Continuum description of damage
in ceramic-matrix composites

A.BURR *, F. HILD *! and F. A. LECKIE #**

ABSTRACT. — A constitutive law is proposed for Ceramic-Matrix Composites which models matrix-cracking,
interface debonding and sliding, fiber-breakage, and fiber pull-out. These different mechanisms induce loss of
stiffness, inelastic strains, hysteresis loops, and crack closure. The features are analyzed within the framework of
Continuum Damage Mechanics by the introduction of physical internal variables identified previously in material
science investigations. The procedure is applied to a SiC/SiC [0/90] laminate composite using the results of pure
tension tests of two laminate orientations. Each test involves a series of loading and unloading sequences. In
order to verify the material description the behavior of an Iosipescu shear test is predicted using a Finite Element
calculation and the results are compared with experiment.
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components of the debonding and sliding

damage tensor d in 1-2 frame

damage variables modeling matrix-cracking

magroscopic damage variables

damage variables modeling fiber-breakage

set of damage variables

parameters of the evolution law of matrix-cracking damage
crack opening displacerent due to slip

maximum hysteresis loop widths

Young's moduli

Young’s modulus of the 0-degree layer in the fiber direction
Young’s modulus of the 90-degree layer in the fiber direction
equivalent Young’s modulus

Young’s modulus of a damaged material
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fourth order elastic tensor on the composite
level of a woven composite
fourth order elastic tensor on the composite level

fourth order elastic tensor on the layer level
fourth order elastic tensor of the 0-degree layer
fourth order elastic tensor of the 90-degree layer

macroscopic strain

overall strain tensor

component of the strain tensor ¢ in 1-2 frame

strain tensor in the fiber aligned along the 7-direction
component of the strain tensor ¢ . of the fiber in 1-2 frame
inelastic strain upon complete unloading (77 = 0)
macroscopic inelastic strain upon complete unloading

strain tensor on a layer level

components of the strain tensor g  of the matrix in z-y frame
components of the strain tensor g,,, of the matrix in 1-2 frame
maximum applied strain

fiber volume fraction

matrix volume fraction

volume fraction of the 0-degree and the 90-degree layer

set of associated forces

energy release rate

equivalent shear modulus

shear modulus of the damaged fiber embedded in the matrix
shiear modulus of the undamaged and damaged matrix

shear modulus of the 0-degree layer

shear modulus of the 90-degree layer

crack spacing

friction length (assumed to be equal to debond length 1)
Poisson’s ratio of the matrix

fiber radius

set of state variables

Helmbholtz free energy density (state potential)

elastic energy density on the composite level

elastic (or reversible) free energy density

clastic energy density of the fiber

stored free energy density

stored energy: density due to debonding and sliding of a composite
elastic encrgy density on the layer level

elastic energy density of the matrix

free enerpy density of the layer at 0 degree

free energy density of the layer at 90 degrees

residual stress in the matrix

residual stress in the broken part of the 0-degree layer
effective (or microscopic) stress

macroscopic stress

overall stress tensor

components of the stress tensor ¢ in 1-2 frame

stress tensor of the fiber

stress tensor in the fiber aligned along the i-direction

stress applied to the composite in the i-direction (i = 11 or 22)
stress tensor on a layer level



Z. stress tensor of the mawix

M Oy maximum applied stress

Othy 00, Tthy TO parameters of the evolution Jaw of the inelastic strains

Teq equivalent shear stress

w width

X back-stress

X back-stress tensor

X1, Xa2, X2 components of the back-stress tensor X in 1-2 frame

Y debonding and friction energy release rate density

¥ energy release rate density tensor due to debonding and friction
Y11, Y22, Y12 components of the energy release rate density tensor y in 1-2 frame
Y cracking energy release rate density -

Yy, Y energy release rate densities associated with fiber-breakage
Yso, my parameters of the evolution of fiber-breakage damage

Y: set of energy release rate densities

Ym, Yy energy release rate densities associated with matrix-cracking

contraction wrt. two indices

1. Introduction

This study is concerned with the behavior of ceramics reinforced by continuous ceramic
fibers. It has been demonstrated by Averston et al. (1971) that following matrix-cracking,
sliding occurs at the fiber-matrix interface which causes inelastic deformations. The
presence of matrix cracks and inelastic deformations may impart to the material the
ability to redistribute stresses. In fact the results of experiments on notched panels
on SiC/CAS composites (Cady ef al., 1995b) suggest the capacity of the material to
redistribute stressés is sufficiently high for this material to be notch-insensitive. The
ability to redistribute stress is an important property since design studies indicate that
working stresses are sufficiently high for matrix-cracking to be unavoidable in regions
of stress concentration.

The micromechanics which describes interface debonding and sliding has been
established by Hutchinson and Jensen (1990) and Evans e? al. (1994). In contrast to
the. early phenomenological studies (Ladeveze, 1983) the intention of the present study
is to develop a continuum description of the damage processes which is mechanism-
based and which may be used to describe the behavior of Ceramic-Matrix Composites
(CMCs) under the conditions of multiaxial stress occurring in practice. Since crack
spacing at saturations is small (Beyerley e al., 1992) in most CMCs, Continuum Damage
Mechanics is an appropriate means of describing degradation since changes in elastic
moduli measured on a macroscopic level provide a simpler and more robust means of
measuring damage than does microscopic measurement of crack density, which requires
the average of many readings before reliable values are established (Jansson and Leckie,
1993).

