrum of the angular momentum. A period of
1000 time units is then sufficient to correctly capture the mean features of the quasi-
stable state. The instantaneous and time-averaged flow fields in figure 3 show a LSC
lying in the diagonal plane x = 1 − y. The fluid flows up along the left vertical edge
(x; y) = (1; 0) and flows down along the right vertical edge (x; y) = (0; 1). This main
diagonal roll is slightly tilted and two small counter-rotating rolls are noticeable in the
top left corner (x; y; z) = (1; 0; 1) and in the bottom right corner (x; y; z) = (0; 1; 0).
Along the isothermal walls, part of the fluid moves away from the main diagonal plane
and forms secondary rolls in the opposite corners. These structures spread up to mid-
height and get back to the main stream along the two vertical edges of the diagonal
plane.
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Figure 3. Instantaneous flow field at t = 4610 (left) and time-averaged flow field during the
period t ∈ [4500− 5500] (right). Streamlines and isotherms θ = {0;±0.05;±0.1}.

3. Proper Orthogonal Decomposition analysis

3.1. Methodology

The Proper Orthogonal Decomposition (Berkooz et al. 1993) aims at finding an optimal
basis of spatial modes φn(r) for a vector field U(r, t) with respect to its energy content∫
〈U(r, t)2〉dr, where 〈·〉 denotes the time average. The spatial modes are sought such

that they maximize the projection of U(r, t) which leads to the following eigenvalue
problem ∫

Ω

M∑
k=1

〈Um(r, t)Uk(r′, t)〉φkn(r′)dr′ = λnφ
m
n (r), (3.1)

M being the dimension of the vector field and Ω the spatial domain. The POD modes
form an orthonormal basis allowing the decomposition of the variable field U(r, t)

U(r, t) =

∞∑
n=1

an(t)φn(r). (3.2)

The projection coefficients an(t) are statistically uncorrelated and their energy is equal
to the eigenvalue λn: 〈an(t)am(t)〉 = δnmλn where δnm is the Kronecker symbol. The
eigenvalue associated with a POD mode is thus a measure of its energy content and the
objective of the method is to restrict the decomposition (3.2) to a few modes with the
largest eigenvalues so that the flow dynamics can be analyzed in a low-order subspace
able to capture the most of the energy of the field U(r, t).

To apply the POD method to natural convection flows, we have considered vector fields
U = [u, v, w, γθ] where γ is a scaling factor given by

γ2 =

〈∫
[u2(r, t) + v2(r, t) + w2(r, t)]dr∫

θ2(r, t)dr

〉
(3.3)

introduced for instance by Podvin & Le Quéré (2001). This scaling factor allows the
velocity and temperature fields to have the same energy and is equal to γ = 1.303 in the
present study. We have also applied the POD method independently to velocity fields
and temperature fields: the same first spatial modes were obtained although they were
not ranked in the same order in the energy spectrum. A similar conclusion was drawn
by Podvin & Sergent (2015) for natural convection flows in a square Rayleigh-Bénard
cell.
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For solving the eigenvalue problem (3.1), the method of snapshots (Sirovich 1987) is
used. It relies on the ansatz where the eigenmodes are written as a linear combination of
N instantaneous flow fields U(r, ti) (snapshots) extracted at discrete times ti

φn(r) =

N∑
i=1

U(r, ti)Φ
i
n. (3.4)

The vectors Φn satisfy the eigenvalue problem

C Φn = λnΦn, (3.5)

where C is the temporal correlation matrix of the snapshots given by

Cij =
1

N

∫
Ω

U(r, ti) ·U(r, tj) dr. (3.6)

Snapshots of the temperature and velocity fields are extracted from the DNS with a
constant sampling period of 10 in dimensionless time units, making a statistical set of
1,000 samples. The four flow states described in section 2.3 are not equally represented in
the snapshot set, although there is no physical evidence suggesting that these four states
are not equiprobable. This is an artefact owing to the relatively short simulation time
compared to the time scale separating two reorientations. In order to enforce an equal
statistical weight for each flow state and to improve the convergence of the POD method,
we have built an enlarged snapshot set, obtained by the action of the symmetry group
of the problem on the original snapshot set. As seen in section 2.1 the symmetry group
contains 16 elements and this allows us to multiply the number of snapshots by a factor
of 16 to obtain a final snapshot set of 16,000 samples. The use of statistical symmetries
of the flow in POD is discussed at length by Moin & Moser (1989) and Holmes et al.
(1996).

3.2. POD spectrum and associated modes

The POD eigenspectrum is shown in Fig. 4. The decay of the spectrum is rather
slow owing to the three dimensions of space and the turbulent nature of the flow. The
first three modes contain however 60 % of the total energy. An interesting feature of the
spectrum is the presence of pairs of degenerated modes with strictly identical eigenvalues,
for instance modes 2 and 3, modes 5 and 6 or modes 10 and 11. These pairs of modes
result from the equivalence between directions x and y in the horizontal plane and are
associated with spatial structures that are the image of each other after a rotation of π/2
around the z-axis. Interestingly, when applying POD to the original (non-symmetrised)
snapshot set, we have identified similar pairs of structures, linked by a rotation of π/2
around the z-axis. However one observes a small discrepancy in energy between these
modes due to the statistical imbalance between the four quasi-stable flow states. Apart
from the first three modes that clearly stand out from the spectrum, it is difficult to
decide which modes have to be retained in a reduced decomposition based on an energy
criterion. In the following we will restrict the analysis to the first seven modes. This will
be justified in section 4 where it will be shown that a seven-mode reduced-order model
is able to fairly reproduce the dynamics of the large-scale flow reorientations.

