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Université Paris-Saclay, 91128 Palaiseau, France

E-mail: p.viegas@differ.nl; anne.bourdon@lpp.polytechnique.fr

13 September 2019

Abstract.

This work presents a study of the influence of dielectric permittivity on the

interaction between a positive pulsed He plasma jet and a 0.5 mm-thick dielectric

target, using a validated two-dimensional numerical model. Six different targets are

studied: five targets at floating potential with relative permittivities εr = 1, 4, 20,

56 and 80; and one grounded target of permittivity εr = 56. The temporal evolution

of the charging of the target and of the electric field inside the target are described,

during the pulse of applied voltage and after its fall. It is found that the order of

magnitude of the electric field inside the dielectric targets is the same for all floating

targets with εr ≥ 4. For all these targets, during the pulse of applied voltage, the

electric field perpendicular to the target and averaged through the target thickness, at

the point of discharge impact, is between 1 and 5 kV.cm−1. For the two remaining

targets (εr = 1 and grounded target with εr = 56), the field is significantly higher than

for all the other floating targets.

PACS numbers:

Keywords: plasma target interaction, plasma dielectric interaction, plasma jet, electric

field, surface charges.

1. Introduction

Due to emerging applications, non-thermal atmospheric pressure plasma jets have

attracted a lot of attention in the past 20 years. Several groups have studied plasma

jets experimentally and numerically, and several reviews on jets have been published

in the last years [Schutze et al., 1998; Laimer and Stori , 2007; Laroussi and Akan,

2007; Lu et al., 2012, 2014; Winter et al., 2015a]. Jets have the ability to deliver

in remote locations a wide range of reactive species (NO, OH, NO2, H2O2, O, O3),

‡ Present address: DIFFER - Dutch Institute for Fundamental Energy Research, 5612 AJ Eindhoven,

The Netherlands
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charged species, high electric fields and UV photons. Thus, they are very promising

devices for applications in the areas of material science and biomedicine. These are

highlighted in several papers and reviews [Fridman et al., 2008; Kong et al., 2009; Collet

et al., 2014; Graves , 2015; Laroussi , 2015; Weltmann and von Woedtke, 2017; Reuter

et al., 2018] and include decontamination, microbial sterilization, cancer treatment,

coagulation, wound healing, dental treatment, surface functionalization and treatment

for agriculture. Among the applications, we would like to highlight the role of the electric

field in the discharge when applied on living tissues. In some applications where the jet

is used to destroy (or cause the apoptosis of) diseased cells, the electric field produces

the electroporation of the cells, which allows for reactive species or even therapeutic

drugs to be successfully introduced into the cells [Kim et al., 2010; Mirpour et al.,

2014; Zhang et al., 2014]. Most of the targets in these applications, such as organic

materials and polymers, have a dielectric character. Therefore, a proper understanding

of discharge-dielectric interaction is essential for the optimization of jet applications.

The interaction of jets with dielectric surfaces of different permittivities has been

addressed in several experimental and numerical works [Breden and Raja, 2014; Norberg

et al., 2015; Wang et al., 2016; Yan and Economou, 2016; Ning et al., 2018; Klarenaar

et al., 2018; Ji et al., 2018; Lazarou et al., 2018; Yue et al., 2018; Zheng et al., 2018;

Hofmans and Sobota, 2019; Sobota et al., 2019; Schweigert et al., 2019; Babaeva et al.,

2019]. In Norberg et al. [2015] it has been studied numerically in 2D the impact of

He jets on dielectric and metallic grounded targets with a −15 kV voltage pulse. The

propagation of the ionization waves has been described as being slightly faster towards

targets of higher permittivity, followed by the impact and spreading on the target surface

in the case of dielectric targets of different permittivities, along with the resulting electric

field distribution inside the target. Furthermore, the differences between the different

targets have been reported, along with their impact on species production in the plasma

plume. With low values of εr, up to 10, the target has lower capacitance and a shorter

RC time constant for charging the surface, which quickly leads to the depletion of the

axial component of electric field and the rise of the radial component that sustains the

propagation of the discharge on the surface. With high values of εr, such as 80 for

liquids, and with metallic targets, the charging of the surface is slower or inexistent,

there is low radial component of electric field and no or little discharge propagation

on the surface. Wang et al. [2016] have also studied numerically the interaction of He

jets with dielectric surfaces of different permittivity (εr = 2, 5, 10), but with positive

polarity of applied voltage. In agreement with Norberg et al. [2015], they have shown

that the lower impedance of the dielectric with higher εr enhances the electric field in

the plasma column, leading to an increase of the electron density in the plasma column.

Moreover, in that work the surface charge density on the target surface has been shown

to be proportional to εr, while the radial component of electric field while the discharge

is spreading on the target surface is inversely proportional to εr. Then, in Klarenaar

et al. [2018] the electron densities and temperatures have been experimentally obtained

through Thomson scattering with spatial and temporal resolution in a He jet freely
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expanding or interacting with floating targets of different electrical properties. The

same macroscopic behaviors reported in Norberg et al. [2015] have been observed and

their effect on the electron properties have been reported, with electron density close to

the target reaching three times higher values with a metallic target than a glass target.

Other experimental and numerical works [Ji et al., 2018; Yue et al., 2018; Sobota et al.,

2019] have found the same tendencies as in Norberg et al. [2015], in terms of influence

of the target on discharge velocity, radial spreading on the target and electric field in

the front of propagation.

Experimentally, some investigations have focused on the examination of electric

fields inside dielectric targets exposed to discharge impact. These can be investigated

with Mueller polarimetry using electro-optic crystals, since their refractive index changes

linearly with the induced electric field. The electric field components can be obtained

with temporal resolution and along the surface of the crystal, but not along its

thickness. Thus, it is considered as the field averaged through the crystal thickness. The

visualization of electric field using electro-optic materials has been applied by Kawasaki

et al. [1991]; Zhu et al. [1995] to study the propagation of streamers on dielectrics. It has

also been used with He plasma jets by Sobota et al. [2013]; Wild et al. [2014]; Slikboer

et al. [2016, 2017, 2018] and DBDs by Stollenwerk et al. [2007]; Bogaczyk et al. [2012];

Tschiersch et al. [2014]. It offers an unique way to estimate the fields these targets

are exposed to and to also investigate the dynamics of the discharge propagation on

the target surface. In plasma simulations, the electric field can be calculated at each

point of a computational domain at each time-step. Thus, the recent developments

in electric field measurements in He plasma jets in experiments, together with plasma

simulations, provide an excellent opportunity for detailed characterization of He jets

and their applications on targets.