By combining Continuum Damage Mechanics (CDM) (Lemaitre, 1992) with the
micromechanical studies referred to previously, constitutive equations are developed



which lend themselves to the finite element procedures commonly used in practice
(Zienkievicz and Taylor, 1989; Hibbitt et al., 1995). The CDM formulation applied
to reinforced composites is written within the framework of the Thermodynamics of
Irreversible Processes (Coleman and Gurtin, 1967; Rice, 1971; Germain et al., 1983).
The first step in establishing such a model is to identify the internal variables which
define the state of the material. The second step is to determine the expression of the
state potential in terms of the state variables and the third one to define the evolution
laws of the internal variables.

The model is developed along the lines described, for instance, by Ashby (1992).
As mentioned earlier, the aim of the model is to be applied to structural applications.
The degradation mechanisms are first determined by analyzing unidirectional CMCs
in Section 2. The model is then extended to multidirectional systems in Section 3 by
modeling the same mechanisms. The procedure described in the previous paragraph
constitutes the general framework in which the model is written. In Section 4, the
model identification is developed. In particular the number of tests constitutive of the
input to the parameter tuning are discussed. The procedure is applied to continuous
fiber SiC/SiC composites in a [0/90] lay-up for which suitable experimental data are
available (Pluvinage, 1991). Section 5 is concerned with the prediction of a Iosipescu
shear experiment. The results are compared with experimental data. This last section
constitutes a first validation of the model.

2. The tensile stress-strain relationship for unidirectional CMCs

Post-mortem analyses of broken specimens indicate the presence of arrays of
microcracks in the matrix which are accompanied by debonding and friction at the
fiber-matrix interface. Hutchinson and Jensen (1990) and Evans et al. (1994) have
analyzed the behavior of unidirectional CMCs in tension by considering the unit cell
shown in Figure 1, when matrix-cracking of spacing 2L is accompanied by debonding
and sliding at the interface over a friction length 2/r. The micromechanics analysis can
predict the one-dimensional macroscopic stress-strain response shown in Figure 2. The
microcracks are usually aligned with the principal stress or strain directions. By studying
a cracked panel with crack of length 2a in a cell of area 4LW (Fig. 3), the reduction
in stiffriess may be estimated. If the initial behavior of the elementary cell is isotropic
and elastic, and Young’s modulus is F, it can be shown that the stiffness loss depends
on the crack density defined as wa®/4LW. By assuming plane stress conditions, and
that the crack interactions can be neglected, a first approximation for the reduced elastic
modulus E can be written as
» ke -

1+2gw
The relationship can be recast in framework of CDM (Lemaitre and Chaboche, 1978) as
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Fig. 1. - Elementary cell containing a crack. A debond zone is characterized
by the debond length 2{r, and the average crack spacing is 2L.
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Fig. 2. - Stress, 7, versus strain, &, during a loading-unloading-reloading sequence.
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Fig. 3. — Elementary cell of size 2L x 2W containing a crack of size 2a.

1s the damage variable associated with the crack density. When D is small, a first order
solution to Eq. (3) is given by
ra

4LW

;__,.'(;4) D~2

so that the damage variable is proportional to the crack density. In the case of constituents

‘ “with different elastic propertics, D depends upon the elastic properties of the two

_ constituents, as well as on the geometry (i.e., the ratios a/R and a/L, see Fig. 1, where
) R is the fiber radius). The uniaxial stress-strain relationship becomes

- ® o=

The elementary cell illustrated in. Figure 1 has been analyzed by various authors
(Hutchinson and Jensen, 1990; Evans er al., 1994), but a different analytic approach is
‘now used which follows the thermodynamic developments of Rice (1971) and Germain

et al (1983) and which can be formulated conveniently in one and three dimensions

_alike. This is done by calculating the internal elastic energy density in the unit cell (Hild
et al., 1996) caused by matrix-cracking, debonding and sliding at the interface. Two “cut
and paste” steps are used to evaluate the elastic energies following approaches introduced
by Volterra (1907), and applied to the analysis the elastic behavior of homogeneous and
isotropic media by considering the elastic properties of a cut cylinder (Volterra, 1907;
Love, 1927), as well as inclusions in an infinite medium (Eshelby, 1957), or to the
study creeping materials (Cocks and Leckie, 1987). The first step consists in moving the
unbroken part (2) with respect to the broken part (1) with no external load by an amount
A; over a length [y (Fig. 4). Because of interfacial sliding, this displacement A, gives
rise to a self-balanced linear stress field along a length [ in parts (1) and (2) when
the interfacial behavior is assumed to be characterized by a constant shear strength. By



integration over /r and then averaging over the total length L, the elastic energy density
associated with this process is given by

© ¥*
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The crack opening displacement A, due to slip induces are irreversible or inelastic strain
o expressed as
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Fig. 4. ~ Motion of the unbroken part (2) with respect to the broken
part (1) with no extemnal load by an amount A, over a length If.