Figure 5 shows the 3D thermal and flow patterns of the first seven POD modes.
Positive iso-surfaces of the Q-criterion (Q = −0.5 ∂ui/∂xj×∂uj/∂xi, Hunt et al. (1988))
are used to highlight the rotating zones. The Q-criterion compares strain and vorticity
and a positive value means that vorticity is dominant. Temperature and velocity fields of
modes 4 and 7 are also displayed in figure 6 in a 2D vertical plane near the sidewall x = 0.
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Figure 4. POD eigenspectrum normalized such that
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i λi = 1 (black, left axis) and
associated cumulated spectrum (red, right axis).

In addition, the angular momentum with respect to the x and y directions together with
the symmetry properties of the first seven modes are given in table 1.

The first mode corresponds to the mean flow. The velocity field is made of two counter-
rotating torus-like structures confined respectively to the upper half and the lower half
of the cube (the vertical component of the velocity is zero at the horizontal mid-height
plane). In the upper (respectively lower) torus, the fluid flows down (up) along the
adiabatic walls and turns back to the centre. The temperature field is vertically stratified
from the bottom hot wall to the top cold wall. The vertical temperature gradient (heat
flux) at the isothermal walls is the highest at the centre and the lowest at the corners.
The velocity and temperature fields of this first mode satisfy all the symmetries of the
problem and thus the associated global angular momentum is null.

Modes 2 and 3, which have the same eigenvalue, are made of a single roll around
the x-axis and the y-axis respectively, which corresponds to LSC lying in x-planes and
y-planes respectively. They of course possess a strong global angular momentum with
respect to the x-axis (mode 2) or the y-axis (mode 3) and it can be inferred at this stage
that the two modes have to be combined to form the quasi-stable diagonal rolls observed
in the simulations. The two modes are identical after a rotation of π/2 and both break
the diagonal symmetry. It can be seen in figure 5 that the temperature field is correlated
with the velocity field: the temperature is positive (hot) when the flow is ascending and
negative (cold) when the flow is descending. Because these two modes form a pair of
degenerated eigenvectors, they are not uniquely defined and they can be replaced in the
POD basis by any linear combination of the two original vectors (φ2,φ3) as long as
the orthonormality is preserved. Namely, an infinity of eigenvector pairs (φ′2,φ

′
3) can be

generated, providing that they satisfy φ′2 = αφ2 + βφ3 and φ′3 = ∓βφ2 ± αφ3, α and
β being real constants such that α2 + β2 = 1. For instance, we could transform the two
eigenmodes of figure 5 using α =

√
2/2 in order to obtain two single roll-modes each

lying in one of the two diagonal planes. A diagonal quasi-stable LSC would there be
obtained by the activation of one mode and the cancellation of the other. However, we
will preserve modes 2 and 3 as pure x-roll and pure y-roll in this study.

Mode 4 is made of 8 counter-rotating rolls along the x and y axis with 4 rolls in the
upper half of the cube and 4 rolls in the lower half of the cube. Like the mean flow,
the vertical component of the velocity is zero at the horizontal mid-height plane (see
figure 6). The rolls transport fluid from one corner to the other, they are the largest near
the adiabatic walls and shrink as they progress towards the mid z-axis. Combined with
mode 1 (mean flow), mode 4 reinforces the corner flows within one of the two diagonal
planes and softens the corner flows within the other orthogonal diagonal plane. We will
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mode Lx Ly Symmetries
1 - - Sx Sy Sz Sd

2 0.299 - Sx ASy ASz -
3 - 0.299 ASx Sy ASz -
4 - - ASx ASy Sz Sd

5 0.026 - Sx ASy ASz -
6 - 0.026 ASx Sy ASz -
7 - - Sx Sy Sz ASd

Table 1. Angular momentum and symmetry properties of the first seven modes. Sx/y/z/d and
ASx/y/z/d denote respectively a symmetry and an anti-symmetry with respect to the planes
x = 0.5, y = 0.5, z = 0.5 and x = y.

see later that this mode stabilizes the diagonal flow states. It is interesting to note that the
first four POD modes are similar to the four primary Koopman eigenfunctions identified
by Giannakis et al. (2018). However, the Koopman eigenfunctions presented in their
study were not symmetrised. In addition, the Koopman eigenfunctions corresponding to
POD modes 2 and 3 were made of single LSC-roll located in the diagonal plane instead
of the mid x-plane and the mid y-plane in our study.

Modes 5 and 6 form another pair of degenerated modes and have been chosen consis-
tently with the pair of modes 2 and 3. Mode 5 is made of two longitudinal co-rotating
rolls lying in the mid x-plane, one in the upper half of the cell, one in the lower half of the
cell. The two rolls are connected by vertical streams along the planes x = 0 and x = 1.
The interaction between the horizontal streams in the mid plane and the vertical streams
near the walls gives rise to two small rotating structures that are responsible for a weak
global angular momentum along the x-axis. Mode 5 possesses the same symmetries as
mode 2 suggesting a strong interaction between the two modes. Mode 5 slows down or
speeds up mode 2 depending on whether they are combined with same sign or opposite
sign. Mode 6 is the image of mode 5 after a rotation of π/2 and possesses the same
symmetry as mode 3. The relationship between modes 3 and 6 is thus identical to the
relationship between modes 2 and 5. Modes 5 and 6 will be referred to as boundary-layer
modes in the remainder of the paper.

Mode 7 is similar to mode 4, as it contains 8 counter-rotating structures, 4 confined
in the upper half of the cell and 4 confined in the lower half of the cell. However, the
rotation-axis of these rolls are aligned along diagonal axis x = 1− y and x = y instead of
the x-axis and the y-axis. These rolls bring fluid from the mid x-plane to the mid y-plane
(and vice versa) and we can foresee important coupling with x-plane modal structures
(modes 2 and 5) and y-plane modal structures (modes 3 and 6). We can also infer that
mode 7 would destabilize a diagonal LSC. Its symmetry properties are opposite to mode
4, except for the Sz symmetry satisfied by both modes.

