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Fiber breakage and fiber pull-out
of fiber-reinforced ceramic-matrix composites

F. HILD* **, A, BURR* ** and F. A. LECKIE*

ABsTRACT. — Fiber breakage and fiber pull-out induce loss of stiffness, anelastic strains, hysteresis loops, and crack
closure, Ultimate strength properties of fiber-reinforced composites are derived and compared with results related
to localization. These features are analyzed in the framework of Continuum Mechanics through the introduction
of internal variables. Three models which are progressively more faithful to the micromechanical analysis are
studied. They provide guidance on the choice of the relevant internal variables to modet the mechanical behavior
of unidirectional fiber-reinforced composites.

1. Introduction

Ceramic-Matrix Composites (CMC’s) are potential candidates to meet the new goals
of high performance structures, especially when the elements are subjected to high
mechanical and thermal load histories [URI, 1994]. Their low density ¢ombined with
high strength and good performance at high temperature are appealing features in the
design of new generation jet engines.

This paper is part of an effort to derive constitutive equations which describe the
behavior of CMC’s within the context of Continuum Damage Mechanics (CDM). The
approach makes use of the micromechanical analyses of the degradation mechanisms
occurring in CMC’s. The degradation mechanisms include matrix cracking and fiber
breakage both of which are accompanied by slip at the fiber/matrix interface. Matrix
cracking which first forms at quite low stresses coatinues to grow with increasing stress
until saturation is reached when the application of increased stress does not increase the
crack density. The saturation is usually the consequence of the shear induced by the
interface between fibers and matrix [Aveston et al., 1971]. Starting from a material which
is assumed free from any initial macro defect, the mechanical behavior is predicted by
using Continuum Damage Mechanics. The results presented herein are valid when the
steady matrix cracking stress {Budiansky et al., 1986] is less than the ultimate strength of
a fiber-reinforced composite [Budiansky, 1993]. When this hypothesis is satisfied, the key
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“méchanism leading to final failure is fiber breakage. For this reason no attempt is made
to model the growth of matrix craking and saturation conditions are assumed. The fiber
breakage mechanism is accompanied by distributed fiber pull-out when broken fibers
- pulling out of the matrix introduce shear stresses along the interface. This mechanism
distinguishes the behavior of fiber-reinforced CMC's from that of the classical dry fiber
bundle [Coleman, 1958].

The -ultimate tensile ‘strength at localization of strain is calculated for unidirectional
composites.and a micromechanics: analysis-of unloading-reloading sequences is developed,
when hysteresis loops are formed. The micromechanics models are used to evaluate three
-different constitutive laws which are progressively more: faithful to-the:micromechanical
analysis. It is shown in practice that it is not always necessary to model all the details
revealed by micromechanics. Previous studies by Hild er al. [Hild ef al., 1994 b] indicate
that by identifying the relevant internal variables of a Continuum Damage Mechanics
description the studies of unidirectional composites can be extended readily to the 2-D
constitutive Jaws applicable to. multidirectional lay ups under complex loading conditions.

2. Expression of the ultimate tensile strength

. A unit cell of length Lg (Fig. 1:a) is'considered where the matrix‘cracks are saturated
with spacing. L. The length-Lg is-the recovery length and refers:to twice-the longest

from a fiber:break,.as in.the. case of ‘matrix cracking, the ‘fiber :stress builds-up through-
the stress.transfer-across the sliding fiber-matrix interface..If. the interfacial shear stress ...
T is assumed to:be.constant, the recovery length is related to the maximum stress in
the fiber by [Curtin, 1991]

RT
(1) Lp="=
=

where the reference stress T is the fiber stress in the plane of the matrix crack, R is the
fiber radius. Generally, L,, <« Lp and the stress field in the intact fibers [Cox, 1952;
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If the fibers exhibit a statistical variation of strength that obeys a two-parameter Weibull
law [Weibull, 1939], then the probability that a fiber would break anywhere within the
recovery length Lp at or below a reference stress T is given by

Lg/2 m
(3) Pp(T)=1-exp {—LiO/(; {ari(;_';_x)} da:}
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Fig. 1 a. - Depiction of the recovery length Lp when the density
of matrix cracks (characterized by L,,) reaches saturation.