The second step consists of an elastic loading of the damaged system so that the elastic
energy density is given by

1
@® ¥¢ = 5E(1~- D) -a)’

The total elastic energy density is the sum of the two elements of the energy densities
and that associated with the residual stresses due to processing

Ei(1— f)E [ A1
) ¢=%E(1—D)(E—a)2+§f 1(1E f) 2{E} —E+p1a

where —p1 E1/F is the residual stress in the broken layer (1). For convenience the
energy density can be expressed in a more compact form by using state variables which



are the total strain &, the damage variable D modeling the loss of stiffness due to the
cracking mechanism, the inelastic strain « derived previously (Eq. (7)), and the damage
variable d = 3(1 — f)E1lp/4f E2L which defines the size of the slip zone related to
the average crack spacing. The friction length saturates when the cracking process stops
(L = lp) along with cracking damage D. Upon loading, all the internal variables vary
(since L, lp and A, evolve), whereas upon unloading, the only variables to vary are the
inelastic strain @ and d (only A changes), D is constant. The elastic energy density in
tcrms of the new internal variables is (Hild et al., 1996)

o?
(%0) Y= -2-E(1 ~D)E—a) + ~2-E(7) +p1o.
‘The forces associated with the state variables (g, D,d,a) are respectively given by
e dY
‘L (LL.1 0= —= - g —
( ) 7= E(1-D)E—-a)
Y= 31/) E (e — a)?
. \" _ ai,b E
_.._,(’"11’3) Y="%d " 32 (d)
(11 4) X= 3—¢ = -7+ fopad + p1
" Oa d

e Thesc associated forces are useful in particular to determine the relevant forces driving

"+ each mechanism. Matrix-cracking is assumed to be driven by Y, which plays an identical

fole as the energy release rate G in the framework of Linear Elastic Fracture Mechanics.

"> 'From a micromechanical analysis (Hild ez al., 1996), it can be shown that the back-stress

Lo

is depenident on the applied sttess &, therefore the driving force of the inelastic strains

“-can be taken as the stresses acting in the same direction. The same assumption can be

made when the evolution of the damage variable d related to sliding is analyzed, i.e. the
driving force of d can be chosen to be its associated force y, or the applied stress G.

In the present approach the growth laws of the internal variables (D,d,a) are

lestabhshed from macroscopic quantities measured in the course of unloading and
. rcloadmg sequences. To this end use is made of the solution of the response of the

“unit cell (Fig. 1) when subjected to an unloading/reloading sequence during which the
- magnitude of the shear stress remains constant.

"The expressions obtained from the dnalysis for the residual stress p; and the internal

-yariables D, d, o in terms of the macroscopic quantities shown in Figure 2 are given
:rcspectlvely by (Hild et al., 1996).

: _—_pl _ Ein + 20€ _ x _m _ oe=
(12.1) e ( = 1) (Eur — Bin — 26E)
emD —EinD — 26

(122) P = EM — Ein — 20



4 Epx — Ein — 208

(12.3) d _ /(G + 20202

_dom—p(1-D)
(12.4) a=g

Equations (12) are only valid when a constant shear strength characterizes the interfacial
behavior, and lastly Egs. (12.3) and (12.4) are only valid for monotonic' loading
conditions.

By performing a series of unloading/reloading sequences the internal variables can be
determined from experiment using Eqs. (12). The residual stress p; is calculated from
Eq. (12.1) and it is a test of the effectiveness of the model that the same value of the
residual stress is obtained for each loading sequence. The values of D and d are given
by applying Eqs. (12.2) and (12.3) respectively. The information is now available to
complete the calculation for Eq. (12.4). The corresponding associated forces are obtained
by the expressions givens in Egs. (11). The relationship between the internal variables
and the associated forces can then be investigated by knowing the driving forces of each
state variable. This method is proposed to model the behavior of CMC laminates.

3. CMCs with multidirectional fiber systems

The one-dimensional investigation is now extended to a [0/90] laminate composite and
to a [0/90] woven composite subjected to multiaxial plane stress states. In this paper, only
monotonic loading conditions are analyzed, even though the present framework can be
easily extended to cyclic loading conditions and to non-proportional loading conditions.
Following established procedures, the properties of each layer are first determined and
those of the composite are then calculated by ensuring compatibility conditions.

The components of each layer consist of the matrix, the fiber and the interface, with
f being the fiber volume fraction. The fiber direction defines the 1-2 axes. The axes
x-y correspond to the principal axes of the strains in the ceramic matrix. The definition
of the axes used at the constituent, layer and composite levels are shown in Figure 5.
Following Section 2, the loss of stiffness due to matrix-cracking and fiber-breakage is
first established and this is followed by the influence of the slip at the interfaces.