To conclude, these 3D POD modes of the cubical cell can be compared with the 2D
POD modes of the square cell (Podvin & Sergent 2017). In that perspective, mode 1 would
correspond to the 2D quadrupolar mode (mean flow). Modes 2 and 3 would correspond
to the 2D LSC mode, the degeneracy coming from the third dimension. Modes 5 and 6
(degenerate) would correspond to the 2D L∗ mode that connects the core region with
the horizontal boundary layers. This last mode has been identified as a precursor for 2D
reversals of the LSC. However, it is worth noting that modes 4 and 7 are pure 3D modes
that have no equivalent structures in the 2D square case.
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Figure 5. Seven first POD modes. Streamlines and iso-surfaces of Q-criterion (Q = 5 for modes
1-3 and Q = 30 for modes 4-7) coloured by mode temperature. Colourmap for mode temperature
ranges from -0.5 (blue) to 0.5 (red).

3.3. Temporal dynamics

The initial (non-symmetrised) snapshot set has been projected onto the reduced POD
basis of 7 modes in order to compute the associated DNS POD coefficients at discrete
times ti

an(ti) =

∫
Ω

U(r, ti) · φn(r) dr (3.7)

The resulting time evolution of the POD coefficients is shown in figure 7 where dashed
lines indicate reorientation events.

As expected, the coefficient associated with the first mode (mean flow) is nearly
constant and oscillates around a mean value of aeq1 =

√
λ1 = 0.1271. Because modes

2 and 3 are pure x-roll and y-roll, their associated POD coefficients are correlated with
the time evolution of the x and y components of the global angular momentum shown
in figure 2. Therefore, the coefficients of modes 2 and 3 oscillate around a mean value
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X Y

Z

mode 7  x=0.15

X Y

Z

mode 4  x=0.05

Figure 6. Temperature (colour) and velocity (vectors) fields in the vertical plane x = 0.05 of
POD mode 4 (left) and x = 0.15 of POD mode 7 (right). Colourmap for temperature ranges
from -0.5 (blue) to 0.5 (red).

of aeq2/3 = ±
√
λ2/3 = ±0.0675 during quasi-stable state period, which confirms that

diagonal LSC flows are obtained by superimposing a x-plane LSC (mode 2) and a y-
plane LSC (mode 3). We have shown in section 2.3 that reorientations occur when
either the x-component or the y-component of the angular momentum changes sign.
From a POD point of view, a reorientation occurs when either the coefficient a2 or
a3 changes sign which corresponds to a reversal (a change of the sense of rotation) of
either the x-roll (mode 2) or the y-roll (mode 3). This interpretation agrees with the one
proposed by Vasiliev et al. (2018). We note that a cancellation or cessation of a2 (or a3)
may occasionally not result in a reorientation, as can be seen at t = 5800 in figure 7,
where a2 drops to values close to zero for a short period before increasing back to its
initial amplitude. This physically corresponds to a temporary alignment of the large-scale
circulation with the side walls of the cube followed by a return to the original diagonal
state.

It is worth noting that the time evolution of the 4th POD coefficient also follows the
reorientation dynamics: a4 oscillates around a mean value of aeq4 = ±

√
λ4 = ±0.0249

and experiences rapid sign switches at each reorientation. The 4th coefficient is actually
strongly correlated with the product of the 2nd and 3rd coefficients (a4(t) ∝ a2(t)a3(t)).
Mode 4 could thus be interpreted as an indicator of the diagonal plane in which the LSC
takes place: a4 > 0 means the LSC lies in the plane x = 1 − y, a4 < 0 means the LSC
lies in the plane x = y.

The time evolution of the 5th to 7th coefficients (a5 and a6 not shown) is chaotic with
a dominant high frequency around 2 × 10−2 corresponding to the rotation frequency
of the diagonal LSC (see section 2.3) and does not seem to follow any specific pattern
during reorientations. However, the time evolution of coefficient products a5a7 and a6a7 in
figure 7 shows an interesting feature: their sign is correlated with respectively the opposite
of the 2nd and the 3rd mode coefficients. This suggests a strong quadratic interaction
between the 2D-rolls (mode 2 or 3), the boundary layer modes (modes 5 or 6) and the
diagonal corner rolls (mode 7). In addition, we will see in section 4 that modes 5 to 7
are necessary in the reduced-order model to produce flow reorientations. The correlation
between modes 2 and 5, and between modes 3 and 6, has been further confirmed by
applying a moving average over 90 time units to a5(t) and a6(t), which shows a small
equilibrium contribution aeq5/6 during quasi-stable states, much lower than the standard
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deviation
√
λ5/6. This equilibrium contribution switches sign at each reversal of the

associated planar rolls: sgn(aeq5 ) = − sgn(aeq2 ) and sgn(aeq6 ) = − sgn(aeq3 ).
The analysis of the time evolution of POD coefficients showed that only the four first

modes are active (have a significant mean value) during quasi-stable states. We have
then performed four-mode reconstructions of the flow field in order to reproduce the
reorientation that happens near t = 5590. Figure 8 shows isotherms and streamlines of
three reconstructed flow fields. The left flow field in figure 8 corresponds to the mean
quasi-stable state (Lx < 0, Ly < 0) before the reorientation and has been computed
such as U∗ =

√
λ1φ1 −

√
λ2/3(φ2 + φ3) +

√
λ4φ4. This reconstructed flow field agrees

with the time averaged flow field of figure 3. The four modes are necessary to reproduce
all the flow patterns as modes 2 and 3 capture the diagonal LSC while modes 1 and
4 capture the corner flows. The flow field shown in the middle of figure 8 corresponds
to a transient state, when the x-roll vanishes and the LSC purely lies in a y-plane. It
has been computed such that U∗ =

√
λ1φ1 −

√
λ2/3φ3. The combination of the y-roll

(mode 3) with the mean flow (mode 1) breaks the Sz symmetry and forms two counter-
rotating structures aligned along the top front horizontal edge and the bottom back
horizontal edge. This transient state is always observed during a reorientation and is
in really good agreement with the transient state reported by Foroozani et al. (2017).
Finally, the right flow field corresponds to the mean quasi-stable state (Lx > 0, Ly < 0)
after the reorientation, that is after the reversal of the x-roll, and has been computed
such as U∗ =

√
λ1φ1 +

√
λ2/3(φ2−φ3)−

√
λ4φ4. Owing to the symmetry of the modes,

the right flow field is the exact image of the left flow field after a π/2 rotation.