Fig. 1 b. — Fiber stress field oz (T, =) along a length Lp for a reference stress T when the fibers are intact.

where m is the Shape parameter, Sy is the stress scale parameter, and Lo a reference
length. Eqn. (3) can be simplified when L, /Lp <1 to become

@ Pr(T)=1-exp {—(S%)mﬂ}

where S, denotes the characteristic strength [Henstenburg & Phoenix, 1989}

Lo Syt r
R

The relevant length to consider is the recovery length instead of the total length of the
composite [Cao & Thouless, 1990]. The cumulative failure probability is thus independent
of the total length of the composite, provided the total length of the composite is greater

than the recovery length [Hild er al, 1994 a]. The average stress & applied to the
composite is related to the reference stress T' by

(5) S£n+1 —

© & =fT{1—Pr(T)} +5rp (T) =rp (T) +7rp(T)
where f is the fiber volume fraction, @rp (T) denotes that component of the stress
: provided by unbroken fibers, and Gpp (T') detoteés that c0mp'onAe'n\tv__l_('_)_§_t_‘ll_g_gl_gr_gﬁ;,ﬁp_r_gyiged



thc pull-out siress is’ gwen 1s gwen by e

9 e Ere (D)= F PR (D)3 (T) |
where &b;(T). denotes the av.erége stress at a plane of matrix crackz = 0-when a fiber
. breaks at location & = ¢, and at the reference stress level 7. 'When the load is assumed

. to.be homogeneous over the entire. composite. length, the average pull-out stress &y, (T°)
reduces to 7'/2, and the external stress takes the form

@ 7= fT{1~Pr (D)} + 5 Pr(T)

In Figure 2, the contributions of the two mechanisms are plotted for m = 4, The pull-out

... - stress:s. a. strictly-increasing function;.whereas: the 'stress in:the:unbroken :fibers.reaches
: a maximum value. Because of the decrease of the stréss drp, an altimate stress exists,

This decrease leads to a loss of uniqueness of the stress-strain relationship. Indeed, elastic

unloading of the unbroken fibers may arise in one part of the composite and furtherfiber - -

.breakage in another part."Consequently, localization appears and Eqn. (8) after that point

.corresponds;to the homogeneous solution, which usually cannot be reached [Hild & Burr,. - .
1994] The apphcd stress level correspondmg to thc onsct of locahzatmn w1ll bc refcrred L

: CDM the 1mt1at10n of a macrocrack is dcscnbed as a Iocahzatxon of thc deformations-.
[Billardon :&:Doghri, :1989], .which corresponds to the onset of a surface across which
the velocity -gradient is -discontinuous.: Physically, it corresponds to localized pull-out,
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Fig. 2. — Normalized stresses, 8 /f S¢, 5FB/f Sei rp/F S versus normalized strain, £ Ep /S..



whereby one macrocrack develops and pull-out continues to evolve in the vicinity of
that macrocrack only. This phenomenon leads to a different behavior as compared to the
.-homogencous solution for which damage is still evolving in a diffusive manner. Under
- small deformations, assumption, localization is mainly driven by the damage mechanism
that causes strain softening [Lemaitre, 1992]. The localization tensile strength- of. the
composite is defined by the condition '

9 dérp/de=0
or
(10) dopp/dT =0

because the reference stress 1" is proportional to the ‘average su'am on the composite
:»according -to.the relation,

Lo/
1) Fe 2 / or(T,2) , o T

L Jo Er ~ Er
where Ep denotes-the: Young’s modulus of .the' unbroken fibers.: Consequently, the
localization tensile strength:becomes

(12) L= g (m+1) 1texp (~07

The ultimate tensile strength of the composite is defined by the condition

(13) ; dg/dz =
This equation cannot be solved analytically. A first order solution of the ultimate tensile
strength, Gyrs, is predicted to be [C, 1991]

2 )1/(m+1)m+ 1

(14) Surs = f Se (m+2 _ mt2

m+ 2

3. Unloading-reloading sequence

The consequences of unloading followed by a reloading sequence are now investigated.
Reversed motion of fibers relative to the matrix has been studied by numerous authors
{Marshall & Oliver, 1987; McMeeking & Evans, 1990]. After reaching a maximum
value characterized by Ty (less than the localization level), and by the maximum friction
length Lpys, which is equal to half the maximum recovery length, Lgas, the load is
reversed (Fig. 3). The maximum friction IenOth is thercfore relatcd to the maxunum

reference stress Thps by

¢

¢ - RT R Tt ."'
(15) _ . LFM (Tu) M "
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' "% Upon unloading, in the range, 0 < [2| < Ly} there is'a reversal of both' the relative ™
sliding" direction and the frictional shear stress (Fig. 3). For Lpy < |2| < L, the
shear stress. there remains unchanged from.that prevailing during the loading process.
The actual load level is characterized by the reference stress T = Ty — ATy, and the
unloading friction length Lpy is related to ATy by

R AT; ATq
16) Ly = 2000 = 1y (-—z-‘i)
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Fig. 3. — Depiction of the friction length, Ly, upon loading, the unloading friction length, Lry, the
reloading friction length, Lr g, and the corresponding axial stress on a broken fiber embeddéd in matrix.



