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In this Note, an expression of the average pull-out length is established when the length of a representative element varies with the external load. This expression is derived from a study of fracture locations generalized to varying lengths, and can be used to determine ultimate strengths of fiber-reinforced composites.

Sur la longueur moyenne d'extraction pour des composites à fibres longues

Résumé -Dans cette Note, une expression de la longueur moyenne d'extraction est obtenue lorsque la longueur d'un élément représentatif varie avec le chargement. Cette

expression correspond à une généralisation des lieux de rupture dans le cas d'une longueur variable. Le résultat peut être utilisé dans le calcul de résistance de composites à fibres longues.

Version française abrégée -Le phénomène d'extraction, ou de pull-out [START_REF] Thouless | Effects of Pull-Out on the Mechanical Properties of Ceramic-Matrix Composites[END_REF], qui accompagne souvent la rupture de composites à fibres longues différencie un composite à matrice céramique (CMC) d'un faisceau de fibres parallèles [START_REF] Daniels | The Statistical Theory of the Strength of Bundles of Threads[END_REF]. L'extraction est produite par le glissement d'une fibre rompue par rapport à la matrice, et est caractérisé par une contrainte critique de glissement τ à l'interface. Le calcul de la résistance des CMC nécessite la connaissance de la longueur moyenne d'extraction et une étude dans laquelle la longueur de l'élément représentatif varie avec la charge appliquée.

On considère un élément de composite de longueur 2L R (Fig. 1) , où L R est appelée longueur de transfert et correspond à la longueur maximale d'une fibre qui peut être arrachée et conduire à une diminution de charge par rapport au cas où elle ne serait pas rompue. La contrainte de référence T, contrainte des fibres non rompues dans un plan de référence Π R d'une fissure matricielle (z=0), est la contrainte longitudinale maximale dans le composite. probabilité cumulée de rupture P F (T,L R (T)) d'un élément de fibre de longueur 2L R <2L est écrite en (4). La quantité P F0 (T,z) représente la probabilité cumulée de rupture d'un maillon de longueur L 0 dont le plan médian est situé à la cote z. A cet élément, on peut associer la densité de probabilité de rupture (5.1) et récrire la probabilité cumulée de rupture (5.2). La fonction Φ(T,z) correspond à la densité de probabilité de rupture d'un élément à la cote z lorsque la contrainte de référence varie de T à T + dT (6.1), et la fonction Ψ(T) à la densité de probabilité de rupture liée à l'augmentation de longueur de transfert de L R (T) à L R (T) + L' R (T) dT (6.2). Lorsque L R est indépendante de T, ou lorsque P F0 (T,L R (T)) = 0, les résultats de [START_REF] Thouless | Effects of Pull-Out on the Mechanical Properties of Ceramic-Matrix Composites[END_REF][START_REF] Oh | On the Location of Fracture in Brittle Solids-I Due to Static Loading[END_REF] s'appliquent. Par analyse dimensionnelle et en utilisant (5.2), la moyenne < > h(T) des lieux de rupture h(T) d'un composite de longueur 2L R (T) est donnée par (7), où α est une constante. En tension, à l'aide de (2), ( 5) et ( 7), il n'est pas nécessaire d'expliciter la distribution des lieux de rupture, et on trouve α = 1/2. Le premier terme de (7) est identique à celui donné dans [START_REF] Thouless | Effects of Pull-Out on the Mechanical Properties of Ceramic-Matrix Composites[END_REF][START_REF] Sutcu | Weibull Statistics Applied to Fiber Failure in Ceramic Composites and Work of Fracture[END_REF]. Le second terme est dû à la dépendance de la longueur de transfert avec T. L'expression (7) ne prend pas en compte les fibres qui ont cassé hors de la zone de transfert et qui lors d'une augmentation de la charge se trouvent à l'intérieur de la zone de transfert. Cette approximation est la plus importante dans le cas d'un champ de contrainte constant sur 2L R (tension). Dans ce cas, il a été montré que l'approximation n'est pas très pénalisante [START_REF] Hild | Tensile and Flexural Ultimate Strength of Fiber Reinforced Ceramic-Matrix Composites[END_REF].

Les résultats précédents peuvent être utilisés pour calculer la LME. On suppose que la probabilité de rupture est modélisée par une loi de Weibull à deux paramètres m et S 0 [START_REF] Weibull | A Statistical Theory of the Strength of Materials[END_REF] Les contraintes ultimes en flexion sont les contraintes apparentes élastiques.

1. Introduction -A feature that distinguishes Ceramic-Matrix Composites (CMC's) from a classical dry fiber bundle [START_REF] Daniels | The Statistical Theory of the Strength of Bundles of Threads[END_REF] is that fiber breakage is usually accompanied with fiber pull-out [START_REF] Thouless | Effects of Pull-Out on the Mechanical Properties of Ceramic-Matrix Composites[END_REF] characterized by an interfacial sliding resistance τ. This latter is due to frictional sliding that occurs as the broken ends of the fiber pull out of the matrix.