4. Reduced order modelling

4.1. Model derivation

Using the decomposition (3.2) in Eqs (2.1-2.3) and applying Galerkin projection leads
to a set of coupled ordinary differential equations of the form

dan(t)

dt
= Lnm am(t) +Qnmp am(t)ap(t) + Tn(t), (4.1)

where Tn(t) is a closure term for capturing the effects of the truncation. The linear term
can be split according to Lnm = LBnm + LDnm where superscripts B and D stand for
buoyancy contribution and diffusion contribution. The coefficients LBnm, LDnm and Qnmp
are defined by

LBnm =

∫
Pr φmθ φ

n
3 dr, (4.2)

LDnm =

∫ [
Pr√
Ra

∂2φmi
∂xj∂xj

φni +
γ2√
Ra

∂2φmθ
∂xj∂xj

φnθ

]
dr, (4.3)

Qnmp =

∫ [
−φpj

∂φmi
∂xj

φni − γ2φ
p
j

∂φmθ
∂xj

φnθ

]
dr. (4.4)

Note that the procedure is independent of the existence of symmetry in the problem.
In the present case, the model expansion has been actually restricted to the first seven
modes because the 8th mode does not possess any significant interaction with other modes
(namely Q8mp ' 0, ∀m < 8 and ∀p < 8). The values obtained for coefficients LB , LD

and Q for the first seven modes have been uploaded as supplementary material of the
paper. We note that the dimension of the dynamical system is actually six, as the first
mode a1 was taken to be constant, based on its evolution observed in the DNS.
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Figure 7. Time evolution of the DNS POD coefficients. Each quasi-stable state is depicted by
a different colour: orange Lx > 0, Ly > 0; yellow Lx < 0, Ly > 0; blue Lx < 0, Ly < 0; purple
Lx > 0, Ly < 0.
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Figure 8. Streamlines and isotherms θ = {0;±0.05;±0.1} of reconstructed flow fields using the
first four POD modes. Left: mean stable state (Lx < 0, Ly < 0); middle: transient flow state
(pure y-roll) and right: new mean stable state (Lx > 0, Ly < 0).

Following Podvin & Sergent (2015), the closure term is modelled as an equivalent
dissipation term, expressed as a combination of linear and cubic terms such that

Tn(t) =

LAnm − αnm∑
p>2

|ap(t)|2
 am(t), (4.5)

where LAnm and αnm are constants to be determined. The model has then the following
form

da1
dt

= 0 (4.6)

da2
dt

= (LT22 − α22r
2)a2 + (LT25 − α25r

2)a5 + 0.29a1a2 − 0.53a3a4 (4.7)

+0.33a2a7 + 0.18a5a7 + 0.01a1a5 + 0.005a4a6
da3
dt

= (LT33 − α33r
2)a3 + (LT36 − α36r

2)a6 + 0.29a1a3 − 0.53a2a4 (4.8)

−0.33a3a7 − 0.18a5a7 + 0.01a1a6 + 0.005a4a5
da4
dt

= (LT44 − α44r
2)a4 + 0.48a1a4 + 1.06a2a3 + 1.98a2a6 + 1.98a3a5 + 1.1a5a6(4.9)

da5
dt

= (LT55 − α55r
2)a5 + (LT52 − α52r

2)a2 + 0.11a1a2 − 1.98a3a4 (4.10)

+0.4a1a5 − 0.55a4a6 + 0.2a5a7 + 0.09a2a7
da6
dt

= (LT66 − α66r
2)a6 + (LT63 − α63r

2)a3 + 0.11a1a3 − 1.98a2a4 (4.11)

+0.4a1a6 − 0.55a4a5 − 0.2a6a7 − 0.09a3a7
da7
dt

= (LT77 − α77r
2)a7 + 0.58a1a7 (4.12)

+0.28(a3a6 − a2a5) + 0.67(a23 − a22) + 0.41(a26 − a25)

where r2 =
∑7
n=2 |an(t)|2, and LT = LB + LD + LA. The model is invariant by

a transformation of a4 → −a4, a2a3 → −a2a3, a5a6 → −a5a6, which corresponds
physically to diagonal changes. This ensures that the model dynamics are the same
for all four meta-stable states.

The interaction coefficients reproduce the symmetries of the modes that were pre-
viously discussed. In particular, modes 2 and 5 (resp. 3 and 6), which have the same
symmetries, are linearly coupled. The interaction coefficients of modes 1 and 4 with



16 L. Soucasse, B. Podvin, Ph. Rivière and A. Soufiani

modes 2 and 5 are the same as with modes 3 and 6. In contrast, the action of mode 7 on
modes 2 and 5 is opposite from that on modes 3 and 6. The evolution of mode 7 appears
driven by dissymmetries between a2 and a3 as well as between a5 and a6, which both
measure momentum and temperature differences between the x and the y directions.
Mode 7 therefore appears as a suitable candidate for symmetry-breaking and is expected
to play a significant role in the reorientations.

