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Ultimate strength properties of fiber-
reinforced composites*

Frangois Hild & Pascal Feillard

Laboratoire de Mécanique et Technologie, ENS Cachan/CNRS/Université Paris VI, 61 avenue du Président Wilson, F-94235
Cachan Cedex, France

The volume effect and stress heterogeneity effect (i.e., the effect of loading
type) on the ultimate strength are analyzed for fiber-reinforced composites.
The main failure mechanisms are assumed to be fiber breakage and fiber
pull-out, Depending on the load redistribution around a broken fiber, two
different regimes can be obtained. The results are applied to the prediction of
ultimate strengths of SiC fiber-reinforced composites subjected to tension,

pure flexure and three-point flexure.

1 INTRODUCTION

In spite of the fact that Fiber-Reinforced Composites
(FRCs) are made of brittle fibers, the composites can
exhibit a fracture resistance behavior [1,2]. The origin
of the fracture resistance is the consequence of the
statistical failure strength of fibers (i.e., all the fibers
do not break at the same load level and they can be
subject to multiple breakage) and of sliding which
occurs between broken fibers and the surrounding
matrix. The non-linearity of a stress/strain curve close
to the ultimate point is one of the indications of
multiple fragmentation of fibers [3]. In this paper we
study the case where the ultimate strength of FRCs is
dictated by fiber breakage and fiber pull-out. The
multiple fragmentation of fibers depends upon the
statistical nature of fiber breakage as well as the load
redistribution around a fiber break. Two extreme
regimes (or modes) can be exhibited as described in
an earlier analysis by Glicer and Gurland [4]. The
first, referred to as a global load sharing regime
assumes that the load carried by a fiber at failure is
equally shared by all the unbroken fibers. This
hypothesis was also used to model dry fiber bundles
[5-7]. Global load sharing is an important assumption
that allows us to relate the fragmentation analysis of a
single fiber composite to fiber breakage and fiber
pull-out in a multi-fiber composite. On the other hand,
a local load sharing regime assumes that there exists a
weakest zone in the material where the onset of a

*This work was partially supported by the Advanced
Research Projects Agency through the University Research
Initiative, ONR Contract N00014-12-J-1808,

failure mechanism leads to the failure of the com-
posite (e.g., a fiber adjacent to a previously broken
fiber breaks because of the stress concentration in-
duced by the initially broken fiber [8] bundle pull-out
[9]). Because of localized load shedding from a broken
fiber on to the nearest neighboring fibers, localized
breaks induce the final failure of the composite.

The assessment of ultimate strengths of FRCs is
mainly based upon the assumption of a constant
interfacial sliding stress in the case of ceramic matrices
[10-13] or ductile matrices [14~16] in the global load
sharing regime although the same assumption can be
used to describe bundle pull-out [9]. A constant
interfacial sliding stress is also assumed to study
multiple fragmentation taking place in polymeric- as
well as ceramic-matrix composites [17-20]. To carry
out the analysis, an elementary cell can be considered
whose size, the recovery length, is directly related to
the longest fiber that can be pulled out and cause a
reduction in load carrying capacity [10, 13]. In the case
of polymeric matrices other models have been used
[21] based upon more refined mechanical models of
the interfacial behavior [22]. The latter studies deal
with the distribution of fragment length and therefore
one relevant length to consider is the average
fragment length. This length can be used to derive
ultimate strengths of FRCs, regardless of the details of
the mechanical behavior of the interface. From a
design point of view, it is important not only to
evaluate the ultimate tensile strength of FRCs but to
model the stress/strain response of the composite so
that the capacity of the components subjected to
multiple loadings can be estimated [23]). We focus our
attention on determining the strength of rectangular



beams made of unidirectional composites subjected to
a combination of tension and flexure so that
closed-form solutions can be obtained. In the first part
it is shown that the ultimate tensile strength can be
derived by considering an elementary cell of size equal
to the average fragment length. The second part is
concerned with a constitutive law derived in tension

and compression to analyze the pure flexural loadings
discussed in the third part. In pure flexure, thefailure:" >
mode is assumed to be identical to that in tension (1.e.,

no compressive mode is considered in the present
analysis). The fourth part establishes the interaction
between tensile and flexural loadings and the fifth is
concerned with the study of the ultimate strength in
three-point flexure. Experimental data are compared
with predictions and the two load transfer regimes are
discussed.