To determine the ultimate strength of a CMC, one needs to determine the average pull-out length as a function of the load level in the fiber. This Note is devoted to establishing an expression of the average pull-out length.
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The cell length is denoted by 2L R (Fig. 1) , where L R is called recovery length, and refers to the longest fiber that can be pulled out and cause a reduction in load carrying capacity. The reference stress T, which corresponds to the stress in the unbroken fibers at a reference plane Π R (z=0) of one of the matrix cracks, is the maximum longitudinal fiber stress. The matrix cracking process is supposed to be saturated. It is assumed that if a fiber breaks, it equally shares the load among all the unbroken neighboring fibers (global load sharing), i.e. the matrix cracks traverse the whole composite. Within the recovery length it is assumed that a fiber breaks at most one time.

Throughout this Note, the longitudinal stress field, σ(T,z), is assumed to be symmetric about z=0. When the interfacial sliding resistance is assumed constant, the recovery length, L R (T) , is given by

(1) L R (T) = RT 2τ if L R (T) < L
where R is the fiber radius and 2L the total composite length (Fig. 1). The contribution of the broken fibers within the recovery length or pull-out stress, σ _ po , at z=0 is written as

(2) σ _ po (T) = f ⌡  ⌠ 0 T σ _ p (t) dP F (t,L R (t))
dt dt where f is the fiber volume fraction, σ _ p (t) the average stress at z=0 when a fiber breaks at a location z, and at a reference stress level t, and P F (t,L R (t)) is the failure probability that a fiber break within the recovery length L R at or below a reference stress t (Fig. 1). In tension, the probability density of fracture locations is uniform, therefore σ _ p (t) = t / 2. On the other hand, when the stress field along the fiber direction is not homogeneous, the previous result does not apply, and one needs to determine the average fracture location to estimate the pull-out stress. The average stress applied to the composite at the plane z=0, σ _ , is given by

(3) σ _ f = T { } 1 -P F (T,L R (T)) + 2τ R < > h(T) P F (T,L R (T))
The first term of the right hand side of Eqn.

(3) corresponds to the contribution of the unbroken fibers, and the second term is the pull-out stress σ, _ po (T) . The quantity < > h(T)

represents the average pull-out length, or average fracture location in 2L R (T) when the reference stress is less than or equal to T.

Average

Fracture Locations -Under the weakest link assumption and the independent events hypothesis, the cumulative failure probability P F (T,L R (T)) of a piece of fiber of length 2L R (T) is given by

(4) P F (T,L R (T)) = 1 -exp       2 L 0 ⌡ ⌠ 0 L R (T) ln { } 1 -P F0 (T,z) dz
where P F0 (T,z) denotes the cumulative failure probability of a single link of length L 0 whose mid-section is located at z. The failure probability density is obtained by differentiation of Eqn. ( 4) with respect to T

(5.1) dP F (T,L R (T))

dT = 2 ⌡ ⌠ 0 L R (T) Φ(T,z) dz + 2 Ψ(T)
and therefore

(5.2)

P F (T,L R (T)) = ⌡  ⌠ 0 T 2       ⌡ ⌠ 0 L R (t) Φ(t,z) dz + Ψ(t) dt
where Φ(T,z) corresponds to the failure probability density for a reference stress varying between T and T + dT, of an element of length dz centered at z, and Ψ(T) is the failure probability density associated with the length increase from L R (T) to L R (T) + L' R (T) dT.

The first term is identical to that given in [START_REF] Thouless | Effects of Pull-Out on the Mechanical Properties of Ceramic-Matrix Composites[END_REF][START_REF] Oh | On the Location of Fracture in Brittle Solids-I Due to Static Loading[END_REF] when using a Weibull law, the second term is due to the load dependence of the recovery length L R . The expressions of the functions Φ and Ψ are respectively given by (6.1)

Φ(T,z) = -{ } 1 -P F (T,L R (T)) 1 L 0 ∂ ∂T ( ) ln { } 1 -P F0 (T,z) (6.2) Ψ(T) = -{ } 1 -P F (T,L R (T)) L'(T) L 0 ln { } 1 -P F0 (T,L R (T))
When L R is independent of T, or P F0 (T,L R (T)) vanishes, Ψ(T) vanishes as well, and the results given in [START_REF] Thouless | Effects of Pull-Out on the Mechanical Properties of Ceramic-Matrix Composites[END_REF] still apply in the case of a Weibull law .