To determine the values of LT and α, we require that the diagonal states be fixed points
of the dynamical system aeqi . Examination of the DNS shown in figure 7 suggests that
aeq1 =

√
λ1, aeq2 = ±

√
λ2, aeq3 = ±

√
λ3, aeq4 = sgn(aeq2 a

eq
3 )
√
λ4, aeq5 = − sgn(aeq2 ) ε

√
λ5,

aeq6 = − sgn(aeq3 ) ε
√
λ6, aeq7 = 0, where ε = 0.2. This value of ε was obtained by taking the

conditional average of a5 (resp. a6) based on the sign of a2 (resp. a3) and averaging over
about 90 dimensionless time units (corresponding to a duration of about two recirculation
times Tc and also to a minor bound for the duration of a reorientation event). A negative
correlation between a2 and a5 (resp. a3 and a6) corresponds to a more efficient wind
and a strengthened connection between the boundary layers and the core at equilibrium,
which was also observed in Podvin & Sergent (2017).

At equilibrium the linear and cubic terms balance the quadratic contribution:(
LTnm − αnm

7∑
p=2

|aeqp |2
)
aeqm +Qnmpa

eq
ma

eq
p = 0 (4.13)

We then determine for each pair (n,m) the total contribution Anm = LTnm −
αnm

∑7
p=2 |aeqp |2. This is straightforward for mode 4 as there is only one non-zero

coefficient A44 (diagonal term). For modes 2, 3, 5 and 6, this involves setting the relative
importance between diagonal and off-diagonal terms, which can be characterized by
a coupling term Xi, whose definition and determination is detailed in appendix A. In
the case of mode 7, the value of the coefficient A77 which should balance the quadratic
contribution cannot be determined in a straightforward manner, since the mode is zero
at equilibrium. The linear and cubic coefficients for mode 7 were therefore adjusted
empirically in order to limit the energy in that mode, which tends to be overestimated
as it is the highest-order mode left in the truncation.

Once Anm is known, it remains to determine the respective values of LTnm and αnm.
As was shown in Podvin & Sergent (2015), the additional terms are modelled as

LA − αr2 ∼ −C〈k〉1/2 1

2

(
1 +

k

〈k〉

)
, (4.14)

where k = r2 is the energy of the fluctuating modes in the truncation and 〈k〉 is its

temporal average (〈k〉 ' r2eq =
∑7
p=2 |aeqp |2). If one identifies term by term the expressions

for each mode, one finds that

LAnm = −αnm〈k〉. (4.15)

Since Anm = LBnm + LDnm + LAnm − αnm
∑7
p=2 |aeqp |2, one obtains

αnm = −Anm − L
B
nm − LDnm

2
∑7
p=2 |a

eq
p |2

. (4.16)

However, we have noticed that the behaviour of the model did not appear to depend
strongly on the choice of α.
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Mode i 2 3 4 5 6 7
DNS

√
λi 0.0675 0.0675 0.0249 0.0178 0.0178 0.0166

Ti (filtered) 884 1514 703

Reference model 〈a2i 〉1/2 0.058 0.059 0.018 0.012 0.012 0.041
Ti (filtered) 1470 1433 815

Table 2. Statistics of the modes integrated in the model over a period of 50,000 time units with
noise (noise level 0.0012). Ti is defined as the mean interval between zeros of afi where afi is
the filtered time series of ai obtained by moving average over two recirculation times (90 units).
Intervals smaller than 90 units are excluded from the statistics.

4.2. Model integration

4.2.1. Histories

The values of the different parameters αnm and LTnm used in the model integration have
been uploaded as supplementary material of the paper. We checked that the behaviour
of the dynamical system was robust in a neighbourhood of the parameters chosen. The
model was integrated over a period of 50,000 time units from a random initial condition
close to one of the equilibria and compared with the DNS. A random noise perturbation
of amplitude 1.2×10−3 was added to the equations. The determination of the noise level
is discussed in appendix A. The rms of the amplitudes ai in the model are reported in
table 2. Except for the last mode of the truncation, which is overestimated by a factor
of 4, a good agreement between the model and the DNS - within 30% - is observed. We
note that the modes retained in the seven-mode truncation represent only 63% of the
total combined kinetic and thermal energy.

Histories for the model amplitudes ai are presented in figure 9 over a period of 10,000
time units and compared with their counterparts in the DNS shown in figure 7. A good
agreement is observed in the behaviour of the modes. The system spends long periods
of time near the equilibria |a2| = |aeq2 |, |a3| = |aeq3 |, separated by switches from one
diagonal to another, which corresponds to individual sign changes of a2 or a3. We note
that these sign changes can occasionally occur at the same time in the model (see around
t = 2250 and t = 3600 in figure 9). Although this was not observed over the duration
of the present DNS (which corresponds to a limited number of switches), simultaneous
switches i.e reversals along a given diagonal were observed by Giannakis et al. (2018).
However, infrequent cessations of either mode 2 or 3 which were observed in the DNS
are also present in the model: a3 cancels around t = 6100 or a2 cancels around t = 8500.
During these events, the LSC stabilizes in a x or a y plane (wall-parallel roll), even so
this does not last more than 100 time units.

The coupling between the modes reported earlier in the DNS appears to be captured by
the model. Firstly, as in the DNS, the amplitude of mode 4 is almost perfectly correlated
in the model with the product a2a3 (the correlation coefficient is larger than 0.9 in
both cases) and one has a4 ∼ Ca2a3 where C ∼ 5 in the model and C ∼ 6 in the DNS.
Secondly, as in the DNS, figure 9 shows that although modes 5, 6 and 7 appear to fluctuate
randomly on an individual basis, large excursions of the product a5a7 (respectively a6a7)
tend to have the same sign as the opposite of a2 (resp. a3), which therefore indicates a
connection between the interaction of these oscillating modes over long time scales and
the state of the LSC. The agreement is confirmed by the comparison of phase portraits
provided in figure 10. The dynamics of mode 2 and mode 5 is correctly captured by the
model. As noted earlier, the amplitude of mode 7 is overestimated by the model but
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Figure 9. Time evolution of the modelled POD coefficients. Each quasi-stable state is
depicted by a different colour (same colour legend as figure 7)

.

its qualitative behaviour appears to be correct. A 2-D histogram of modes 2 and 3 was
compared with the DNS in figure 11 - we note that unlike the phase portraits, symmetries
were applied to the model as well as the DNS data. The agreement is good and confirms
that the system spends most of its time near the diagonal states in both the model and
the DNS.
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Figure 10. Phase portrait of the amplitudes in the model (left) and in the DNS (right) top
row: a2 and a5 bottom row: a4 and a7
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Figure 11. Histogram in the (a2, a3) space. Left: model with noise amplitude 1.2× 10−3,
right: DNS. Both DNS and model data are symmetrized. Isocontours {0.2;0.3;0.4;0.6;0.8;1}.