2 ULTIMATE TENSILE STRENGTH

In this section, expressions of the ultimate tensile
strength of FRCs are derived. The key mechanism
leading to final failure of the considered FRC is
assumed to be fiber breakage. This mechanism is
usually characterized by the fact that a fiber undergoes
multiple fragmentation until final fracture. The matrix
contribution is supposed to be negligible compared to
that of the fibers. Depending on the analyzed system,
different models are used to describe the behavior of
the fiber/matrix interface. The simplest assumption is
to consider a constant interfacial shear stress t
[24,25). Other models have been proposed [26, 22] in
which the debonding propagation is based upon a
shear lag analysis limited by an interfacial shear
strength and a Coulomb friction law which models the
load transfer along the debond length. In both cases,
expressions of the average fragment length are
derived numerically [17,27] as well as analytically
[19, 28]. The latter quantity will be used to assess the
ultimate tensile strength of FRCs.

In the first part a global load sharing regime is
supposed to occur. By assuming that the fibers do not
interact, a single fiber system is then representative of
the whole composite behavior [18,11,16]. Let us
consider an elementary cell of size equal to the
average fragment length L. The average fragment
length is defined as the ratio of the total composite
length L divided by the average number of fiber
breaks N(T) in a single fiber

= L
L(TY=== 1
D=%D M
where T is the reference stress equal to the stress level
in an unbroken fiber for the same macroscopic strain
€. Furthermore, the average stress & is related to the

stress field along the fibers in the elementary cell
Or (T’Z) by B
L(T)2

=ry=—f
o= L(T) j—i(r)/z

where z is the current position along the fiber
direction, and f the fiber volume fraction. Since the
reference stress T is directly proportional to the

or(T,2)dz (2)

" »:macroscopic strain €, the ultimate tensile strength is

reached when
aad(T=T1,)
aT

where the reference stress corresponding to the
ultimate tensile strength is denoted by T,. If we
assume that the interfacial shear resistance is modeled
by a constant shear stress 7, the average stress is given
by

=0 3)

Lo(T)]
2L(T)
where Ly is the so-called recovery length. The latter is
related to the reference stress by

La(T) =" ©

a(T)= fT[l -~ (4)

where R is the fiber radius. The recovery length refers
to twice the longest fiber that can be pulled out and
cause a reduction of the load carrying capacity (Fig.
1).

It is worth noting that eqn (4) can be used in the
case of a constant interfacial shear stress when the
ratio Lx(T)/L(T) is approximated by the cumulative
failure probability P-(T) of a piece of composite of
length Lg(T) [13]. As long as the interaction between
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Fig. 1. Distribution of the fiber stress field a-(T,z) for a

given value of the reference stress T in the case of a constant

interfacial shear stress t. Two different fibers are
considered.



fiber breaks is negligible (i.e., Lx(T)/L(T) « 1), the
evolution of the average fragment length is given by

[10,13] -
el -7 o

where m is the Weibull modulus [29] modeling fiber
failure, and S, is the characteristic strength [17]
defined as

5. = (kat)™ @

R

where S, is the scale parameter and L, the
corresponding gauge length of the Weibull law
modeling fiber failure. Equation (6) neglects the
fragments of size less than or equal to Lg(T) (i.e., it is
assumed that there are no over-lapping recovery
regions). This assumption is not very strong since the
strain levels at the ultimate point are significantly
lower than those at fiber breakage saturation [13]. A
first order solution of the ratio Lg(T)/L(T) is found
to be

Lo(T T m+1

EJ;(T)) = (E) ®)

and the corresponding ultimate strength &5 is given
by

2yl ©)

UUTs_fS‘(m+2 m+2’

This expression is rigorously identical to that found
by Curtin [10]. Equation (9) shows that the
characteristic strength is the scaling stress needed to
derive the ultimate tensile strength. Furthermore, eqn
(9) is valid provided the composite length L is greater
than the recovery length at the ultimate Lx(T,,), which
is proportional to the reference length 8, defined by
[19]

8o =—. (10)