Then, the external stress takes the form

Pr(Tu) 2Ty - AT
4 Ty

an = (T — ATy) -

“la

. Because of fiber. pull-out, anelastic strains:exist  after. complete.unloading (& =0).-When
& =.0, the expression of the unloading amplitude ATy = Tyy is

2T — V2Tar /1+ (1 = Pr (Tag))?
Pr (Tar)

for which, the corresponding anelastic strains are given by

(18) T =

Tn —T,
(19) Ean = ﬁEF i

.. 'The anelastic strains depend upon the maximum load level,;and:the percentage of-broken
- -fibers, Pg (Ts),. within the. recovery:length Lgas. In Figure:4. the: anelastic 'strains-are

* . plotted as. a' function.of the maximum load level Tys. Their evolution. which is a non-
- linear- function of the maximum applied strains indicatesthat the -anelastic:strains are-an

order of ‘magnitude. smaller: than the maximum total applied strain.

+If unloading :continues below T, there is closure-of the fiber cracksswhen ATy = T
given by

(20) Te = V2Ty
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" in displacement between a broken face and an adjacent unbroken fiber, measured by &
. (Fig. 5)..The. d!splaccment & is referred to as crack opening displacement. When o is
positive, there is pull-out, when § is cqua] to zero, there is no pull-out since closure takes
-~ over. During the unloading sequence,.the expression of the crack opening is given by

R(2T% — ATE)

(21) §(Tr, ATy) =

8t Ep
Lg
k e il — e il ~— s
T 3 3
Fiber
Crack 2R
i — - . - — T
Y -
—l} “ =
2R .
T 1 - - - = o T
~<t Y =

Fig. 5. ~ Depiction of the opening displacement &.

After reaching a minimum value characterized by the amplitude Tr, of the reference
stress, and by the reverse friction length Ly, the load is reversed again (Fig. 3). It then
leads to a reloading process. Upon reloading, characterized by T’ = Tas — Tpp + ATR,
sliding is confined to 0 < |z| £ LFpg,

RATg

(22) Lrr=—3
-

ng aﬂd thé closure phcnomenon can 'be déscribed in terms of the ' difference.



Then, the external stress takes the form

Pr (Ty) 273 — T2 + AT}
4 T

23) % = (Tos — T +OTg) -

In: Figure. 6.a-loading-unloading-reloading sequence ‘is: plotted...The. non-linear.effects
;are. the ‘consequence of fiber. breakage leading .to a reduced Young’s modulus,.and fiber
pull -out:inducing; frictionand: anelastic- strains.. If no wear-mechanisms:isinvolved; this
- = first:cycle’corresponds to the steady state'cycle. One way-of characterizing the hysteresis
. loops is to measure their maximum width, §&.:In Figure 7:the:maximum hysteresis: loop
‘width is plotted as:a function of maximum strain. Again, the: evolution is non-linear wrt.
the maximum applied strains.
Lastly it is possible to calculate the evolution of the crack opening durmg the reloading
sequence to give

R(2T} — T + ATE)
8TEF

(24) §(Taty ATm, ATR) =

~+During a loading-unloading-reloading sequence, the pul-l-.oaf-z-str.css, arp (Tar, Tm, ATR),
is .. related.. to . the : crack .-opening : displacement .-measured - during.. thesequence,
§(Tatr. Ty ATR), by

6(21.‘\/[1 Tm; ATR)
Lrnm

(25) rp (Tasry Tmy ATR) = (E - ) fEr Pr(Tur)
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- This micromechanical analysis enabled us to study loading and unloading sequences
when fiber breakage and fiber pull-out.are considered. In the next Section, the previous
results will be modeled in the framework of Continuum Mechanics.