4.2.2. Time scales

To characterize the times between the switches, we measure the times Ti, i ∈ {2, 3, 4}
separating zeros of ai. Due to strong oscillations in the coefficients which could create
numerical artefacts, we used a filtered version of the time series where a moving average
over T = 90 dimensionless time units was applied to ai. As mentioned earlier, this
time scale represents a lower bound for the time required for a full diagonal switch and
corresponds to two recirculation times. Values smaller than this time scale were therefore
also excluded from the statistics. Results are given in table 2 and show that the model
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displays time scales between switches of the order of several hundred units, in good
agreement with the DNS. We note that statistics for the DNS were obtained over a
shorter period (10,000 time units) than the model, which was integrated over a longer
period of time (50,000 time units). This accounts for the larger discrepancy between T2
and T3 observed in the DNS compared to the model.

Temporal spectra were computed for both the DNS and the model POD amplitudes.
We checked that the time scales observed were independent of the time scale chosen for
the noise signal in the model (10 dimensionless time units). Both sets were sampled at a
resolution of 10 dimensionless time units. Results are shown in figure 12 for selected modes
2 and 7. Due to the long period between the switches relative to the total integration
time, the characteristic time scale of switches is not clearly apparent in the spectra. A
short time scale of 45 units can be identified in the DNS, versus a characteristic scale of
about 110 in the model. This is larger by a factor of 2 than the recirculation time Tc,
which was identified in the DNS, but much less than the characteristic period between
reorientations. Given the size of the truncation which captures only about 60% of the
combined energy, we can consider that the agreement is relatively satisfactory. The model
is therefore able to exhibit both slow and fast dynamics on time scales comparable to
those observed in the DNS.

Below the short time scale, one can notice on the spectra that remaining frequencies
have higher amplitudes in the DNS compared to the model (this is also noticeable when
comparing figures 7 and 9). This is not surprising given that the smallest spatial scales
associated to the smallest time scales are only accounted for in the model through the
addition of noise and one cannot expect to capture these temporal scales with a low order
truncation.

4.3. Physical interpretation of the model

4.3.1. Four-mode model

To understand the influence of the different modes, and in particular the higher-order
ones, we consider a restriction of the model to the first four modes. The model has then
the following form:

da1
dt

= 0 (4.17)

da2
dt

= (LT22 − α22

4∑
k=2

akak) a2 + 0.29 a1a2 − 0.53 a3a4 (4.18)

da3
dt

= (LT33 − α33

4∑
k=2

akak) a3 + 0.29 a1a3 − 0.53 a2a4 (4.19)

da4
dt

= (LT44 − α44

4∑
k=2

akak) a4 + 0.48 a4a1 + 1.06 a2a3 (4.20)

where LT22 = LT33, α22 = α33 = α. As seen above, the model is characterized by four fixed
points corresponding to the diagonal states (aeq2 = ±a = ±

√
λ2, a

eq
3 = ±a = ±

√
λ3, a4 =

sgn(a2a3)
√
λ4) observed in the DNS. It also displays four fixed pure (wall-parallel) roll

states (a2s = ±as, a3 = a4 = 0) and (a2 = 0, a3 = ±as, a4 = 0).
A remarkable feature of the four-mode model is that it reproduces the nearly perfect

correlation between a4 and a2a3 observed in the DNS. We therefore have

a4 ∼ Ca2a3 with C > 0. (4.21)
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Figure 12. Fourier transform modulus |afi| = |âi| of POD amplitudes in the model (left) and
in the DNS (right). Top row: a2; bottom row: a7.

This means that: (i) the effect of mode 4 is analogous to a feedback cubic term and
(ii) the dynamics take place on the centre manifold a4 = Ca2a3, where the dynamical
system can be written as

da2
dt

= (γ − αa22 − (α− δ) a23 − αC2a22a
2
3) a2 (4.22)

da3
dt

= (γ − αa23 − (α− δ) a22 − αC2a22a
2
3) a3. (4.23)

where δ = −0.53C and γ = LT22/33 + 0.29 a1. Stability analysis around the equilibria can

then be performed in the (a2, a3) subspace. For the diagonal equilibria, one has γ−(2α−
δ)a2 − αC2a4 = 0, so that the Jacobian of the diagonal states (±a,±a, sign(a2a3)Ca2)
can be expressed as:

J2
d =

[
−2α(1 + C2a2)a2 −2(α− δ)a2 − 2αC2a4

−2(α− δ)a2 − 2αC2a4 −2α(1 + C2a2)a2

]
, (4.24)

which has two eigenvalues −2δa2 and 2δa2 − 4α(1 +C2a2)a2. For a roll state defined by
a2 = ±as, a3 = a4 = 0, one has γ − αa2s = 0, and the associated Jacobian is:

J2
s =

[
−2αa2s 0

0 δa2s

]
. (4.25)

An equivalent formulation is found for (a2 = 0, a3 = as, a4 = 0) by switching the two
rows.