By dimensional analysis and by inspection of Eqn. (5.2), the average < > h(T) of the fracture location h(T) for a piece of composite of length 2L R (T) at a reference stress T is

(7) < > h(T) = 1 P F (T;L R (T)) ⌡  ⌠ 0 T 2       ⌡ ⌠ 0 L R (t) z Φ(t,z) dz + α L R (t) Ψ(t) dt
where α is a constant. The first term is identical to that given in [START_REF] Thouless | Effects of Pull-Out on the Mechanical Properties of Ceramic-Matrix Composites[END_REF][START_REF] Sutcu | Weibull Statistics Applied to Fiber Failure in Ceramic Composites and Work of Fracture[END_REF]. The second term is due to the load dependence of the recovery length. In tension, by using Eqns. ( 2), ( 5) and ( 7), there is no need to know the exact expression of the fracture location distribution, and one obtains α = 1/2. This expression of the average fracture location does not consider the fibers that originally broke outside the recovery length but were brought into it as the load level increased. The approximation made here is the worst when the stress field is constant over the whole length (i.e. pure tension). In that case however, it has been shown that this hypothesis is not very strong [START_REF] Hild | Tensile and Flexural Ultimate Strength of Fiber Reinforced Ceramic-Matrix Composites[END_REF].

3

. Average Pull-Out Length -In the following, we assume that the cumulative failure probability is modeled by a two-parameter Weibull law [START_REF] Weibull | A Statistical Theory of the Strength of Materials[END_REF]: m denotes the shape parameter and S 0 the scale parameter. In pure tension, the pull-out stress becomes

(8) σ _ po (T) = fS c 2 γ       m+2 m+1 ,       T S c m+1
where S c denotes the characteristic strength (S c m+1 = S 0 m L 0 τ/R) , and γ{.,.} the incomplete Gamma function.

4. Application -To determine the ultimate strength of a fiber-reinforced composite, the following condition has to be satisfied at the most loaded point(s) in tension ( 9) ∂σ _ ∂T = 0 since the average strain is proportional to the reference stress T. It is worth noting that the ultimate strength is scaled by fS c provided L R <L at the ultimate. In the following we compare the predictions given by the previous results to experimental data on CMC's subjected to tension, four-point flexure, and three-point flexure. In flexure it is assumed that the behavior in compression is elastic and the Young's modulus is equal to the Young's modulus of the composite, E c . In tension, the behavior is non-linear (fiber breakage and fiber pull-out) and the Young's modulus is that of the fiber volume fraction, fE f because of the presence of matrix cracks. The comparison concerns a Lithium Alumino-Silicate (LAS) matrix reinforced by unidirectional SiC fibers [START_REF] Jansson | The Mechanics of Failure of Silicon Carbide Fiber-Reinforced Glass-Matrix Composites[END_REF]. The predictions are summarized in Table 1, in flexure the stresses correspond to the apparent elastic stresses. Table 1.

The agreement between the predictions and the experiments is quite good. One source of discrepancy is given by the hypothesis that the matrix cracking stress is equal to zero. 
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 1 Figure 1: Elementary cell and stress field in broken and unbroken fibers.
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 1 Figure 1: Cellule élémentaire et contraintes dans les fibres rompues et non rompues.

  On suppose que la fissuration matricielle est saturée. Dans le cas où les fissures matricielles sont traversantes et lorsqu'une fibre rompt, la charge qu'elle supportait est également distribuée sur toutes les fibres non rompues (partage global d'effort). Enfin, une fibre ne peut rompre qu'une seule fois à l'intérieur de la zone de transfert. Dans toute cette Note, le champ de contrainte le long de la fibre, σ(T,z), est supposé symétrique par rapport à z=0. Lorsque τ est constante, la longueur de transfert est donnée par (1), où R est le rayon des fibres et 2L la longueur totale des fibres. Sous l'hypothèse de partage global d'effort, la contribution des fibres rompues à z=0 en terme de contrainte d'extraction σ _

	rupture P F (t,L R (t)) d'un élément de longueur 2L R (t) pour une contrainte de référence
	inférieure ou égale à t. En tension, la densité de probabilité de lieux de rupture est uniforme,
	donc σ _	p (t) = t / 2. Par contre, lorsque le champ de contrainte n'est pas uniforme le long de la
	fibre, le résultat précédent ne s'applique pas, et il faut déterminer la distance moyenne de
	rupture par rapport à z=0 pour estimer la valeur de la contrainte d'extraction. En effet, la
	contrainte appliquée au composite en z=0 est donnée par (3). Le premier terme correspond à
	la contribution des fibres non rompues, le second terme à la contrainte d'extraction σ _	po (T)
	où <	h(T)	>	représente la longueur moyenne d'extraction (LME) pour une contrainte de
	référence égale à T.
			Sous l'hypothèse du maillon le plus faible et d'indépendance des événements, la

po (T) est exprimée en (2), où f est la fraction volumique de fibres, σ _ p (t) est la contrainte moyenne à z=0 de toutes les fibres rompues à une cote |z| ≤ L R (t) pour une contrainte de référence t, et une probabilité de

Table 1 :

 1 Comparison between predictions and experimental data on a LAS matrix reinforced by unidirectional SiC fibers (f=0.5, S c =2500 MPa, R=7.5 µm, τ=5 MPa, fE f /E c = .62, m=4).

	Tableau 1: Comparaison entre prévisions et expériences sur une matrice LAS renforcée par
	des fibres unidirectionnelles en SiC.
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