Recently, in [Viegas et al., 2018b], a qualitative comparison between experiments

and simulations has provided explanation for the difference between the rather high

values of electric field measured in the jet plume and the rather low values measured

inside a dielectric target. The experiments have used a BSO target of relative

permittivity εr = 56 and the simulations a glass target of εr = 4. Furthermore, that

work has allowed to describe the discharge dynamics and relate it with the electric field

distributions. Then, in Slikboer et al. [2019], quantitative comparisons of temporally and

spatially resolved electric field evolutions have been performed, considering the same

conditions in experiments and simulations and the BSO target. The simulation results

have been averaged over 25 ns and through the target thickness to be compared with

experimental measurements with the same temporal and spatial resolution. That work

has investigated the dynamical charging of a surface under exposure of a positive pulsed

plasma jet and an excellent agreement between experimental and numerical results has

been obtained. It has been shown with variable pulse duration and amplitude that the

charging time (i.e. the time from the impact of the ionization wave until the fall of the

high voltage pulse) is a crucial element to determine the spreading of the discharge and

the charge deposition on the surface and thus the electric field the target is exposed
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to. Both works have used the BSO target in the experiments, due to its electro-optic

properties, necessary for the diagnostic. Yet, discharge dynamics can vary significantly

when interacting with different surfaces. Plasma simulations are less constrained in

terms of target permittivity, as εr can be easily changed.

In this work, we investigate through numerical simulations the influence of the

target permittivity specifically on the electric field experienced by the target. Moreover,

we evaluate if the electric field measured inside the BSO target is representative of

the electric field inside other dielectric targets, under impact of positive pulsed jets.

In addition to different permittivities of targets at floating potential, a grounded BSO

target is also studied. In section 2 the two-dimensional axisymmetric fluid model is

described. Then, in section 3.1 the discharge dynamics interacting with the different

targets is described and in section 3.2 the comparison between targets is focused on the

charging of the target surface and on the electric field inside the target. Finally, an

appendix presents a short study of the sensitivity of the results to the reaction scheme

in use in the model.

2. Numerical model

The model set-up is shown in Figure 1. The geometry taken is the same as in the

experiments in Slikboer et al. [2019]. A dielectric quartz tube with relative permittivity

of εr = 4, length 3.3 cm (between z = 1.0 cm and z = 4.3 cm), internal radius

rin = 1.25 mm and outer radius rout = 2.0 mm is used. Also, a dielectric target is

placed perpendicularly to the tube at 1 cm from the end of the tube. The target is

defined as a cylinder of 2 cm radius and 0.5 mm thickness, set between z = −0.5 mm

and z = 0. In this work, targets of different relative permittivities are used: 1, 4,

20, 56 and 80. εr = 1 corresponds to the limit case in which there is no change of

permittivity with respect to the gas. εr = 4 is the value used in the model in Viegas

et al. [2018b] and approximately corresponds to organic polymers, biological tissues and

materials such as glass. In Slikboer et al. [2019] a BSO target of εr = 56 has been

used in the model, to match the electric field measurements with the same target. We

should notice that the numerical description of the plasma-target interaction with this

target has been validated through comparisons with experiments in that publication.

εr = 20 represents a target of intermediate permittivity, between the latter two. Finally,

εr = 80 is approximately the permittivity of liquid targets, which in many cases surround

biological tissues. The targets are at a floating potential as in the experiments, and a

grounded plane is set 10 cm behind it. One additional target configuration has been

used, with εr = 56 but grounded, i.e. with the grounded plane at z = −0.5 mm. A

powered ring electrode of inner radius 0.4 mm and outer radius 1.25 mm is set inside the

tube between z = 3.8 cm and z = 4.3 cm and a grounded ring is wrapped around the

glass tube between z = 3.0 cm and z = 3.3 cm, at a distance of 0.5 cm from the inner

ring. As in experiments, the inner ring is powered by an applied voltage that rises during

50 ns until reaching VP = 6 kV. In the experiments [Slikboer et al., 2019] the pulse width
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is variable and the frequency of pulse repetition is 5 kHz. In this work, the voltage is

constant until t = 600 ns and decreases from there until t = 650 ns, when it reaches

zero. Taking into account the high repetition rate in experiments, we consider that

relatively high densities of electrons and positive ions remain in the discharge domain

between pulses, as is also argued in Naidis [2011]. Given the uncertainty on what the

exact initial conditions should be to reproduce the repetitive discharges, we take into

account a standard uniform initial preionization density ninit = 109 cm−3 of electrons

and O+
2 . However, no initial surface charges are considered on the dielectric surfaces.

Figure 1. Side view schematics of the discharge set-up used in the simulations. The

colour plot and the white curves show the O2 spatial distribution in the He-O2 mixture

(percentage over a total of 2.45 × 1019 cm−3 gas density).

Figure 1 also shows that the discharge set-up is placed inside a grounded cylinder

with a radius of 10 cm. Between the dielectric target and the grounded plane, as well

as between the dielectric tube and the grounded cylinder, the space is considered as a

dielectric of air permittivity εr = 1. On the last boundary of the domain (i.e. at z = 4.8

cm), the axial gradient of electric potential is set to zero. The computational domain

is cylindrically symmetrical and the simulations have been carried out at atmospheric

pressure and at T = 300 K. To simulate the discharge dynamics, we use as in Viegas et al.