The stability of the roll states and the diagonal states therefore depends on the sign
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Eigenvalues µi −0.16± 0.18i −0.005± 0.056i -0.089 -0.049

Eigenvectors
ξij , j = 2 0.08± 0.11i 0.14± 0.24i 0.059 -0.68
ξij , j = 3 0.08± 0.11i −(0.14± 0.24i) -0.059 -0.68
ξij j = 4 0.69 0 0 0.007
ξij , j = 5 0.10± 0.47i 0.20± 0.14i -0.68 0.19
ξij , j = 6 0.10± 0.47i −(0.20± 0.14i) 0.68 0.19
ξij , j = 7 0 -0.85 -0.23 0

Table 3. Linear stability eigenvalues µi of the system around the equilibrium
(a1, aeq2 , a

eq
3 , a

eq
4 , a

eq
5 , a

eq
6 , 0) and eigenvectors ξi expressed in the basis (ai, 2 6 i 6 7).

of δ = −0.53C. For δ < 0, which corresponds to the Galerkin projection, the diagonal
states are unstable and the roll states are stable (all eigenvalues are negative). However
the DNS corresponds to the situation where the roll states are unstable and the diagonal
states are stable, i.e the case δ > 0 (or equivalently a positive quadratic interaction
between modes 2, 3 and 4). The addition of higher-order modes is therefore necessary to
capture the correct dynamics.

4.3.2. Linear stability analysis of the full model

To investigate the influence of the modes in more detail, we study the stability of the
diagonal equilibria in the full model. Table 3 shows the eigenvalues µi and eigenvectors ξ

i
expressed in the basis of modes aj . Eigenvectors are either symmetric or antisymmetric
with respect to a2, a3, a5, a6 and are respectively orthogonal to a7 or to a4. All equilibria
are stable in the model. The most stable mode (µ = −0.16±0.18i) contains predominantly
mode a4 and has no component along a7. In contrast, the least stable eigenmode (µ =
−0.005 ± 0.056i) has a strong component in a7, confirming the destabilizing potential
of the corner flow, in agreement with other observations (Giannakis et al. 2018). This
least stable eigenvalue has an imaginary part of about 0.05, which corresponds to the
characteristic time scale of about 110 found in the dynamics of the model.

4.3.3. Sensitivity of the model

Another way to understand the role played by the different modes is to study the effect
of changes in the parameters of the model. Table 4 compares the statistics of the POD
amplitudes when small changes are applied to the model coefficients. Other parameters
such as the initial condition and the noise signal used to compute the reference statistics
are kept the same. The cubic terms were also kept constant when adjusting the linear
terms since they were not found to affect significantly the model dynamics. Results were
confirmed by linear stability analysis.

The first case in table 4 corresponds to a scenario where the intensities of modes 5 and
6 at equilibria are decreased by half, which corresponds to an equivalent decrease in the
coupling term X5/6 (see appendix A). Physically this means that the connection between
the large-scale circulation and the boundary layer is less intense, and we would expect
the equilibrium to be less stable, leading to a decrease in the inter-switch mean time.
This is indeed what is observed in the model. We then examine the effect of modifying
the linear terms LT in the equations for modes 5 and 6, which is equivalent to adjusting
the coupling terms X5/6 (see appendix A). Given the energy ratio between mode 2 and
mode 5 (resp. mode 3 and mode 6), it is clear that a moderate change in the linear term
LT52/63 will correspond to a larger modification of the diagonal term LT55/66. Table 4 shows
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Mode i 2 3 4 5 6 7

Reference model 〈a2i 〉1/2 0.058 0.059 0.018 0.012 0.012 0.041
Ti 1470 1433 815

a
′eq
5/6 = 0.5 aeq5/6 〈a2i 〉1/2 0.058 0.058 0.018 0.012 0.012 0.041

Ti 1177 1268 737

L
′T
55/66 = 0.75LT

55/66 〈a2i 〉1/2 0.056 0.056 0.017 0.016 0.017 0.043
Ti 1092 1230 810

L
′T
55/66 = 1.25LT

55/66 〈a2i 〉1/2 0.061 0.061 0.018 0.010 0.010 0.041
Ti 1791 1574 892

L
′T
77 = 0.75LT

77 〈a2i 〉1/2 0.056 0.056 0.015 0.014 0.014 0.056
Ti 751 698 420

L
′T
77 = 1.25LT

77 〈a2i 〉1/2 0.062 0.062 0.019 0.012 0.012 0.038
Ti 2322 1910 1096

Table 4. Statistics of the integrated modes for slight variations of the model coefficients. The
noise level is 1.2 10−3.

that for a decrease in LT55/66 (LT55/66 is negative), the time between switches increases,
the energy in modes 2 and 3 increases, while that in modes 5 and 6 decreases. The energy
in mode 4 remains about constant. The trends are opposite for an increase in LT55/66.
This supports the idea that increasing the energy transfer to the boundary layer modes
5 and 6 leads to more destabilization associated with a higher energy content in these
modes. The behaviour of the model therefore highlights the importance of the boundary
layer modes for the reorientation process.

Similarly, table 4 shows that a decrease in LT77 (LT77 is negative) leads to an increase
of the time between switches, and a decrease in the energy of mode 7, along with an
increase in the energy of modes 2, 3 as well as mode 4. The energy of modes 5 and 6 does
not appear to change significantly. The trends are reversed for an increase in LT77. The
importance of mode 7 for the destabilization process is therefore confirmed. The changes
in the inter-switch periods due to modifications in LT77 are stronger than those observed
for LT55/66.