The characteristic strength S, can be reinterpreted
as the average strength of a fiber of length §.. When
the previous condition is not met, the ultimate tensile
strength is length-dependent and the dry fiber bundle
strength [6, 7] is a good approximation of the ultimate
tensile strength [30, 13]

a ‘ Ly \"
uUTsS = ( 0 ) . (11)
S \Lme

Equations (9) and (11) show that the volume effect is
different from that of purely brittle materials or FRCs
exhibiting a local load sharing regime for which the
ultimate tensile strength, defined as the average

failure stress, 3, is proportional to V™' for any
composite volume V

 ANAAY i

= (7)) (2
where I'(.) is the Euler function of the second kind
(also called gamma function), S; is the Weibull scale
parameter, V, is the reference volume and m; is the
Weibull shape parameter modeling the onset of
localized failure.

If debonding propagation is based upon a shear lag
analysis limited by an interfacial shear strength, and a
Coulomb friction law modeling the load transfer along
the debond length [26, 22], the exclusion zones where
no additional fiber breakage is possible are not as
easily determined as previously (since the recovery
length is of statistical nature). However, the general
formalism of eqns (2) and (3) still applies. Instead of
one quantity modeling the interfacial behavior, i.e., 7,
two quantities are used, viz. the friction coefficient u
defining the shear stress level 7, = —uo,, in the
debond zone, which is dependent upon the radial
stresses ¢,,, and the maximum shear strength 7,. The
expression of the friction stress 7; shows that the
Poisson effect as well as the residual stresses are
accounted for in this model [31]. An expression of the
average fragment length has to be derived numerically
[31] for any combination of 7,, u and initial residual
stresses in the composite. The distribution of
fragments can be approximated by a Weibull
distribution and the average fragment length is
therefore given by

_ 1
BTy =pL(I(1+ o) )

where L(T) and m(T) are the Weibull scale and
shape parameters, respectively. The parameters model
the fragment length distribution, are identified from
the numerical simulations and depend upon the
reference stress level T. The parameter 3 is a function
of the elastic properties of the matrix and the fiber as
well as the fiber volume fraction [32]

2G,
§=yf——2= (14)

R
Rin( 7 )
E‘r n R

where E;is the Young’s modulus of the fibers, G, is
the shear modulus of the matrix, 2R is the average
distance between fibers. When fiber breakage
saturates, the parameters L(T) and m,(T) saturate as
well (see Fig. 2 in the case of a unidirectional
SiC/LAS composite). The numerical computations are
performed on a single filament representative of the
composite. The results of Fig. 2 were obtained with an
analysis of a fiber containing 500,000 elements of
length 20 um whose strength is randomly distributed
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Fig. 2. Shape and scale parameters of the fiber fragment

distribution as a function of normalized reference stress for

a SiC/LAS composite (f=05, B=50mm™', S,=
1500 MPa, L,=10mm, m =4, u =016, 7, = 50 MPa).

according to a Weibull law. Because of the statistical
distribution of fragment lengths, the debond lengths
are also of statistical nature. A more detailed
presentation of the numerical analysis used to predict
the present results can be found in [31, 33].

The fragmentation model can be utilized to model
matrix cracking as well as fiber breakage. If matrix
cracking saturates, the interfacial shear stress 7, does
not evolve significantly when the reference stress
increases. Under these circumstances, the results
obtained by a model with a constant shear strength
are expected to be close to those obtained by the
above-discussed model. In particular the evolution. of
the ultimate tensile strength as a function of the
composite length is identical as shown in Fig. 3 when
7 = 7;. Each simulation of Fig. 3 is the result of 1,000
realizations for the same fiber length.

Before saturation, however, the previous results do
not apply and a constant shear strength hypothesis can
be a crude approximation of the actual interfacial
behavior. In the following, the ultimate tensile

102 10 10° 10" 10* 10° 10* 10°
Nommalized composite length, BL

Fig. 4. Normalized ultimate tensile strength of an E

Glass/Epoxy composite as a function of normalized

composite length (8 = 10 mm ', f5, = 900 MPa, L, = 10 mm,
m=10, . =09, 7,=80MPa, R =55 um).

strength of an Epoxy matrix reinforced by E Glass
fibers is analyzed. Figure 4 shows the evolution of the
ultimate tensile strength as a function of the
composite length. Each simulation of Fig. 4 is again
the result of 1,000 realizations for the same fiber
length. Three different regimes can be exhibited.