[2018b]; Slikboer et al. [2019] a 2D axisymmetric fluid model based on drift-diffusion-

reaction equations for electrons, positive ions and negative ions and reaction equations

for neutral species, coupled with Poisson’s equation in cylindrical coordinates (z, r):

∂ni
∂t

+∇.ji = Si (1)

ji = (qi/|e|)niµiE−Di∇ni (2)

ε0∇.(εr∇V ) = −ρ− σδs (3)

E = −∇V ; ρ =
∑

qini (4)
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where the subscript i refers to each species and ni, qi, ji, µi and Di are the number

density, the charge, the flux, the mobility and the diffusion coefficient of each species i,

respectively. Si is the total rate of production and destruction of species i by kinetic

processes and by photoionization. V is the electric potential, E the electric field, e

the electron charge, ε0 the vacuum permittivity, εr the relative permittivity and δs the

Kronecker delta (equal to 1 on the dielectric/gas interfaces). In this work, as in Slikboer

et al. [2019], the description of electron energy is included to be able to describe the

plasma with the grounded ring around the tube and targets with high permittivity. The

inclusion of the grounded ring around the tube is important to describe the ignition and

propagation of the discharge. In Viegas [2018] (chapter III.3) it has been shown that the

inclusion of the grounded ring around the tube, placed between the powered electrode

and the target, leads to faster discharge ignition and propagation and to a significant

charging of the tube inner surface. The description of the electron energy in the model

is obtained by implementing the electron energy conservation equation. By adopting

the same approximations as in Alves et al. [2018]; Hagelaar and Pitchford [2005], the

equation is written:

∂

∂t
(neεm) +∇.jε = −|qe|E.je −Θe (5)

jε = −neεmµεE−Dε∇(neεm) (6)

where nε = neεm is the electron energy density, defined by the multiplication between the

electron density and the electron mean energy, Θe represents the power lost by electrons

in collisions and jε is the flux of nε by drift and diffusion. Thus, eq. (5) takes the same

form of the continuity equations for charged species with drift-diffusion approximation.

It is important to point out that at the surface of both the tube and the target,

secondary emission of electrons by ion bombardment (γ = 0.1 for all ions) is taken into

account. The surface charge density σ on the surface of the dielectrics is obtained by

time-integrating charged particle fluxes through electric drift to the surface. We consider

that these charges then remain immobile on the surface of the dielectrics. The plasma

model has been coupled with static flow calculations [Viegas et al., 2018b; Viegas , 2018].

In the experiments [Slikboer et al., 2019], 1 slm of He with some air impurities flows

through the tube into air. As a first approximation, the model considers a flow of 1 slm

of helium with 100 ppm of O2 impurities flowing downstream into an O2 environment.

Both experiments and simulations [Winter et al., 2015b; Schmidt-Bleker et al., 2015]

have shown that the use of O2 or air as surrounding gas for a He jet present similarities

with respect to discharge dynamics in the plasma plume. In Naidis [2011]; Schmidt-

Bleker et al. [2015] the important role of the electronegativity of the surrounding gas,

either O2 or air, has been highlighted. Finally, in Viegas [2018] (chapter III and appendix

F), attachment in oxygen has been shown to be relevant for the radial confinement of

the discharge in the plume. Moreover, in that work the influence of O2 impurities in

the He flow, up to 1 %, has been studied and it has been shown to have little relevance

on the dynamics of propagation of the discharge. The spatial distribution of O2 in the

He-O2 mixture obtained from the flow calculation is presented in Figure 1.
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In Viegas et al. [2018a, b], the reaction scheme proposed in Liu et al. [2010] has

been used to describe the kinetics in the He-O2 plasma. The scheme includes a total

of 288 reactions with 5 positive ions, 5 negative species and 11 neutral species. In this

work a reduced reaction scheme is used. The reduction consists on keeping only the

10 most important species in the µs timescales under study: e, O−2 , He+, He+2 , O+
2 ,

He, He(23S,21S), O, O2, O2(a1∆g). By excluding the reactions concerning the other 11

species, the scheme is reduced to 55 reactions. In tables 2 and 3 in the appendix, the

list of reactions and rate coefficients used in the reduced reaction scheme is used. It has

been verified that the discharge dynamics of propagation and thus the time of impact

on the target and the radius of the discharge are not affected by the scheme reduction.

In the appendix, it is shown that the surface charge deposition on the dielectric target

and the values of electric field inside the target are affected in less than 10% by the

scheme reduction for the cases of floating targets with εr = 4 and 56. As a result of the

chemistry reduction, the calculation time is reduced approximately by a factor 2.5. The

electron and electron energy transport parameters and the rate coefficients of electron-

impact reactions are calculated with the electron Boltzmann equation solver BOLSIG+

[Hagelaar and Pitchford , 2005], using the IST-Lisbon database of cross sections in

LXCat [Pancheshnyi et al., 2012; IST , 2018], and tabulated as functions of both the

local gas mixture and the local mean electron energy εm. In each cell and at each

timestep, each coefficient k is calculated for the local values of mixture and εm by linear

interpolation between the upper and lower tabulated values and we obtain k(εm,mix),

as in Viegas [2018]. For the photoionization model, we use the approach described in

Bourdon et al. [2016]; Slikboer et al. [2019]. The ionizing radiation is assumed to be

proportional to the excitation rate of helium atoms by impact of electrons. Then, the

photoionization source term is proportional to the amount of O2 and thus we use as

proportionality Aph = 100×XO2 . In the studied conditons, photoionization plays a key

role in the discharge propagation from the end of the tube towards the targets. The

role of photoionization on discharge propagation has been evaluated in Viegas [2018]

(chapter III).

A finite volume approach and a cartesian mesh are used. The mesh size is 10 µm

axially between z = −0.05 cm and z = 4.3 cm and radially between r = 0 and r = 4.0

mm. Then, both behind the target and for r > 4.0 mm, the mesh size is expanded

using a geometric progression. The refinement taken requires a mesh of nz × nr =

4400 × 470 = 2.068 million points. The average computational time required for a 2

µs simulation run to obtain the results presented in this paper was of three days with

64 MPI processes on a multicore cluster “Hopper” (32 nodes DELL C6200 bi-pro with

two 8-core processors, 64 Go of memory and 2.6 GHz frequency per node). Further

details on the numerical schemes and other characteristics of the simulations are given

in Viegas [2018].
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3. Results

3.1. Influence of target permittivity on discharge dynamics

In every case considered, the discharge ignites inside the tube, near the powered

electrode, and propagates towards the end of the tube and then towards the target.