5. Conclusion

Reorientations of the large-scale circulation in a turbulent Rayleigh-Bénard cubic cell
were studied using direct numerical simulation for air at Ra = 107. Proper Orthogonal
Decomposition was applied to the joint temperature and velocity fields in the full volume.
The database was extended in order to display the statistical symmetries of the flow.
The flow was characterized by four quasi-stable states, corresponding to the alignment
of the large-scale circulation along one or another diagonal of the cube in a given
direction. We found that each quasi-stable state consists of a superposition of four spatial
modes representing three types of structures: (i) a structure carrying the time-averaged
temperature and velocity fields and consisting of two stacked counter-rotating torus-like
structures ; (ii) two large-scale rolls, each of which is parallel with two opposite vertical
walls of the cube and carries the angular momentum of the cell in the direction orthogonal
to the walls; (iii) a double layer of four rolls, each along an axis parallel to one of the
side walls (each roll transports fluid from one corner to another), the effect of which is
to strengthen (”focus”) the circulation along one of the two diagonal plane. The first
three types of structures have nearly constant amplitudes, modulated by oscillations on
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a fast time scale on the order of the recirculation time Tc - about 45 dimensionless time
units. In addition, each large-scale roll interacts with a boundary layer mode, consisting
of two co-rotating rolls aligned with vertical walls. The amplitude of these modes, which
control the connection between the boundary layer and the core, is dominated by strong
oscillations on the time scale Tc.

The flow spends long periods of time (several hundreds of dimensionless time units)
hovering near one of the quasi-stable states with occasional, fast reorientations towards
another quasi-stable state. During a reorientation, the main circulation changes diagonals.
The amplitude of one large-scale roll changes signs, and the side corner flows are reversed.
Reorientations were found to involve the boundary layer modes, as well as a symmetry-
breaking POD mode. This mode consists of eight corner roll structures, whose axis is
aligned with the diagonals. It transfers the flow from one mid-plane to another adjacent,
orthogonal one, effectively redirecting the angular momentum in a direction parallel to
the walls. Its amplitude is also dominated by oscillations on the same fast time scale.

A POD-based model involving these modes was derived from the Navier-Stokes equa-
tions. The model reproduces the dynamical behaviour of the amplitudes of the POD
modes. In particular, it captures the oscillations of the boundary layer modes as well as
the long time scales of the reorientation process. Analysis of the low-dimensional system
confirms the destabilizing role played by the corner rolls and suggests that the boundary
layer modes play a double role. On the one hand, they help maintain the stability of the
equilibrium by strengthening the connection between the large-scale circulation and the
boundary layer fluctuations. On the other hand, their interaction with the corner rolls is
essential for the reorientation process.

To conclude, the numerical results and associated POD model presented in this
paper should be confirmed by experiments in air, though experimental evidence of flow
reorientations in cubical cavities filled with water have already been reported in the
literature (Bai et al. 2016; Vasiliev et al. 2016).
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Appendix A. Determining the adjustable coefficients

In the case of modes 2, 3, 5 and 6, we need to set two adjustable contributions, the
sum of which must balance the quadratic contribution. The quadratic contribution can
be split into different terms:
• interactions which involve the first four modes (dominant at equilibrium);
• interactions which involve mode 5 or mode 6 but not mode 7 (symmetry-preserving

interactions);
• interactions involving mode 7 (symmetry-breaking interactions), which are zero at

equilibrium.
We illustrate this by considering the quadratic terms in the equation for mode 2 (or

equivalently 3):

da2
dt

= (LT22 − α22r
2)a2 + (LT25 − α25r

2)a5 +Q22 +Q25 +Q27 (A 1)

where Q22 = 0.29a1a2 − 0.53a3a4, Q25 = 0.01a1a6 + 0.005a4a5 and Q27 = 0.33a2a7 +
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0.18a5a7. At equilibrium, we need to have

0 = A22a
eq
2 +A25a

eq
5 +Qeq22 +Qeq25, (A 2)

where we have A = LD + LB + LA − αr2eq. Let

X2 = A22a
eq
2 +Qeq22 = −A25a

eq
5 −Q

eq
25. (A 3)

The question is to determine X2 (or equivalently the values of A22 and A25). It can
be seen from equation (A 3) that A22 and A25 cannot be chosen independently, as each
of them depends on the value of X2. For consistency of the truncation we require that
modes 2 and 3 are balanced independently of the higher-order modes, which means that
X2 = X3 = 0.

For mode 5 (or equivalently 6), the evolution equation reads

da5
dt

= (LT55 − α55r
2)a5 + (LT52 − α52r

2)a2 +Q25 +Q55 +Q57, (A 4)

where Q52 = 0.11a1a2 − 1.98a3a4, Q55 = 0.4a1a5 − 0.55a4a6, Q57 = 0.2a6a7 + 0.09a2a7.
At equilibrium

0 = A52a
eq
2 +A55a

eq
5 +Qeq52 +Qeq55, (A 5)

which leads to the definition of a coupling term X5 such that

X5 = A55a
eq
5 +Qeq55 = −A52a

eq
2 −Q

eq
22. (A 6)

To determine X5, we chose to make the total contribution from the linear terms |A52a2|
and |A55a5| approximately equal. The parameters given in the supplementary material
correspond to X5 = X6 = 3.8 × 10−4. Since there is some arbitrariness in this choice,
we checked that the model behaviour was robust in a neighbourhood of the parameters
chosen.

A last adjustable parameter to be determined is the noise amplitude. The noise is
supposed to represent the high-frequency component of the unresolved stress tensor which
is not captured by the modelling term based on the resolved modes. The noise amplitude ε
should therefore be proportional to the intensity of the modelled term Tn (equation (4.5))
and to the ratio r of the high-frequency to the low-frequency component of the unresolved
terms. It seems reasonable to assume that this ratio r is of the order of the fraction of
energy left in the higher-order modes: r ∼ 0.4. The typical modelled term Tn is of the
order of a few 10−3 (for the largest fluctuating modes, it is about 2 10−3). This means
that the noise level should be of the order of ε ∼ rTn ∼ 10−3.
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Verdoold, J., Tummers, M. J. & Hanjalić, K. 2009 Prime modes of fluid circulation in
large-aspect-ratio turbulent Rayleigh-Bénard convection. Physical Review E 80, 037301.
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Xin, S. & Le Quéré, P. 2002 An extended Chebyshev pseudo-spectral benchmark for the 8:1
differentially heated cavity. Int. J. Heat Mass Transfer 40, 981–998.