First, for very small composite lengths (i.e.,
BL <0-5) the first break is fatal to the composite and
the whole composite length containing a fiber break is
debonded (see Fig. 5). In that case a constant
interfacial shear stress hypothesis is admissible. Since
the composite length is less than the characteristic
length (8,8=1) a length-dependent regime is
expected and actually observed. The length depen-
dence is shown to be proportional to L™*' in
accordance with L™'" when m =10 (value of the
Weibull shape parameter of E Glass fibers).

Second, for large composite lengths (i.e., SL > 500)
the onset of debonding signals final failure of the
composite (see Fig. 5). The number of breaks is not
on the order of unity as in the case of small composite

ik, B AR 0

0.01

2 1 TSR i o T T T
5.0 —
Sg o Simulation

N .
2w Equations (9-10)
Ei
= 1 E
—U b
55
£
z 0.1 L =

0.1 1

Normalized composite length, L/3,

Fig. 3. Normalized ultimate tensile strength of a SiC/LAS
composite as a function of normalized composite length
(f =05, S.=2500 MPa, m = 4).
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Fig. 5. Normalized debond length of an E Glass/Epoxy

composite as a function of normalized composite length

(B =10mm™", f§,=900 MPa, L,=10mm, m =10, x =09,

7, =80 MPa, R = 5:5 um),



lengths. According to the Cox model [32], the onset of
debonding is given by the condition [31]
L(T,
27,=T,BR tanh(B—éi)). (15)
When the average fiber fragment length L(7) is
greater than 3/8, the previous condition can simplified
to become 271, =T, BR. This criterion is deterministic
so that the ultimate tensile strength can be expressed
as

ﬁL‘(Tu))

2 /
BL(T,)

2

tanh(

O_-UTS '_—fTu 1 - (16)

It is worth noting that the format of eqn (16) is
identical to that of eqn (4). Furthermore, when
BL(T,)>100 the previous expression can be
simplified so that the ultimate tensile strength can be
approached by

ayrs =fT, 17)

In the present case, the ultimate tensile strength is
equal to 0-96 fS,. This value is in good agreement with
the numerical simulations shown in Fig. 4. Third, for
composites of intermediate lengths (i.e., 0-5<BL<
500) the onset of debonding is not fatal to the
composite (see Fig. 5). On the other hand, there is no
complete debonding so none of the two previous
regimes is relevant. Moreover, the number of fiber
breaks increases as the composite length increases. In
the case of the present simulations, the number of
breaks for intermediate lengths was less than 10.
Lastly, the ultimate tensile strength decreases with the
total length to approach the length-independent
regime when the length of the composite increases
(see Fig. 4).

These simulations show that the features exhibited

by a model assuming a constant interfacial shear stress .

can be obtained by different models even when matrix
cracking is not involved. However there is (are) some
additional regime(s) in-between. Moreover the length-
independent regime can be explained by different
reasons as shown by the two ultimate strength studies
within the global load sharing framework.

3 CONSTITUTIVE EQUATION

In this section the behavior of FRCs is studied from a
macroscopic point of view. Therefore we will only
consider the average stress, or macroscopic stress &
and the corresponding macroscopic strain €, or,
equivalently, the reference stress T/E;. The constitu-
tive equations will be derived using the microscopic
approach of Section 2. It is worth remembering that a

constitutive equation modeling gradual fiber breakage
can be written only in the global load sharing regime
for which the composite behavior is length-
independent.

In the following, it is assumed that the stress/strain
behavior can be characterized by a series expansion of
the macroscopic stress & as a function of the reference
stress T modeling the gradual degradation of the
material (i.e., fiber breakage, debonding and pull-out)

&(T)_I _Z B(n)
55t Zuls) 5

where , are the coefficients of the series expansion,
and B(n) is a linear combination of the power n.
Equation (18) will be used later to predict the ultimate
flexural strength.

If the ultimate point is reached when T =T, = AS,,
where A is a constant, the ultimate tensile strength
can be rewritten as

&UTS —
T _ 14 3 g, 451, 19
ATty (19)

For example, in the case of a constant interfacial
shear stress, the parameters in eqn (18) are such that
¢,= —96,../2, where §,, denotes the Kronecker
symbol, B(n) = §,,.,(m +2), S, is given by eqn (7) and
A=(2/(m +2)). Another application can be
found in [13].