Table 1 presents the time of impact of the discharge on the targets at floating potential

for each case and for grounded target with εr = 56. The time of impact is defined as

the instant when the maximum of the axial component of electric field is the closest to

the surface of the target, with a 10 ns resolution.

Target Impact time [ns]

εr = 1 340

εr = 4 330

εr = 20, 56, 80 320

εr = 56, grounded 270

Table 1. Time of impact of the discharge on the different targets.

It is shown in table 1 that the time of impact, and thus the velocity of discharge

propagation, are only slightly affected by the target permittivity in the case of floating

targets. However, the propagation with εr = 56 and grounded target is significantly

faster than the one towards floating target, with impact 50 ns earlier. The same trends

have been reported by the experiments and simulations in Ji et al. [2018]. Then, Fig.

2 shows the spatial distribution of electron density in the plasma plume, between the

tube and the target, for three cases of floating target: low εr = 4, intermediate εr = 20

and high εr = 80. Four stages of discharge-target interaction are presented: discharge

propagating between the tube and the target at t = 300 ns, discharge front impacting the

target surface, radial spreading approximately 100 ns after the impact and immediately

before the fall of the applied voltage, at t = 600 ns.

The results in Fig. 2 at t = 300 ns confirm that εr does not significantly change the

velocity of discharge propagation and the values of electron density during propagation.

Then, when the discharge front is very close to the target surface, in the last 2 mm

of propagation, the electric field in the front and its velocity of propagation increase

with εr, justifying the 20 ns difference in time of impact between the case with εr = 1

and εr = 80. As a result, also the electron density very close to the surface increases

with εr. A difference between different targets of electron density and peak electric field

only very close to the surface has also been measured in Klarenaar et al. [2018]; Sobota

et al. [2019] and simulated in Ji et al. [2018]; Schweigert et al. [2019]. Then, after the

discharge hits the target, positive charge deposition takes place on the surface and the

discharge spreads radially outwards. Finally, we notice that between the impact on the

surface and the end of the pulse, the radial spreading of the discharge is significantly

faster for lower εr. In fact, it is shown that at t = 600 ns the discharge front has reached

r = 3.5 mm with εr = 4, but only r = 2.5 mm with εr = 20 and r = 1.5 mm with
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Figure 2. Cross section of spatial distribution of electron density in the plasma plume.

From left to right: εr = 4, 20 and 80. From top to bottom: discharge propagation in the

plasma plume, discharge impact, radial spreading 100 ns after impact and immediately

before end of pulse.

εr = 80. These results agree with those reported in other numerical and experimental

works [Norberg et al., 2015; Wang et al., 2016; Yue et al., 2018; Klarenaar et al., 2018].

Then, in Fig. 3, the spatial distribution of other species is presented at t = 600 ns.

The main negative and positive ions O−2 and O+
2 are shown, together with two excited

metastable species of different elements, He* and O2(a).

The distributions of O−2 and O+
2 presented in Fig. 3 show densities in the region

without plasma with approximately the same value as the preionization density 109

cm−3. In fact, in that region the electrons from preionization are quickly attached.

Then, as the ion-ion recombination is rather slow (rate ∼ 5 × 1012 cm−3.s−1 in these

conditions), O−2 and O+
2 remain in the region without plasma during the timescales

of discharge propagation. In the plasma region, we see that the negative ion density is

significantly lower than the electron density and that the density of O+
2 is approximately

the same as that of electrons, thus being the dominant ion. It is also clear in Fig. 3

the dependence of He*, O−2 and O2(a) on the He-O2 mixture. He* is only present in
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Figure 3. Cross section of spatial distribution of species densities in the plasma plume

at t = 600 ns. From left to right: εr = 4, 20 and 80. From top to bottom: O−
2 , O+

2 ,

He* and O2(a).

the discharge front where it is being created by electron-impact reactions and in the

region of very low O2 density (< 1%). That is due to the fast quenching of He* through

Penning ionization of O2 when O2 is present. The density of He metastable has been

measured in Winter et al. [2015b] in the plume of a MHz-driven He jet and has been

shown to have spatial distribution similar to the one presented here, with values around

1013 cm−3 between the tube nozzle and 4 mm downwards. Moreover, in a recent work

[Pouvesle et al., 2018], it has been shown a simple way to follow the time evolution of

this density in experiments, relying on the late time evolution of the transitions emitted

from the N+
2 (B) state. On the other hand, O−2 and O2(a) require O2 to be produced

and thus are present mostly in the region with O2 density higher than 1%. That is

not the case with O+
2 , since O+

2 is converted into the dominant ion by charge tranfer

reactions from He+ and He+2 , as well as by Penning ionization, even in the region of low

O2 density. Finally, we can notice that O+
2 and O2(a) densities close to the target tend

to be proportional to εr.



Numerical study of jet-target interaction: ... 11

In Figs. 4 and 5 we assess the influence of the target permittivity on the discharge-

target interaction in terms of the electric field between the plasma and the dielectric

during the radial spreading of the discharge on the target. In Fig. 4 the temporal

evolution of the maximum axial component of electric field Ez, on the surface at z = 0

and for all r, directed from the plasma towards the target, is depicted. Then, in Fig.

5 the maximum outwards directed radial component of electric field Er in the plasma,

very close to the target, is presented as function of time. The maximum of Er on the

discharge front while spreading over the target can be placed at different positions above

the target, but these are always between z = 0.25 mm and z = 0 (target surface). The

results are obtained with a temporal resolution of 1 ns.

Figure 4. Temporal profiles of the maximum |Ez| while the discharge is spreading

radially over the target surface, for 6 different targets.

Fig. 4 shows firstly the time of impact of the discharges on the target, when |Ez|
at z = 0 starts to quickly increase. Such high peaks of Ez at discharge impact have

also been reported in Lazarou et al. [2018] with a target with εr = 8 and in Yan and

Economou [2016] with a grounded target. Then, after the impact, the maximum |Ez| at

z = 0 between the plasma and the target increases with εr and the difference can reach

a factor 5. This result agrees with Gauss’s law at the target surface with surface charge

density σ = 0: ε0Ez→z+ + ε0εrEz→z− = σ; where Ez→z− inside the target is positive and

Ez→z+ between the plasma and the target is negative and has magnitude proportional to

εr. Moreover, |Ez| at z = 0 is higher with grounded target, due to the proximity of the

ground. It is noticeable that for every case the maximum |Ez|, always on the discharge

front and thus at different radial positions, stays almost constant during the radial

spreading. As a consequence, more positive charge deposition on the target surface is

expected with higher εr.