3.1. ELASTIC ENERGIES OF THE COMPOSITE ASSOCIATED WITH MATRIX-CRACKING
AND FIBER-BREAKAGE

3.1.1. Constituent level: matrix and fiber

The initial behavior of the matrix is assumed to be isotropic. The presence of cracks
leads the behavior to become anisotropic. The assumption is made that cracking occurs
normal to the y-direction (e.g. maximum principal strain direction) in the matrix. Under
the hypothesis of monotonic loading condition, only one damage variable is needed to



Fig. 5. — The initial principal directions of orthotropy, or material directions, 1 and 2 often do not
coincide with the loading directions « and y. The angle § measures their respective orientation.

it

model matrix-cracking; and is denoted by D,,y. The study of a cracked system normal
to one direction shows that the Young’s modulus along that direction as well as the
shear modulus are altered (Budiansky and O’Connell, 1976; Chaboche, 1982) and that
the expression of the clastic energy density of the matrix is

(1 1) P 5 1—v%4(1— Dpy)

. +2Gm (Dmy)‘f?nzy

and

-y . G
Gm(Dmy) = -

+ (1282 ) sy

It is assumed that the fibers are aligned along the 1-direction and that fiber-breakage
is perpendicular to the fiber direction. Therefore the elastic energy density is given by

(132) V5 = 5(Ef(1— Dp1)ejn + Erefy) + 2G5 (Dp1)ehns

The expression of the stresses in the matrix g and in the fibers g, are obtained

by partial differentiation of the elastic energy density with respect to the strain tensors
g, and g p respectively

. Ym
(14.1) T = 5
(14.2) g, =20



and the associated forces to the damage variables are defined as

Otprm
14, " ODpy
(143) = S Dy
_ Oy
(14.4) ‘ =D,

These generalized forces are the energy release rate densities associated with matrix-
cracking and fiber-breakage, respectively. They play similar roles as the force Y
introduced in Section 2, and therefore are assumed to be the driving forces of the
damage variables.

3. 1 2 Layered composite

When the composite consists of layers of unidirectional fibers with different
orientations, the laminate properties are determined by applying laminate theory to
the properties of individual layers.

3.1.2.1. Laycr level

" A layer consists of fibers aligned along one orientation (the 1-direction) embedded in a
matrix. To determine the behavior of this layer, mlcro interface compatibility conditions
are written in terms of the strains e and stresses o~ on the layer level. These conditions

“are the compatibility and the ethbnum between a fiber (tensors e E; and o f) and the
surroundmg matrix (tensors £ and g g,,)» which takes place in that system. Therefore, it
is more convenient to write the CO[ldlthnS in the 1-2 material frame as follows,

(15.1) Emll = €f11 = el
(15.2) fromit + frop1 = of
(15.3) fmemaz + frepa = ek
(15.4) Om22 = 0f2 = 0%’2
(15.5) fmemiz2 + frepe = eby
(15.6) Omi12 = 0f12 = Uf‘z

When the principal strain directions do not coincide with the material frame, Egs. (14.1-
14.2) have to be rewritten in the 1-2 frame. The application of Egs. (15) then defines



the elastic properties of the layer
(16.1) o* = E¥(Drmy, D) : £

From Eq. (16.1), the elastic energy density L associated with matrix-cracking and
fiber-breakage on the layer level can be written as

(16.2) Yl = = el : EL(Dmy, Dp1) : €

Ml e
IIth

Matrix-cracking and fiber-breakage are dissipative mechanisms which do not store energy.
Therefore they influence only the reversible (i.e., elastic) part of the free energy
density.

3.1.3. Composite level

For simplicity, the case of two layers at 0 and 90 degrees are considered. The
micromechanical quantities associated with the 0 degree layer are superscripted by ®
and those at 90 degrees by %0, The elastic behavior of the composite system is determmed

by applying classical laminate theory. The compatibility condition and global equilibrium
allow to get the overall stresses g and strain$ g

(17.1) e= g00 — g90

(17.2) o= foog;oo g f90 g90

By solving Egs. (17) and using Eq. (16.1), the overall behavior of the composite is
defined as

(18.1) g:_g_(pf,?y,pggy,pﬂ, 90)
with
E(D%,, D%, DY, DR) = " E(D%, D} ) + 1 (D%, DR)

From Eq. (18.1), the elastic energy density P associated with matrix-cracking and
fiber-breakage on the composite level can be wriften as

(18.2) Y2 = 000 4. 90,490



with

1

(18.3) ¥ =~ B (D, DY) e
1

(18.4) ¥ =5 B (D,%?y,D?e({) ‘e

3.1.2. Woven composite

Woven composites are another architecture commonly used. Equations (16) can be
used also for woven architectures. This approximation is relevant when two different
damage mechanisms can be exhibited in the tows at 0 and 90 degrees. Also, the effects
due to fiber cross-over are neglected. Therefore the results developed so far can be
extended to woven architectures.