The constitutive eqn (18) is only valid in the tensile
part, and does not take into account matrix cracking
since the initial Young’s modulus is assumed to be the
Young’s modulus of the unbroken fibers fE;. In the
compressive part we assume that the behavior is
unaltered upon loading and is given by the behavior of
the virgin material. Therefore the compressive
behavior is defined by the Young’s modulus of the
composite E. No compressive failure mechanism is
considered herein. A damage variable, D;, is
introduced to measure the difference in Young’s
modulus in tension (7'/S, <« 1) and compression

D1=1—%[. (20)

In the next sections, this constitutive law will be
used to determine ultimate strengths in pure and
three-point flexure.

4 ULTIMATE FLEXURAL STRENGTH

This section is devoted to the determination of the
ultimate strength of rectangular beams under pure
flexure by making use of the model derived in tension
and compression, The beam is made of one layer
whose fibers are aligned along the z-direction. It is
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Fig. 6. Definition of the beam geometry in the case of pure
flexure.

assumed that there is a sufficient number of fibers in
the width of the beam so that a global load sharing
hypothesis is made for each height y. The Bernoulli
kinematic condition [34] leads to

E=Ry (21)

where R is the curvature, and y the height ordinate
measured from the neutral axis (see Fig. 6).

Using eqn (18), we obtain the variation of the
normalized tensile stress

S=Y+ D¢, YF® (22)
nz1
with

- E
Z=f%candY=§:97ty.

The position of the neutral axis h; (see Fig. 6) is
determined from the force balance equation. The
ultimate flexural strength is reached when &(h;) =
dyrs and the position of the neutral axis is given by

5 i, AP
—=1+4/(1-Dy) 1 +2 % } 23
( ] n=1 ﬁ ( ) +1 ( )

Usmg the moment equation, the ultimate flexural
strength &5 is given by

am=() (1)
5.A “\n/\1-D\h,

'.l’n ﬂ(u) I
+1+ 321—_6 i } (24)

The ratio of the ultimate flexural strength to the
ultimate tensile strength is then given by

mV(_ 1 (B P AP
)t ) 1 +22 o),
&UFS h 1- D] h] ! ngl B(ﬂ) +2

Turs 1+ 3 AP

n=1

(25)

Equation (25) shows that the ultimate strength ratio
Ours/ Gurs s independent of the composite length,
but depends upon the damage parameter D, in
addition to the parameters ¢, §(n) and A. This result
constitutes a second difference with a weakest link
hypothesis for which the average strength ratio

Orr/ G for the same volume loaded in pure flexure
and in tension is given by

I~ [a(m, + )] (26)

where apr is the average failure stress in pure flexure.
To illustrate the previous results, a constant interfacial
shear strength is assumed in the framework of global
load sharing. By using the approximations to derive
eqn (8), the position of the neutral axis is given by

ko (m + D(m + 4)
‘H \/(1 DYmvymes @D

and the ultimate flexural strength &y gs becomes

ff;TFsz 2(%>2<m i z)ﬁ[1 IDI(:‘% - 1)3
(n+ 1) +9)
(m+2)(m+4)1

(28)

In Fig. 7 the evolution of the normalized flexural
strength is plotted as a function of the Weibull
parameter m and the damage parameter D,, The
lower the value of the Weibull parameter, the higher
the normalized flexural strength. On the other hand,
the higher the value of the damage parameter, the
higher the normalized flexural strength. These results
have been obtained differently in [13] but are very
close to those presented herein.

Lastly, when the only difference in the
tension/compression behavior is given by the Young’s
modulus difference (m— + ©) modeled by the
damage variable D;, eqns (27) and (28) show that
ratio of the ultimate flexural strength to the ultimate
tensile strength approaches 2/(1 + V1 - D,).