As far as Er is concerned, Fig. 5 shows that in the discharge front spreading over

the target surface, Er is inversely proportional to εr, as in Wang et al. [2016]. In fact,

when the discharge starts charging the target, with higher capacitance (proportional to

εr) the electric potential of the whole target is slowly raised. On the other hand, with

lower capacitance, the rise of electric potential in the target is more localized, which
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Figure 5. Temporal profiles of the maximum Er at 0 < z < 0.25 mm, while the

discharge is spreading radially over the target surface, for 6 different targets.

quickly leads to the depletion of the axial component of electric field and the rise of

the radial component. As a result, slower spreading is expected with higher εr, which

has been verified in Fig. 2. With grounded target, despite the high εr = 56, as the

target tends to be grounded, Er at the discharge front is higher than with a floating

target with the same permittivity. In Fig. 6 we observe the effects that these temporal

evolutions of the maximum of |Ez| and Er have on the charge deposition on the target

surface. In particular, Fig. 6 shows the radial profiles of surface charge density σ while

the discharge is spreading over the target surface, approximately 100 ns after the times

of impact reported in table 1.

Figure 6. Radial profiles of the surface charge density σ while the discharge is

spreading radially over the target surface, 100 ns after the time of impact, for 6 different

targets.

It can be noticed that tendentiously the radial spreading is proportional to Er
presented in Fig. 5. Moreover, the values of σ are proportional to |Ez| shown in Fig.

4 and thus are highly dependent on the target permittivity, varying on more than two

orders of magnitude between εr = 1 and 80. The proportionality of σ with εr has
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also been verified in Wang et al. [2016]. When the target is grounded, σ reaches even

higher values, over 50 nC.cm−2. It is also visible that in most cases σ is higher at the

discharge front than behind the front, as is also the case in Wang et al. [2016]; Zheng

et al. [2018]; Lazarou et al. [2018]; Schweigert et al. [2019]. In fact, behind the front, as

the region of positive charge separation has moved, the electric field generated by the

plasma towards the target decreases and some negative charge deposition takes place

until a local balance with the upwards electric field created by the positive surface charge

is reached. In Wang et al. [2016]; Ning et al. [2018]; Zheng et al. [2018]; Lazarou et al.

[2018]; Schweigert et al. [2019], with targets of εr = 2, 5, 8, 10, the surface charge density

is reported to have values between the ones in Fig. 5 for εr = 4 and εr = 20.

3.2. Charging of the target surface and electric field experienced by the target

In this section we evaluate how the dynamics with different targets affects the charging

of the target surface and the electric field inside the target both during the pulse of

applied voltage and after the fall of the pulse. Fig. 7 shows the temporal evolution

of the total charge Q deposited on the surface of the six different targets during those

intervals. A vertical black dashed line is added at t = 600 ns, to notice the time when

the applied voltage starts decreasing, reaching zero at t = 650 ns.

It is visible in Fig. 7 that the positive charging of the surface grows until the end

of the pulse. The growth of Q is dependent on the target and proportional to εr. At

t = 650 ns, Q of the floating target with lowest εr is about 5 times lower than Q of

the floating target with εr = 80. This result is expected, as the capacitance of the

target, i.e. the amount of charge required to raise its electric potential, is proportional

to εr. When the target is grounded, Q is significantly higher than in any of the floating

targets. Then, after t = 650 ns, Q decreases, which means that globally negative charge

deposition takes place. Q always remains positive, although locally there can be negative

σ values. We can notice that 1000 ns after the fall of the pulse, Q becomes almost stable

in the cases of floating target, with low values below 0.1 nC, while with grounded target

Q remains rather high. Locally, the temporal dynamics of charge deposition is more

complex. The temporal evolution of σ at r = 0 is presented in Fig. 8, for the six

different targets.

Fig. 8 shows that the local charging of the target, both in rate and in value, is also

proportional to εr, as expected from Figs. 4 and 6. With εr = 1, the maximum σ at

r = 0 is reached at t = 679 ns with 0.418 nC.cm−2 and with εr = 4 at t = 406 ns with

1.04 nC.cm−2. With higher εr and floating target, the maximum of σ at r = 0 is reached

immediately after the impact and can be dozens or hundreds of times higher. Then, as

the discharge spreads, with floating targets the downwards electric field generated by

the plasma decreases at r = 0 and some negative charge deposition takes place until a

local balance with the upwards electric field created by the positive surface charge is

reached. This process has been described in more detail in Viegas et al. [2018b]. In Fig.

8 we notice that the decrease of σ is more pronounced for higher εr. When the applied
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Figure 7. Temporal profiles of the total charge deposited on the target surface, for 6

different targets. A vertical black dashed line is added at t = 600 ns when the applied

voltage starts decreasing.

Figure 8. Temporal profiles of the surface charge density σ deposited on the target

surface at r = 0, for 6 different targets. A vertical black dashed line is added at t = 600

ns when the applied voltage starts decreasing.

voltage falls, as the plasma potential and the electric field from the plasma towards

the target decrease, again negative charge deposition takes place. This process is not

radially uniform. The positive charge on the surface is more quickly neutralized at r = 0

than at other positions. Then, as the potential of the target is still higher than that of

the plasma, negative charge deposition continues and σ reaches negative values at the

center, as has also been shown experimentally in Slikboer et al. [2019], even though Q

is still positive. Again, the negative charge deposition is more visible for higher εr. For