However, there may be some situations in which the distinction between the matrix
of the tows at 0 and 90 degrees is more difficuit to make because there is only one
matrix-cracking mechanism. In place of Eq. (16) for the single layer, the equilibrium and
compatibility conditions are given by the following equations written in the 1-2 frame

(19.1) Emll = €5y; =11
(19.2) om11 = 0ty

(19.3) (L+ fin)oma1 + ffa}.u = 201y
(19.4) Em22 = €59y = €23
(19.5) Om22 = Og

(19.6) (1+ fm)omea + fofag = 200
(19.7) fmém12 + ffe}qz = €12
(19,8) Oml12 = 0'}12 = 0%12 =012

By solving Egs. (19) and noting that there exists only one degradation mechanism
taking place in the matrix characterized by one damage variable D, and two



degradation mechanisms associated with fiber-breakage in the 0 and 90 degrees directions
(D??,D%?), the overall behavior of the composite is defined as

(20.1) ¢ = E(Duny, DI, DY) : £
The elastic energy density 1 associated with matrix-cracking and fiber-breakage on the
composite level can be written as

1
(20.2) %P = g: B(Dumy, DR, DY) i

3.2. STATE POTENTIAL ASSOCIATED WITH DEBONDING AND FIBER PULL-OUT

Inelasticity is essentially due to sliding at the interface between the fiber and the matrix.
Sliding is involved in debonding as well as fiber pull-out. From a micromechanical point
of view, this sliding can take place as soon as a crack is bridged by fibers. In a
CDM formulation, only the equivalent homogenous sliding and the associated forces are
considered. By considering equivalent homogeneous sliding on the composite level, thete
is no way to distinguish the contributions due to fiber/matrix debonding and sliding,
and inter-layer delamination. However, in most CMCs delamination is not as critical as
in polymeric matrix composites for which the Young’s moduli differences are far more
important. Therefore, the cell model used to describe cracking and sliding is that shown
in Figure 1. The analysis that has been done on a 1-D) model (given in Section 2) can
be formally extended to give the expression of the elastic energy density due to sliding
of a layered composite along the 1-2 directions (Burr ef al., 1995)

1-—/a? a2\ 1 -/a?
21 9(a,d =—E(—1l+ﬂ) —G<J£)
@n vied 2 \du dx T3 d12
with
_ f{}OEGUfQUEQU
E = -5 200 90 1,790
FOE 4 f0F
. fOUG_[}U ngGQD
G = —557300 5 7907390
OGN + G

3.2.1. State laws

The following development deals with layered CMCs. By using the results of Section 2,
the total elastic energy density of the composite is the sum of the elastic energy. density
of the damaged composite 9” and the elastic energy density due to debonding and
sliding %

@ = (D52, 0%, DX, D) : (e~ ) +¥° (e d)
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™
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The force associated with total strain is

I8

23.1) 2= -g(p%, D DY DR) : (e - 2)

and corresponds to the macrocsopic stress. The associated force to the damage variables
modeling matrix-cracking and fiber-breakage are

%
(23.2) Yi=—5p

where Di=14 = {D?,?y;D?r?y;Dg‘{_;D??}, and Yieyq = {Yn{i‘;;Yi?,;Y,?{’;Yf{‘ }
represent the corresponding energy release rate densities due to matrix-cracking and

fiber-breakage. The associated force to the damage variables modeling sliding are

S
(23.3) y= _%z_%

where d = {dy1; da2; d12}, and y correspond to the energy release rate densities due to
debonding and sliding. The associated forces to the inelastic strains @ are

_9 _ oy°
S L=5g= 2% g

and represent the back-stresses in the sliding zone. It is worth noting that in this section the
residual stresses are not accounted for. Otherwise there would have been an additional
term in Egs. (23.4) and (22).

3.2.2. Evolution laws

The identification procedure is performed on a [(/90], laminate architecture of
CMCs. The first step is to define all the internal state variables needed to model
the material bebavior. The three total strain variables, (e.g., €11,€22,€12), are given
either from experiment or as input from a F.E. calculation. The four damage variables
Diz1.4 = {D?,,?y; D; DR; D?,‘}} are used to define the change in the elastic properties,
with D, = {D)0; D30, } is the set of damage variables modeling matrix-cracking, and
D¢ = {D?g; Df}{l’} is the set of damage variables modeling fiber-breakage. Assuming
the damage evolution laws, Dy, (Yy,) and Dy (Yy) are functions of the associated forces

m = {YoiYeo}, and Y; = {YJP{] ;Y7 ¢ respectively, then only two evolution laws,
one for each mechanism, are sufficient to compute the four components or damage. The
three damage variables, {d11; d2);d12}, define the sliding distances, with di; or dos
being associated with sliding in the fiber directions and d;5 associated with shear sliding.
Consequently only two evolution laws are needed, d11(y11) or da2(392), and d12(y12)-

For the same reasons, two evolution laws for the inelastic strains, a11(X11)
or ag(Xa2), and oy2(X12) define the evolution of the three inelastic strains,
{0115 a22; 12}. In conclusion, the model has 13 state variables, three of which are



TABLE 1. — Thermodynamic variables modeling elasticity, matrix cracking,
debonding and sliding, fiber breakage and pull-out.