5 INTERACTION BETWEEN FLEXURE AND
TENSION

In this section we will study stress states where we
combine tensile and flexural loads., The beam
characteristics are the same as those used in the
previous section. We still assume a Bernoulli
hypothesis [34]. The kinematic condition leads to a
linear strain field in the beam of height 4 such that
(see Fig. 8)

&(y)= % Y(y) (29)

with
l1-a h

——=y=-—.
R’ 2 2

The variable y now denotes the height ordinate
measured from the mid-plane of the beam, and the
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Fig. 7. Evolution of the normalized flexural strength as a function of the Weibull parameter m and the damage parameter D,.

constant «, which is less than or equal to 1, measures
the ratio of €(—~ h/2) to &€(h/2)

_E&(=h/2)
e(h/2)

(30)

When « lies between 0 and 1 then the whole beam
undergoes tensile stresses, whereas negative values of
a lead to a mixed tensile/compressive mode. The
tensile strength is obtained from a force balance
equation and is defined as

gy = MZ012) = 2] a1)

where N denotes the resultant force, and b the width
of the beam. The flexural strength is obtained from a
moment balance and is defined as

6M[a(h/2) = Uurs]
ar= bh?

(32)

where M denotes the resultant moment. When « is

(v
M
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N E fE/T u Z N
vl |/
= |
y

Fig. 8. Definition of the beam geometry in the case of
flexure combined with tension.

positive, the beam is in a pure tensile mode. Therefore
the results are independent of the variable D,. The
resultant force equation yields

_ _fSA 1— %Aﬂ("l‘
LT a{ 2 ,,213()“

The moment equation enables us to derive the
flexural strength to be

aﬁ(n)ﬂ)}_ (33)

3 +a)_
T

2f5.A
(1-a)

l1-a

Bm)—1¢1 _ ,B(m)+2
WIS T il il
n=1 B(")+2

When a is negative, a part of the beam is in
compression. In that case the results depend on the
damage variable D,. The resultant force equation
allows us to get the tensile strength

fSc d‘"Aﬂ{"}— :
- a{Z 2(1—9) glg(n)u

L)

ar=

b es)

and the moment equation enables us to derive the
flexural strength

(l-a)_  2S.A
e — +—
1-a T (1-a)

l‘bnA,s(n]“l
x[l_l D1+3,,Zlﬁ(n)+‘2]' (36)

To iltustrate the previous results, a constant
interfacial shear strength is assumed. By using the
approximations discussed to derive eqn (8), the

O = —




following results are obtained. When « is positive, the
resultant force equation leads to

_ fSc< 2 )m+[1—a2_ 1 - a™*? ] 37)

T Za\m+2 2 (m+2)(m+3)
and the moment equation
_ 3+a) LS _2fS. ( 2 )41
= l—a T (1-a)\m+2
3(1__am4-d) ]
X 1—a?————1|. 38
b * T m+2)(m +4) (38)

When « is negative, the resultant force equation
allows us to get the tensile strength

S (L)”’*’

T U —a)\m+2

[m+nm+®_
2m +2)(m +3) 2(1

and the moment equation enables us to derive the
flexural strength

M(ta) mg( 2)ﬁ

TFT T 1= T (1-a))\m+2

[(m +1)(m+5) o
(m+2)(m+4) 1-D,

In Fig. 9 an interaction diagram is plotted when
m =4, and D,=2/7 for a constant interfacial shear
strength. The interaction diagram is also compared to
a linear prediction: in that particular case a straight
line describes very well the interaction line (see dotted
line in Fig. 9). This is one difference when we compare
to the interaction diagram of an elastic-perfectly
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Fig. 9. Interaction diagram (solid line) between tension and

flexure when m =4, and D,=2/7 giving the normalized

flexural strength %= Gr/dyrs vs the normalized tensile

strength &%= 0r/ayrs. The dotted line gives a linear

interaction. The dashed line shows the interaction diagram
when m — + o,

plastic material. In that case the interaction is given by
a quarter of an ellipse.

Lastly, when the only difference in the
tension/compression behavior is given by the Young's
modulus difference (m— + ) modeled by the
damage variable D), the interaction diagram is only a
function of the parameter D, (see Fig. 9). This last
result constitutes a lower bound in the interaction
diagram.