εr = 80, σ can reach −4.96 nC.cm−2 at r = 0 at t = 917 ns, before positive charge

deposition takes place again to slowly neutralize the target. With grounded target, the

surface charge dynamics is different. As the ground is close, the electric field towards

the target is higher and thus surface charge continues increasing until the end of the

pulse, both globally and locally. After the end of the pulse, σ takes a much longer time

to neutralize in the case with grounded target.
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In Fig. 9 we assess the impact that the previously described dynamics has on

the electric field inside the different targets. We evaluate the temporal profiles of the

axial component of electric field Ez at r = 0, directed downwards inside the target

and averaged through the 0.5 mm thickness of the targets. In Fig. 9-a) is shown

the contribution to the electric field exclusively of surface charges Ezavσ. Then, the

contribution of net charge in volume Ezavρ is presented in Fig. 9-b). Finally, the total

average field Ezav is evaluated in Fig. 9-c). These temporal profiles are represented with

1 ns resolution. However, the values measured in experiments are result of acquisition

lasting 100 ns [Viegas et al., 2018b] or 25 ns [Slikboer et al., 2019]. Hence, the comparison

with experimental results requires averaging the numerical results over the time of

acquisition. In Fig. 9-d) Ezav(t) is presented with 1 ns resolution, averaged over 25

ns and over 100 ns, for two targets at floating potential (εr = 4 and εr = 56). This

allows to evaluate the effect of averaging, and thus of temporal acquisition, on the

results.

Figure 9. Temporal profiles of the downwards Ez, averaged through the target

thickness, at r = 0, for 5 different targets at floating potential: a) due exclusively

to σ, Ezavσ; b) due exclusively to ρ, Ezavρ; c) total, Ezav. d) Ezav for ε = 4, 56: with

1 ns resolution; averaged over 25 ns; averaged over 100 ns. A vertical black dashed

line is added at t = 600 ns when the applied voltage starts decreasing.

Fig. 9-a) shows that the shape of the temporal profiles of Ezavσ is approximately
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the same as that of σ at the same position r = 0, both during and after the pulse of

applied voltage. However, the relation between the values of Ezavσ and σ is not the

same for every target. For example, the maximum of |Ezavσ| at r = 0 is the same for

εr = 20, 56 and 80, while the maximum of σ at r = 0 is almost three times higher for

εr = 80 than for εr = 20. In fact, with lower εr, the same |σ| provides higher |Ezavσ|, in

agreement with Gauss’s law at the target surface: ε0Ez→z+ +ε0εrEz→z− = σ. As a result,

although σ is proportional to εr, Ezavσ ends up having the same order of magnitude for

every target at floating potential. When the target with εr = 56 is grounded (not shown

here for sake of clarity of the figures), |Ezavσ| at r = 0 rises during the pulse, up to 18

kV.cm−1, and then decreases following the same temporal profile of σ. Therefore, it is

much higher than in all the floating target cases.

Although the maximum electric field in the discharge front, studied in Fig. 4, is

dependent on εr, in general the plasma characteristics and the total net charge in the

plasma, specially behind the front, are independent of εr. Then, in agreement with

Gauss’s law, the electric field from the plasma penetrates more into targets of lower εr.

As a result, Fig. 9-b) shows that |Ezavρ| inside the target is inversely proportional to

εr. With εr = 56 and grounded target (not shown here for sake of clarity of the figures),

|Ezavρ| is relatively low but is higher than with floating target with the same permittivity,

due to the lower distance between the plasma and the ground. By comparing Figs. 9-a)

and 9-b), we notice that for εr = 1 most of the electric field inside the target is due to ρ,

while for εr ≥ 20, Ezavσ is the dominant contribution, except at the moment of impact

when |Ezavρ| reaches almost the same values as |Ezavσ|. For εr = 4, both contributions

are almost equally important.

Then, the result of the different contributions to the electric field can be observed

in Fig. 9-c), where the total Ezav at r = 0 is represented. |Ezav| at r = 0 for grounded

target with εr = 56 (not shown here for sake of clarity of the figures), almost exclusively

due to σ, is significantly higher than all those represented in Fig. 9-c). It increases

until the end of the pulse, when it reaches 18 kV.cm−1. This value agrees in order

of magnitude with those reported in Norberg et al. [2015] inside 5 mm-thick grounded

targets of different permittivities. Then, |Ezav| at r = 0 slowly decreases but remains

directed towards the grounded plane, with 2.84 kV.cm−1 at t = 1600 ns. Concerning

the targets at floating potential, Fig. 9 shows that the electric field experienced by

the target with εr = 1 is significantly higher than for all the other floating targets.

Then, for floating targets with relative permittivity between 4 and 80, Ez experienced

by the target at r = 0 ends up having the same order of magnitude. In all cases,

the maximum of |Ezav| at r = 0, at the time of impact, is between 3 and 5 kV.cm−1.

Then, |Ezav| decreases but always remains between 1 and 5 kV.cm−1 until the end of

the pulse. This result agrees with the simulations in Schweigert et al. [2019] where the

maximum electric field inside a dielectric with εr = 4 is less than 10 kV.cm−1. After the

end of the pulse, the electric field experienced by the targets approaches zero but can

be directed upwards with values up to 0.5 kV.cm−1. We can conclude that the values

of electric field measured inside a 0.5 mm-thick BSO target with εr = 56 at floating
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potential exposed to a positive pulsed plasma jet, as in Viegas et al. [2018b]; Slikboer

et al. [2019], are representative of the electric field that all dielectric targets with εr ≥ 4,

with approximately the same thickness and at a floating potential, are exposed to.

Finally, Fig. 9-d) shows the importance of temporal resolution and time-averaging.

In fact, it is shown that averaging over 25 ns leads only to a small difference with respect

to the 1 ns-resolved results. However, the peak of the electric field can change by 0.3

kV.cm−1 due to the 25 ns-averaging. Then, when averaging over 100 ns, the peak clearly

changes with respect to the resolved result by 1.5 kV.cm−1 and the temporal evolution of

Ezav is also severely affected. This result reveals the importance of temporal resolution

in experimental measurements and of post-treatment of numerical data to comply with

experiments, as was the case in Slikboer et al. [2019].

4. Conclusions

This work presents a numerical study of the influence of dielectric permittivity on

the interaction between a positive pulsed He plasma jet and a dielectric target. The

numerical description of the plasma-target interaction has been validated with a floating

target with εr = 56 through quantitative comparisons with experiments in Slikboer et al.