State variables

Assoctated forces

Mechanism Observable Internal
Elasticity Total strain £ g Stress
Matrix- Damage DYo Y90 Energy release
cracking variables D Y320 rate densities
Fiber- Damage ple YJQO Energy release
breakage variables D§0 ch’o rate densities
Inelastic 5 Back
T a X ack-stress
Debonding and s - =
sliding Damage dy1 dag Y11 Y22 Energy release
variables di2 712 rate densities

strain inputs and the remaining 10 micromechanical internal variables are derived from
6 evolution laws. Therefore, the set S of state variables is (Table 1)

(24.1) S = {& @; Diz;4;d}

and the associated forces F' are (Table 1)

T

(54..2)' F= {g; X; Yi=1;45 g}

~ The second step is to define the relevant tests required to identify the growth of the six
internal variables. This is achieved from unloading/reloading tests performed at regular
intervals and measuring the macroscopic inelastic strain upon complete unloading, iy,
the macroscopic damage of the composite, D, and the maximum hysterisis loop width,
8¢ (Fig. 2). Using Egs. (12), the internal variables can be calculated.

When tension is applied at 45 degrees on a [0/90], layered composite, the macroscopic
damage variable, "ﬁ"‘s, is related to the microscopic damage variables taking place in the
matrix alone, {D?,?y, D?,?y}, by using the transformation rules given in the Appendix.
Moreover, in this particular case, the two damage variables D?,?y and D?,?y have the same
value. Therefore, the evolution law, D, (Y} ), is directly given by the evolution of the
macroscopic damage of the composite 3 (Fig. 6).

The evolution law of the damage variable associated with fiber-breakage, Dy (Y7), is
found from measurement of the macroscopic damage o (Fig. 6) in a tension test at
0 degree on the [0/90] which has been compensated by the contribution matrix-cracking
which is calculated from the results of the first test.

Similarly, the evolution laws of the- state variables related to sliding, a11(X11) or
ag2(X22), and di1(y11) or dra(y22) are known from the evolution of the macroscopic
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Fig. 6. — Flow chart of the identification procedure.

inelastic strain upon complcte unloading & 0 = on1(F11 = 0), the macroscopic damage

of the composite, D% , and the maximum hysteresm loop width, §2%°, using generalized
micromechanics r_e,latlons (Egs. 12)
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Finally, returning to the results of the tension test at 45 degrees on a [0/90], layered
composite (Fig. 6), the evolution laws of the state variables related to sliding, o:12(X12)



and di12(y12) are given by the following relationships similar to those calculated by the
micromechanical analysis

=43

di2 g
26.1 _— = —,.L
e R
| dy &
(26.2) arz = o —24
2 1+

In this analysis, it can be noticed that the residual stress —p3° in the tension direction is
equal to zero, and therefore £2° = 262*5, which leads to the above results. Equations (25)
and (26) can be used to predict the overall behavior of the analyzed CMC. However,
they are valid provided the interfacial behavior can solely be modeled by a constant
interfacial shear strength. This is not the only model available to study CMCs. Therefore
the evolution laws of the damage variables as well as the inelastic strains are determined
by direct measurement of their values at different stress Ievels. The drawback of this
approach is that the model is not completely identified since the damage variables related
to debonding and sliding are not identified. Therefore the part of the free energy that
is stored is not fully determined since it depends upon the details of the interfacial
behavior. The stress/strain relationship however is known and thus a structural analysis
can be performed.

In summary, only two tests, on the same architecture, enable us to extract all six
evolution laws that define the behavior of the material (see Fig. 6). Two tensile tests are
sufficient when the back-stresses are computed (therefore the damage variables related to
debonding and sliding). In the following it will be shown that two tests are still sufficient
as long as the evolution of the inelastic strain ¢;12 can be obtained by the analysis of
one of the tensile tests.

4, Model identification

The identification is performed on a [0/90], laminate architecture of a SiC/SiC
composite using the experimental results of Pluvinage (1991). Only two tension tests
are used to establish the evolution laws of the damage quantities and the inelastic
strains. The first step is to consider the elastic properties. Inspection of the composite
(Pluvinage, 1991) indicates the presence of porosity in the matrix. Because the model is
mechanism-based, the only means of accounting for this porosity is by an initial non-
zero matrix damage quantity, D,,9. The measurement of Young’s Moduli E% and E¥
respectively for a 0 degree and + 45 degree tension tests combined with their analytic
expressions gives the value of the initial non-zero isotropic damage quantity, Dy,0 = 0.7,
which affects only the initial elastic properties. This damage value is consistent with
experimental observations of initial porosities due to the Chemical Vapor Infiltration
technique used to process these materials (Pluvinage, 1991). -



The evolution laws of the state variables are written in terms of the associated forces.
Therefore, the evolution of the damage variables is written as a function of the strain
energy release rate densities. The evolution of the inelastic strains is written in terms
of the corresponding back-stresses. It can be shown that the back-stresses are linearly
proportional to the macroscopic stresses as shown in Egs. (23.4) and (25.4). For the
sake of simplicity, the evolution of the inelastic strains is thus written in terms of the
macroscopic stresses. Lastly, the evolution of the damage variable d is not explicitly
needed in the present approach since only monotonic loading conditions are considered
(see Section 2) and no particular statement is made concerning the interfacial behavior
(see Section 3).