In a local load sharing regime, an interaction
diagram has no meaning. However, one can study the
combined effect of temsion and pure flexure. The
strain field defined in eqn (29) is used. The average
failure stress ratio for the same volume is given by

2 = (H,)™ (41)
Ofrr
where & is the average failure stress under combined
loading conditions, and H,, is the Weibull stress
heterogeneity factor [35] defined as
l—a

H, =-—————whena =0 42
" am ) @

1
me—(l_a)(m’+l)whena<0. (43)

6 ULTIMATE THREE-POINT FLEXURAL
STRENGTH

The aim of this section is to derive the ultimate
strength of rectangular beams loaded in three-point
flexure. The tensile and compressive behavior follows
the same hypotheses as those made in the previous
sections. However, in three-point flexure the stress
field profile along the fiber direction is no longer
uniform. Therefore, eqn (4) cannot be used.
Throughout this section, the longitudinal stress field,
o(T,z), is assumed to be symmetric about z =0 and
maximum at z =0. Depending on the position of the
fiber along the y-axis, the stress field will vary. In the
first part of the section, only a set of fibers is analyzed
for which the position along the y-axis is the same. A
global load sharing regime is assumed in a plane
normal to the y-axis, for each value of y.
Furthermore, the beam length is assumed to be
sufficiently large with respect to the beam height and
width so that the shear stresses can be neglected. For
the sake of simplicity, the interfacial sliding resistance
is assumed constant. The contribution of the broken
fibers within the recovery length or puil-out stress,
O, at 7 =0 is written as

o(T) j

dPF(’ LR(’)) (44)



where &,(t) denotes the average stress at z =0 when a
fiber breaks at a location z, and at a reference stress
level ¢, and Pr(t,Lg(t)) is the failure probability that a
fiber break within the recovery length Lg(t) at or
below a reference stress ¢. In tension, the probability
density of fracture locations is uniform, therefore
7,(t)=1t/2. On the other hand, when the stress field
along the fiber direction is not homogeneous, the
previous result does not apply, and one needs to
determine the average fracture location to estimate
the pull-out stress. The average stress & applied to the
composite at the plane z =0, is given by [10]

= T{1 = PATLa(T)}+ 2 (THPHT, L(T)). (45)

~ S

The first term of the right hand side of eqn (45)
corresponds to the contribution of the unbroken
fibers, and the second term is the pull-out contribution
(stress G,,(T)). The quantity (h(T)) represents the
average pull-out length, or average fracture location in
Lr(T)/2 when the reference stress is less than or
equal to T. The aim of the present calculation is to
evaluate the average fracture location (h(T)) when the
stress filed along the fiber direction is not
homogeneous.

Oh and Finnie [36] derived the average fracture
location of a brittle material. In that case the
considered volume is constant. In the present case, the
length to consider (i.e., the recovery length) is varying
with the stress level measured by T. Therefore the
results need to be generalized. By recasting the
cumulative failure probability Pe(T,Lz(T)) of a fiber
part of length Lg(T), useful functions are exhibited to
determine the average fracture location. Under the
weakest link assumption and the independent events
hypothesis, the cumulative failure probability
Pe(T,Lg(T)) of a piece of fiber of length Lg(T) is
expressed as

9

2 La(T)2
PAT LT =1 -exp| = [ inft - P00l |
0 Y0
(46)
where Pgr(T,z) denotes the cumulative failure
probability of a single link of length L, whose
mid-section is located at z. The failure probability
density is obtained by differentiation of eqn (46) with
respect to T
dPA(T,La(T)) _
dT

so that eqn (46) can be rewritten as

Pi(T,L(T)) = LTZ{L

where ®(t,z) corresponds to the failure probability
density for a reference stress varying between T and
T +dT, of an element of length dz centered at z, and

j (T, 1)z +29(T) (47)

Lp(t)2

O(t,2)dz + tv(t)}dt (48)

Y(T) is the failure probability density associated with
the length increase from Lg(T) to Lg(T) + L(T)dT.
The first term is identical to that given in [36, 37, 18]
when using a Weibull law, the second term is due to
the load dependence of the recovery length Lz(T). By
using eqns (46) and (47), the expressions of the
functions ® and W are, respectively, given by

®(T,2)= —{1 - PF(T,LR<T)>}Z1;

X %, [In{l1 = Pr(T,2)}] (49)

W(T) = — {1 = BT La(T )}y
fofi-ran SO} o
When Lg(T) is independent of T, or

Pr(T,Lg(T)/2) vanishes, W(T) vanishes as well, and
the results given in [37] still apply in the case of a
Weibull law. By dimensional analysis and by
inspection of eqn (47), the average (h(T)) of the
fracture location h(T) for a piece of composite of
length Lg(T) at a reference stress T is [38]