4. Continuum mechanics modeling

The micromechanical analysis shows that fiber breakage induces a reduction in stiffness,
anelastic strains due to slipping at the matrix/fiber interface of broken fibers, and hysteresis
loops due to reverse slipping upon unloading-reloading. In the following development,
three different approaches are considered within the framework of Continuum Mechanics
which model some or all of the features of the micromechanical model, depending on
the degree of accuracy desired.

Within the framework of the thermodynamics of irreversible process [Bataille &
Kestin, 1979; Germain et al., 1983], the first step is to determine the state variables
which describe the internal mechanisms which define the behavior of a material. The
second step is to determine the state potential in terms of the state variables and the third
step is to write the evolution laws of the internal variables. For the sake of simplicity,
a one dimensional description will follow.

v

4.1. FIRST MODEL —FIBER BREAKAGE

In this simplest model, only fiber breakage is considered and the effects of slip are
neglected. This model predicts a reduction in stiffness as fibers break, but is unable to



model anelastic strains and hysteresis loops (Fig. 8). Because fiber breakage is a softening
» mechanism localization is possible (Section 2). In this'case, the microscopic. description
of damage is the percentage of broken fibers in a cell .of length 2Lr = Lg and is
identical to the change of macroscopic stiffness. The'damage .variable. D) is therefore
equal to Pp (€), and the stress strain relationship can be written as. follows :

(26) &= fEr(1-D)&
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Fig. 8. - Normalized stress, &/ f S., versus normalized strain, € Ef /S,
during a loading-unloading-retoading sequence for model No. 1.

The damage variable D evolves as the maximum value of & increases during a loading

sequence 0 < £ < £. On the other hand, when £ decreases, the percentage of broken fibers
remains constant. Furthermore, only positive strains (or stresses) lead to fiber breakage

@7 D = Pr (Max (£(6))

where (-) denotes the Macauley' brackets. This latter condition can be rewritten as
dPr (8
£ & it o Max(e() >

(28) D= dé dt o<s<z
0 _ othemse

The above results can also be derived by using two potentxais following -the procedure}},_
described by Lemmtre and Chaboche [Lemaztrc & Chaboche, 1985]."The first potential
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"~ 7"'is the Helmholtz free energy density, 1. The second potential is the pseudo-potential of

-+ dissipation, F; which defines the growth rate of the state variables, Since no friction is
involved when fiber break the elastic energy density is written as =< ¢ ¢ isroo !
A N r<s E RO T P N N

O R = - - B N A E % T

(29) ¢=i—2~£(1—D)€2

The expression of the external applied stress is given by the partial derivation of 1 wrt.
€ which gives the same result. as Eqn. (26). The thermodynamic,force -associated :with
.the: damage: variable D is defined as the partial derivative of wrt..the damage variable
D. If Y denotes the associated thermodynamic force then

BRI TR

_ O _ fEF ,
(30) Y=-or=1Le

In the framework of Continuum Damage Mechanics, Y is refered to as the damage
energy release rate density [Chaboche, 1978]. The evolution law:satisfies the .second
- principle of thermodynamics since-the dissipation ® is positive

G1) =Y D>0

Since Y. is. positive .deﬁn,ite,::l% -is positive, i.e. damage always increases. and therefore
‘accounts only.for.deterioration-of ;materials. (here fiber breakage). Let us now postulate: -
“that. the kinetic.Iaws are derived from a pseudo-potential 'of dissipation, F. The function

F is a scalar continuous furiction ‘of.the dual variables.(here Y'), the state variables having

the possibility.to act as-parameters (here D). If the function F is a convex function,

and if the kinetic laws are derived by means of a positive scalar multiplier, X, then the
second principle of thermodynamics is always satisfied. Within the so-called normality
rule of generalized standard materials, the kinetic law is selected to be

o [X%E i Fo0 amda F=o
(32) D={ O .
0 if F<0 or F<O

with

F=1]-exp {-—(}—,;) - D and 1’2:-2- Er

[+ [+]
The value of the multiplier A is determined by using ‘the consistency condition F'= 0.
The expression of the multiplier is here given by

[+ 0

(33) A=Y

It is worth noting that Eqn. (32) which is written in terms of Continuum Damage
Mechanics is completely equivalent to Eqns. (27) and (28).