From the analysis of a tension test at 0 degree, the maximum hysteresis loop width
is close to half of the corresponding inelastic strain upon complete unloading. It is
concluded from Eq. (25.1) that the macroscopic residual stresses are very small and will
therefore be neglected.

The variation of D,, with Y;, obtained from the experimental data is shown in
Figure 7 a. Since matrix cracking is related to the presence of randomly distributed flaws,
an appropriate form of evolution law which can fit the data shown in Figure 7 a is given
by a Weibull law (1939; 1951)

My
@7 Dy = Daat (1 - [~ (ﬂ) ])
Y;n(}

The values that fit the data of Figure 7a are

(28) Degt = 1.0 Yipyn =0Jm™3 Yoo = 0.6Jm™> m,, = 1.2

The threshold energy release rate density Yy, has.a zero value in accordance with
the hypothesis of no macroscopic residual stresses. The parameters Yo and mu, are
directly related to the evolution of cracking density as a function of applied stress.
The damage parameter at saturation has a very high value in agreement with the fact
that average crack spacing is very small for these composites (Pluvinage, 1991). The
evolution laws for matrix damage having been determined, the fiber-breakage damage
Dy can be plotted, as a function of Y. Using Curtin’s relationship (1991) for fiber

damage, the evolution law is given by
( Y} )(mf+1)/2

In the following computations, it was assumed that during the matrix-cracking process,
only few fibers break. Therefore, no attempt was made to identify the previous parameters.

(29) Dy=1-exp

Lastly, the expression used to fit the evolution laws for the inelastic strains shown
in Figures 7b and 7c are

(30) (0i — oun)

o =
a0
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Fig. 7. — Experimental and identified evolution of:
(a) the matrix-cracking damage variable D,, as a function of the strain energy release rate density associated
with matrix-cracking Yp,;
(b) the inelastic strains @) (or azg) as a function of the stress 011 (or g22);
(c) the inelastic strains ai2 as a function of the equivalent stress Teq:

(31) o = @Sign(‘m)

The material parameters of Eqs. (30) and (31) are related to the interfacial behavior.

The introduction of the expression for 7., comes from the observation that the
stress/strain curves obtained for tensile tests at + 45 degrees and shear tests at 0 degree
almost coincide for CMC systems. This observation appears to apply for a whole class
of matenials: SiC/SiC, SiC/CAS, SiC/C, C/C composites (Cady et al, 1995a), and



presumably SiC/Al,O3 composites (Heredia et al., 1995). One choice for 7.4 which
satisfies this requirement is given by

(32) Teg = \/

Similar behavior is observed in concrete for which both the hydrostatic and shear stress
states influence the inelastic deformations (Drucker and Prager, 1956). The definition
of the equivalent shear stress given in Eq. (32) enables us to identify all the evolution
laws by analyzing two tensile tests. This hypothesis is crucial and will be checked in
Section 5. The constants in Egs. (30) and (31) which define the inelastic strains are given
by (see Fig. 7b and 7c).

3
012 [0‘12 + 5(011 + 022)] l

o = 8 MPa oy = 480 GPa

(33)
73p = 154 MPa 15 = 64.8 GPa

This model is implemented in the industrial Finite Element code ABAQUS (Hibbit et al.,
1995) via a user material (UMAT) routine. This allows to investigate more complex
loading conditions on a structural level. The Finite Element procedure was checked by
analyzing pure tension tests at 0 and + 45 degrees. The comparisons in terms of stress-
strain between the experiments and the computations are shown in Figure 8. There is a
good agreement between the model and the experiments used to identify the model.
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Fig. 8. — Experimental and identified evolution of the tensile stresses oy, as a function of the tensile strains eyy in
(a) a tension test on a [0/90] SiC/SiC lay-up at O degree,
(b) a tension test on a [0/90] SiC/SiC lay-up at + 45 degrees.



5. Analysis of experiments on SiC/SiC composites

When the availability of materials is restricted to planar form, the most usual means
of obtaining shear data is to subject the Iosipescu specimen (losipescu, 1967) to shear
force (Pluvinage, 1991). In order to investigate the suitability of the [osipescu test as
a'means of obtaining shear data, a Finite Element analysis has been performed using
the constitutive equations described and identified previously. The Iosipescu specimen
shown in Figure 9 is subjected to shear loading and measurement of the shear properties
of the material are obtained by plotting the average stress at the minimum section against
the shear strain measured by strain gauges placed at the center of the specimen. It is
known that the shear stress at the minimum section of this specimen is sensibly constant
when the material is elastic and isotropic, but is is not known if the constant shear
stress assumption is valid when cracking occurs. In addition to verifying the suitability
of the Iosipescn specimen, the tests provide an opportunity to measure the ability of the
constitutive equations to predict the behavior of a component in which the stress state is
different from those used in the identification procedure.

Y
>

Strain gauges

Fig. 9. — losipescu specimen configuration.