[2019]. Here, six different targets are studied: five targets at floating potential with

relative permittivities εr = 1, 4, 20, 56 and 80; and one grounded target of permittivity

εr = 56. Particular attention is given to the charging of the target and to the electric

field inside the target.

It is verified that the discharge spreads radially faster over targets of lower

permittivity and thus lower capacitance. Moreover, targets with higher permittivity

acquire more positive charge on their surface, both globally during the interaction with

the plasma and locally at the impact point after the impact of the discharge. Between

the impact of the discharge and the end of the applied voltage pulse, negative charge

deposition takes place locally on all floating targets, even though globally they keep

charging positively. This negative charge deposition tends to balance the electric field

created by the plasma with the electric field originated by the charges on the target

surface. After the pulse of applied voltage, negative charge deposition takes place on all

the targets, both locally and globally. Locally, at the point of impact, negative surface

charge densities are reached on the floating targets, reaching up to −5 nC.cm−2 with

εr = 80.

It is found that the order of magnitude of the electric field inside the dielectric

targets is the same for floating targets with εr ≥ 4. Following Gauss’s law, the electric

field originated by net charge in the volume of the plasma is higher inside targets of

lower permittivity. Conversely, as surface charge density is much higher with higher εr,

it tends to create higher electric field values inside targets of higher permittivity. As a

result, despite the different ρ and σ contributions, for all these targets the maximum

of the axial component of electric field averaged through the target thickness, |Ezav|,
at r = 0, immediately after the time of impact, is between 3 and 5 kV.cm−1. Then,
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after the impact, |Ezav| decreases but always remains between 1 and 5 kV.cm−1 until

the end of the pulse for these targets. After the end of the pulse, Ezav experienced by

the targets approaches zero but can be directed upwards with values up to 0.5 kV.cm−1.

For εr = 1, |Ezav| at r = 0 is significantly higher than for all the other floating targets.

We can conclude that the values of electric field measured inside a 0.5 mm-thick BSO

target with εr = 56 at floating potential exposed to a positive pulsed plasma jet, as in

Viegas et al. [2018b]; Slikboer et al. [2019], are representative of the electric field that all

dielectric targets with εr ≥ 4, with approximately the same thickness and at a floating

potential, are exposed to.

The influence of placing a grounded plane behind a target with εr = 56 is shown

to be very important. Both the global and local surface charge are orders of magnitude

higher when the target is grounded. The maximum of |Ezav| at r = 0 takes the value of

18 kV.cm−1, instead of 4 kV.cm−1 when the same target has a floating potential. This

result shows that, in applications, the thickness of the target and what lies behind it

are determinant for the charging and electric field the target is exposed to.
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Appendix: Chemistry reduction

In section 2 two reaction schemes for He-O2 have been introduced: one more complete

and one more reduced. The most complete scheme is taken from Liu et al. [2010].

Then, using that scheme, the 10 most important species in the µs timescales under

study have been identified by comparing their number densities in the simulated jet.

The scheme reduction consists on keeping only those species: e, O−2 , He+, He+2 , O+
2 , He,

He(23S,21S), O, O2, O2(a1∆g). In tables 2 and 3 we present the list of reactions and

rate coefficients of the reduced reaction scheme used in this work. The rate coefficients

of electron-impact reactions have been calculated with the electron Boltzmann equation

solver BOLSIG+ [Hagelaar and Pitchford , 2005], using the IST-Lisbon database of cross

sections in LXCat [Pancheshnyi et al., 2012; IST , 2018].
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Reaction Rate coefficient

He + e → He* + e k(εm,mix)

He* + e → He + e k(εm,mix)

O2 + e → O2(a) + e k(εm,mix)

O2(a) + e → O2 + e k(εm,mix)

O2 + e → O + O + e k(εm,mix)

O2(a) + e → O + O + e k(εm,mix)

He + e → He+ + e + e k(εm,mix)

He* + e → He+ + e + e k(εm,mix)

O2 + e → O+
2 + e + e k(εm,mix)

O2(a) + e → O+
2 + e + e k(εm,mix)

He+ + e → He* 6.76× 10−13 × T−0.5e

He+2 + e → He* + He 7.12× 10−15 × (Te/Tg)
−1.5

O+
2 + e → O + O 1.2× 10−8 × T−0.7e

He+ + e + e → He* + e 7.38× 10−38 × (Te/Tg)
−4.4

He+2 + e + e → He* + He + e 2.8× 10−20

O+
2 + e + e → O2 + e 7.18× 10−27 × T−4.5e

He+ + e + He → He* + He 7.4× 10−35 × (Te/Tg)
−2.0

He+2 + e + He → He* + He + He 3.5× 10−27

O+
2 + e + O2 → O2 + O2 2.49× 10−29 × T−1.5e

O2 + e + O2 → O−2 + O2 2.26× 10−30 × (Tg/300)−0.5

O2 + e + He → O−2 + He 1.0× 10−31

He+ + O−2 → He + O2 2.0× 10−7 × (Tg/300)−1.0

He+2 + O−2 → He + He + O2 1.0× 10−7

He+2 + O−2 + M → He + He + O2 + M 2.0× 10−25 × (Tg/300)−2.5

O+
2 + O−2 → O2 + O2 2.0× 10−7 × (Tg/300)−0.5

O+
2 + O−2 → O2 + O + O 1.01× 10−7 × (Tg/300)−0.5

O+
2 + O−2 + M → O2 + O2 + M 2.0× 10−25 × (Tg/300)−2.5

He + O−2 → He + O2 + e 3.9× 10−10 × exp(−7400/Tg)

He* + O−2 → He + O2 + e 3.0× 10−10

O2 + O−2 → O2 + O2 + e 2.7× 10−10 × exp(−5590/Tg)

O2(a) + O−2 → O2 + O2 + e 2.0× 10−10 × (Tg/300)0.5

Table 2. List of reactions and rate coefficients of the reduced reaction scheme in use:

part 1. Scheme reduced from the one in Liu et al. [2010]. M is any neutral (He or O2).

Tg = 300 K is the gas temperature. εm is the local mean electron energy. mix is the

local gas mixture. Te = 2/3εm is the electron temperature. The rate coefficients have

units cm3s−1 in the case of two-body reactions and cm6s−1 in the case of three-body

reactions.