( | J;TZ { J(-)Ln(f)/zzd)(t,Z)dZ + % LR(z)lp(;)}d,
h(T))= 2

fo 2{ L O e(z)dz + lIl(t)}dt

This expression of the average fracture location
does not consider the fibers that originally broke
outside the recovery length but were brought into it as
the load level increased. The approximation made
here is worst when the stress field is constant over the
whole length (i.e., pure tension). In that case,
however, it can be shown that this hypothesis is not
very strong [13]. Equation (45) is used for each height
y to determine the global stress state of the composite
in three-point flexure. By studying the most loaded
fibers in the tensile part, it can be shown that when
the specimen length is greater than 5 times the
characteristic length &, the gradient effect in
three-point flexure along the fiber direction is
negligible when compared to the one due to load
recovery in the vicinity of a fiber break [39]. Under
these circumstances the ultimate strength in three-
point flexure Gysr is on the same order of magnitude
as the ultimate flexural strength &z

(51)

&ng = Gurs when L. > Sac. (52)

This result constitutes a major difference with
materials for which a weakest link concept can be
used. In that case the ratio of the ultimate strength in
three-point flexure is greater than that in pure flexure.



Table 1. Comparison between experimental (Exp.) and predicted (Pred.) ultim-
ate strengths expressed in MPa for three composites reinforced by SiC fibers

Loading Tension Pure Flexure Three-point Flexure
Material
Exp. Pred. Pred. Exp. Pred.
SiC/LASY 790 850 1050 1080 1180 1090
Sic/C" 345 340 455 430 455 435
SiC/AI¥ 700 690 815 820 930 930

When the two volumes are identical, the average
failure stress ratio is given by

I8 (m, + 1)k (53)
JrF
where & is the average failure stress in three-point
flexure.

The previous results are applied to three composites
reinforced by SiC fibers (Table 1). Two of the three
composites have ultimate strengths following a global
load sharing hypothesis (LAS and C matrices). This
result is related to the fact that matrix cracking has
saturated and that the interfacial shear strength is
small (on the order of a few MPa). On the other hand,
the aluminum matrix leads to ultimate strengths
described by a local load sharing hypothesis (m, = 7).
This matrix is more sensitive to localized fiber failures
and to higher values of the interfacial shear strength.

7 CONCLUSIONS

A unified approach to the prediction of the ultimate
tensile strength of FRCs has been proposed. The key
quantity to consider is the average fragment length.
Expressions of the ultimate tensile strength are
derived within this general framework and compared
with other existing theories. In particular, in the global
load sharing regime it is shown that the ultimate
tensile strength is mostly length-independent. Con-
versely, in the local load sharing regime, the ultimate
tensile strength is always length-dependent. A
description of the behavior of these FRCs up to the
ultimate tensile point has been derived in the
framework of Continuum Mechanics.

A generalization to pure flexural modes is proposed
to derive the ultimate flexural strength. In the global
load sharing regime, the increase in terms of ultimate
flexural strength is due to the conjunction of two
phenomena; difference in elastic moduli in tension and
in compression, and ‘ductility’ due to fiber breakage
and fiber pull-out. It has been shown that the
‘ductility’ contributes substantially to this increase.

An interaction between tension and flexure is
studied. Although some differences are noticed when
compared to an elastic perfectly plastic behavior,

some similar features can be shown, in particular the
increase in terms of normalized ultimate strength. This
case corresponds to a situation where the ‘ductility’ is
distributed within a large region of the structure. On
the other hand, when the ‘ductility’ is confined within
a very small area of the structure, the increase in
terms of the ultimate strength is expected to be less
important, though the gradients along the fiber
direction could play a role and increase it again.

Lastly, in the case of three-point flexure, the
ultimate strength has the same order of magnitude as
that in pure flexure within the framework of global
load sharing. On the other hand, in the local load
sharing regime, the ultimate strength in three-point
flexure increases as compared with pure flexure when
the two volumes are identical. The three-point flexure
experiments therefore allow to discriminate the two
load transfer regimes when compared with the pure
flexure case. This result can be observed when
ultimate strengths of LAS and C matrix composites
(exhibiting a global load sharing regime) are
compared with Al matrix composites (exhibiting a
local load sharing regime) subjected to pure tension,
pure flexure and three-point flexure.
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