4.2, SECOND MODEL -~ FIBER BREAKAGE AND PULL-OUT

This second model introduces the contribution of fiber breakage and fiber pull-out,
but neglects hysteresis loops (Fig. 9). The features that are modeled are the reduction in
stiffness due to fiber breakage and the anelastic strains due to fiber pull-out. It is assumed
that the unloading process is linear, and is characterized by<the damage -D. Therefore,
the expression of the state potential 4 is written as [L & C, 1985]

(34) ¥ =L7E (1_ D) (e - g’
0.8
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Fig. 9. — Normalized stress, &/ f S., versus normalized strain, € Ep /S.,
during a loading-unloading-reloading sequence for model No. 2.

The state laws are obtained by partial differentiation of 1 wrt. the state variables

f 5:19_1/-}-..fEF(1-D)(e-—ean)
Ty

(35) {77 T B
>_ O JFEr._ _ 1
Y= 81_)-— ) (5 €a.n)

\
Using Eqns. (18) and (19) of the micromechanical model, the anelastic strains are

related to the maximum strain level, &3y = Max (e (E)) and to the cumulative fajlure

probablhty Pgp (aM) by il g i
N I+(=P ?
(36) Epin ;'. EM 1 2 \/— \/ + ( F (EM))
| Pr (EM) B
Ea .T.""z -t“ ...J- tﬁ' &nft" ”_ i S S LU



The damage variable D corresponding to_the unloading modulus and is related to the
cumulative failure probability by

e e (1- 2220

T 9-V31+(- Prn)

Equ. (37) gives the relationship between the microscopic damage variable, D = Pp. (Ear),
defined in the: previous sub-Section and the macroscopic damage variable, D. The
evolution laws of the. anelastic strains -and the macroscopic damage variables derived in
the micromechanical model are defined in Eqgns. (36) and (37).

The dissipation d is now

i

37 D=1

|

[

Mo

Q
(38) ®=5 Emm+Y D>0

and is positive. It is not easy to -derive a simple expression for F .and this has not
been attempted. The evolution laws are written in terms of the maximum strains reached
‘during the loading history. These laws are therefore directly integrated laws.

. In this sub-Section, the-approach was. from a macroscopic point of .view. Here we can
se& somie .apparent differenices ‘between the- quantities-at a 'micro- level-and-macro-level.
These* quantities -are-of~course -related but'their significance is different, «depending on
the scale at.which the observations-are.made. For example, the macroscopic damage
variable D is related to the ‘microscopic. damage variable D by Eqn. (37). Furthermore,
as shown in Section 2, localization predicted by this model (leading to the ultimate
tensile stress) arises later than localization at a micro scale (localization tensile strength).
This is due to the fact the softening mechanism at a micro scale is counter-balanced
by the strengthening mechanism due to fiber pull-out up to the ultimate point. This law
corresponds to the homogeneous solution after localization at the micro level.

4.3. THIRD MODEL -MICRO MECHANICS BASED. MODEL

. The model now discussed takes account of all three features induced by fiber breakage
and fiber pull-out, viz. the reduction in stiffness due to fiber breakage, the anelastic
strains due to fiber pull-out, and the hysteresis loops. The model is based on the micro
mechanical study described previously (Fig. 6). The details of the unloading and reloading
process are complex and to avoid this difficulty it is useful to introduce the crack opening
displacement &, which characterizes the material state related to the reverse friction. The
crack opening displacement § is also useful in determining the conditions when ¢losure
occurs, To characterize the state of the composite, four quantities are required. These are
the overall strain &, the friction length Lr, the percentage of broken fibers, Pr, within
the recovery length Lg = 2 L, and the crack opening displacement, 8. To derive the
free energy density associated to a loading sequence, we consider two different elastic
steps to reach the same state. The first step consists in moving the unbroken fibers wrt.
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Fig. 10. - Motion of the unbroken fibers wrt. the broken
fibers with no external load by an amount & over a length Lg.

the broken fibers with no external load by an amount § over a length Lz (Fig. 10). The
elastic energy density associated with this process is given by

fEp ( §\*, 4-3Pf
s — = =
(39) v=GE () B
The opening displacement § induces an overall anelastic strain o
(40) o= d — P,

Ir F

It is worth noting that &,, = o when & = 0. The second step, during which no friction
occurs, consists in adding an elastic loading from the previous state. It involves an
additional elastic energy density given by

(41) et - W "‘. o '¢e= ——2-—(5-—-&)2 ., '5-'":_".“;- e
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“foroi The. state; variables- are’ the total strain,” &, the; damage- variable’ modeling: the

percentage of broken fibers, D. = PF, “and. the ‘anelasti¢ strains & dué to the crack
opening displacement § modeling the fiber pull-out mechanism. The opening strain « is
similar to a kinematic hardening variablé; and the associated force corresponds to the
back-stress induced by the slipping mechanism. The free energy density 9 can then be
written ‘in terms of the new internal variables