Then, in section 3 the numerical results presented have been obtained using the

reduced chemistry. The chemistry reduction does not change the general discharge

dynamics and the time of impact of the discharge on the targets. In this appendix,
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Reaction Rate coefficient

He+ + He + He → He+2 + He 1.4× 10−31 × (Tg/300)−0.6

He+ + O2 → He + O+
2 3.3× 10−11 × (Tg/300)0.5

He+ + O2(a) → He + O+
2 3.3× 10−11 × (Tg/300)0.5

He+2 + O2 → He + He + O+
2 1.0× 10−9 × (Tg/300)0.5

He+2 + O2(a) → He + He + O+
2 1.0× 10−9 × (Tg/300)0.5

He* + He* → He+2 + e 2.03× 10−9 × (Tg/300)0.5

He* + He* → He+ + He + e 8.7× 10−10 × (Tg/300)0.5

He* + O2 → He + O+
2 + e 2.54× 10−10 × (Tg/300)0.5

O2(a) + O → O2 + O 7.0× 10−16

O2(a) + O2 → O2 + O2 2.2× 10−18 × (Tg/300)0.8

O2(a) + O2(a) → O2 + O2 9.0× 10−17 × exp(−560/Tg)

O2(a) + He → O2 + He 8.0× 10−21 × (Tg/300)0.5

O + O + O → O2 + O 9.21× 10−34 × (Tg/300)−0.63

O + O + O → O2(a) + O 6.93× 10−35 × (Tg/300)−0.63

O + O + O2 → O2 + O2 2.56× 10−34 × (Tg/300)−0.63

O + O + O2 → O2(a) + O2 1.93× 10−35 × (Tg/300)−0.63

O + O + O2(a) → O2 + O2(a) 7.4× 10−33

O + O + He → O2 + He 1.3× 10−32 × (Tg/300)−1.0 × exp(−170/Tg)

O + O + He → O2(a) + He 9.88× 10−35

O + O2 + O2(a) → O + O2 + O2 1.0× 10−32

O + He + O2(a) → O + He + O2 1.0× 10−32

O2(a) → O2 2.7× 10−4

Table 3. List of reactions and rate coefficients of the reduced reaction scheme in

use: part 2. Scheme reduced from the one in Liu et al. [2010]. Tg = 300 K is the

gas temperature. εm is the local mean electron energy. mix is the local gas mixture.

Te = 2/3εm is the electron temperature. The rate coefficients have units of s−1 in the

case of one-body decay, of cm3s−1 in the case of two-body reactions and of cm6s−1 in

the case of three-body reactions.

we assess the effect of the chemistry reduction on the electric field inside the target,

both at r = 0 and radially. For that purpose, we use the targets at floating potential

with εr = 4 and εr = 56 and test the two chemistry schemes. Fig. 10 presents the

temporal profiles of Ez, averaged through the target thickness, due exclusively to net

charge density ρ, Ezavρ, at r = 0, for the two targets and the two chemistry schemes.

We can conclude from that figure that the chemistry reduction does not significantly

impact charge separation in volume and Ezavρ.

Then, in Fig. 11, the temporal profiles of Ez, averaged through the target thickness,

due exclusively to surface charge density σ, Ezavσ, at r = 0, are presented. In this case,

the difference between the full and reduced chemistries is visible. In fact, |σ| is about

10 % lower when using the reduced chemistry than in the case with the full chemistry.

In particular, after the end of the pulse, at the neutralization of the plasma and the
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Figure 10. Temporal profiles of the downwards Ez, averaged through the target

thickness, due exclusively to ρ, at r = 0, for εr = 4 and εr = 56 and two different

chemistry schemes. A vertical black dashed line is added at t = 600 ns when the

applied voltage starts decreasing.

target, the negative charge deposition is slightly different. Still, we should notice that

the same dynamics is observed with both reaction schemes.

Figure 11. Temporal profiles of the downwards Ez, averaged through the target

thickness, due exclusively to σ, at r = 0, for εr = 4 and εr = 56 and two different

chemistry schemes. A vertical black dashed line is added at t = 600 ns when the

applied voltage starts decreasing.

In Fig. 12, the temporal profiles of the total Ezav are presented, now at a different

radial position, r = 1 mm. We can notice that the time it takes the discharge to reach

that radial position is independent of the chemistry scheme. As the discharge spreads

radially faster with lower permittivity, it is visible that Ezav rises first and also decreases

faster with εr = 4 than with εr = 56. Then, for both targets, as at r = 0, the different

chemistry schemes lead to a small difference after the end of the pulse, due to the

different negative charge deposition.

In Fig. 13 are represented the temporal profiles of the radial component of electric
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Figure 12. Temporal profiles of the downwards Ez, averaged through the target

thickness, at r = 1 mm, for εr = 4 and εr = 56 and two different chemistry schemes.

A vertical black dashed line is added at t = 600 ns when the applied voltage starts

decreasing.

field, averaged through the target thickness, Erav, at the same radial position r = 1

mm. Also for this electric field component, differences between the chemistry schemes

are only noticed after the end of the pulse. As for Ezav, a sharper peak of Erav at r = 1

mm is present for εr = 4 due to the faster spreading than for εr = 56. Moreover, we can

notice that Erav has values of the same order of magnitude as Ezav at the same radial

position, with slightly higher positive maximum and slightly lower negative minimum.

The values of Erav at r = 1 mm with εr = 56 approximately agree with those measured

in Slikboer et al. [2019] in the same conditions.

Figure 13. Temporal profiles of the outwards Er, averaged through the target

thickness, at r = 1 mm, for εr = 4 and εr = 56 and two different chemistry schemes.

A vertical black dashed line is added at t = 600 ns when the applied voltage starts

decreasing.
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Doctorale Ondes et Matière. This work has been done partially within the LABEX

Plas@par project, and received financial state aid managed by the Agence Nationale

de la Recherche (ANR), as part of the programme “Investissements d’avenir” under

the reference ANR-11-IDEX-0004-02. Simulations presented in this work have been

performed thanks to the computational resources of the cluster “Hopper” at École
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