The plot of the average stress against the strain at the center of the specimen is shown
in Figure 10. This prediction agrees with the experimental observations to within 5%.
The stress-strain shear curve at the center of the ligament is also shown in Figure 10. It
can be seen that the average stress-strain shear curve underestimates the actual stresses.
The differenice, which is not large, is the result of the assumption that the shear stress and
strain are almost uniform across the minimum section. The results of the finite element
analysis shown in Figure 11 indicate that the shear stress at the minimum section 1s
essentially constant therefore justifying the use of the losipescu specimen as a means of
obtaining shear data. Lastly, the hypothesis made to write the evolution of the inelastic
strain a1z (Eq. (31)) as a function of the equivalent shear stress 7e, (Eq. (32)) seems
reasonable when the results of prediction of the Iosipescu test is compared with the
experiments. Figure 11 also compares the shear stress profile for the linear elastic and
non-linear calculations when the external load level is identical. The effect of non-linear
stress/strain behavior allows the stresses to be redistributed when compared to a purely
linear elastic calculation. This effect can be measured by the ratio of the average to
maximum shear stresses in the elastic calculation (0.93) and in the non-linear analysis



(0.95). This differerice is not important since the shear stress profile is almost constant
in the ligament even for a linear elastic computation.
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Fig. 10. — Experimental and predicted evolution of the average shear stresses o'z as a function of the shear strains
Y=y in a Iosipescu test on a [0/90] SiC/SiC lay-up. This evolution is compared with the evolution of the shear
stresses gy as 4 function of the shear strains <y, in the center of the specimen.
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Fig. 11. - Shear stress profile in the ligament of the Iosipescu specimen when the shear strain v, in the center

of the specimen is equal to 0.007 as a function of the relative distance y/b from the center of the ligament for
a linear and non-linear computation.

6. Conclusions

A CDM model is proposed for CMCs which is mechanisms-based. The laws which
relate the growth of the internal state variables to their associated forces have been
derived from the unloading-reloading paths during tensile experiments for two different
directions. The ability of the model to predict the response to another state of stress
suggests the advantage of a mechanisms-based approach.

When applied to SiC/SiC [0/90] lay-ups, the present model has ten internal variables,
viz. three inelastic strains modeling sliding, three damage variables describing the
amount of debonding and four damage variables accounting for matrix-cracking and
fiber-breakage in the two plies. It is shown that only two different experiments in
tension are needed to identify the growth laws of the ten internal variables. The



model has the potential to be applied to other material configurations (e.g., SiC/CAS,
SiC/C, C/C, and presumably SiC/Al,O3 composites) and architectures (e.g., woven
configurations). Furthermore, the general framework presented herein has been applied to
room temperature configurations and monotonic loading conditions. However extensions
to cyclic load histories as well as high temperature applications can be included with
minimal change to the state potential formulations. Evolution laws will have to be
modified slightly.

The reliability of the Tosipescu test is confirmed as a means of average stress-strain
shear data, and the constitutive equations are able to predict the shear properties correctly.
However, it is shown that the average shear properties may be slightly different from the
actual stress-strain shear data in the center of the ligament. Therefore the identification
of the shear properties based upon the measurements on a losipescu test are, strictly
speaking, only an approximation of the actual response in pure shear.

The ability of stress redistribution due to the non-linearity of the stress/strain curve has
been shown in the case of the losipescu experiment. Stress redistribution is important for
structural applications and needs to be further studied on other types of structures and
load configurations (e.g., plates with holes, notches, pin-loaded structures). This work
is still under way.
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APPENDIX

Let us consider a lamina with initial principal directions of orthotropy given by 1 and 2.
The initial principal directions of orthotropy, or material directions, often do not coincide
with the loading directions given by z and y (Fig. 5). The z-axis is perpendicular to
the plan (1-2) and (z-y).

Under plane stress conditions, an elastic stress-strain relation in the material directions
can be written in terms of the compliance matrix {S}.

€11 S S12 0 o11
(ALD) ear | =|S12 S22 O 022

Y12 0 0 Se/ \o12
or in terms of the stiffness matrix {Q}

o11 Qu Quz O €11
(Al.2) o | =(Qiz2 Qa2 O €22

012 0 0 Qss/ \ma2



If we now consider the same expression written in the loading directions, the general
stress-strain relation leads to a full compliance matrix {S }

Eox S11 Sz Si6\ [02s
(A2.1) Eyy | — §_12 §22 §_26- Oyy
Yxy S16 S Ses Oxy

or to a full compliance matrix {a}

Ozx gll gl2 9_16 Exx
(A2.2) oyy | = | Q12 Qa2 Q26 || ey
; Ty Qs Q2 @6/ \Vay

The relationship between the compliance matrix in the material directions, {S}, and in
the loading directions, {S } can be written as follows

(A3.1) | {8} = {1} {SHT}

and the relationship between the stiffness matrix in the material directions, {Q}, and in
the loading directions, {Q} can be written as follows

(A3.2) (@} = {1}y H{QHIY T

where the superscript” denotes the matrix transpose, and {T'} the transformation matrix
associated with a positive rotation of angle @ of principal axes about z from material
axes (Fig. 1)

cos® 6 sinZ @ —2sinf cosf
(Ad) {T}=| sin?0 cos® § 2siné cosd
sinfcosf —sinfcosf cos?f —gin?6
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