_fEp, ., fEp 4-3D ,
(42) | == E-a)+—5——3p5 ¢

The thermodynamic-forces associated with the new state variables.are respectively given
by

(43.1) I g%=fEF(§—a)
E 2

43.2) ! v-= _% - ?_f—sﬁ (%)

43.3) | x= % = fEr (:—g— -~ g)

- The ‘evolutionzlaws ‘of “the -damage.variable-is. directly.given- by.the..evolution of.the.
cumulative - failure. probability -Pp. -

44 =N g (£))

@4 D = Pr (Max((€)

The evolution law of the internal variable o uses the results derived during the
loading-unloading-reloading sequence. Upon loading, the evolution of « is given by

45.1) o == Max (£(6)) Pr (Max (£(€))

1

2 ogest 0<g<t

The variation of e, Aa = a — ag, wrt. minimum or maximim value, ag (corresponding
to a maximum loading or minimum unloading level characterized by &p) is related to
the strain variation, AZ = & — &, by

1 (ae)? g _
(45.2) Aa= 7 ——-——Ohé[?é E6) Sign (A£) Pr (01;1%(6 N

Instead of the complicated pattern of friction and reverse friction descrided in the micro
mechanical analysis, a single macroscopic variable is introduced. This is the opening
strain which corresponds to the crack opening displacement. It is worth remembering
that this last model captures the essential features related to fiber breakage and fiber
pull-out and that it is able to predict the localization tensile strength. Furthermore,



the crack closure condition can be obtained by computing that o vanishes, i.e. when
AE =2 Ma.x (s (£)). This last result shows that o cannot be negative. Moreover, the

free energy den51ty catches this crack closure phenomenon, and does .not correspond to
- .a partition in-positive/negative:strains. or positive/negative :stresses.as is usually assumed
(L, 1992]). The dissipation &

(46) &=-X&+YD>0

. -is positive during a loading sequence. The condition given'in Eqn.'(46) is'strong [Onat &
-Leckie, 1988] and is not satisfied during part of the unloading or reloaging sequence. On
- the other-hand, during a complete unloading-reloading sequence, the dissipated energy
over one cycle is given by

47

6 Em

_FEr [ Pr(enm) (Em —Em)®
o L2 gzt

- which is a positive quantity, in:accordance with the second-principle:of thermodynamics.

5.. Conclusions.-

In this.paper models have :been developed which describe the mechanisms -of fiber .
breakage.and fiber pull-out. Upon loading, fiber breakage induces a softening behavior
whereas fiber pull-out induces strengthening. Because of fiber breakage, loss of uniqueness
and localization appear before the peak of the macroscopic stress/strain response in
tension.

A micromechanical model is derived which describes the loading and unloading-
reloading sequences. These sequences induce slip and reverse slip. Because of fiber
pull-out, permanent strains appear upon complete unloading. Moreover, hysteresis loops
are observed upon unloading and reloading. These hysteresis loops characterize the
amount of energy that is dissipated during one unloading-reloading cycle. A convenient
means of characterizing the sequences is to introduce the crack opening displacement
between broken and unbroken fibers.

In the framework of Continuum Mechanics, three models have been studied. The first
model was concerned with fiber breakage modeled by an internal variable called damage
and corresponding to the percentage of broken fibers within a relevant length, the recovery
length. This model is able to predict loss of stiffness and localization, but not anelastic
strains nor hysteresis loops. The second model was based on the loss of stiffness and
the anelastic strains. It was able to model the loading portion, anelastic strains, but not
localization on a microscopic level nor hysteresis loops. The third model considered two
internal variables, which are the damage at a microscopic level, and an opemng ‘strain
proportional to the crack opening dlsplaccmcnt divided by thc fncuon Tl:us modcl was
_able to captuxc all the dctaxls of the microscopic ‘study with only two internal variables.



= This last model will constitute the basis of a constitutive law applied to Cér’anﬁ&_:—Maﬁfi;{
Composites subject to complex loading conditions. In particular the knowledge of the
free energy density, the internal variables and their associated forces are crucial. These
Jaws have to be generalized under more complex loading conditions, as well as composite
-architectures. In the case. of :more complex.architectures, the.interaction between fibers
in different directions has to be assessed, especially in the case:of woven configurations.
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