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Uncoupled and coupled approaches to predict
macrocrack initiation in fiber reinforced ceramic
matrix composites

Francois Hild,* Per-Lennart Larsson,} & Frederick A. Leckie

Department of Mechanical and Environmental Engineering, University of California, Santa Barabara, CA 93106, USA

Localized fiber pull-out is one of the fracture features of fiber reinforced
ceramic matrix composites. The onset of this mechanism is predicted by using
Continuum Damage Mechanics, and corresponds to a localization of the
deformations. After deriving two damage models from a uni-axial bundle
approach, and criteria at localization, different axisymmetric configurations are
analyzed through two different approaches to predict macrocrack initiation.

1 INTRODUCTION

To achieve the new goals of high performance
structures, Ceramic Matrix Composites (CMCs)
become a suitable candidate, especially when the
clements are subjected to high mechanical and
thermal load histories.! Indeed, their low density
combined with high strength and good perform-
ances at high temperature are appealing features.
For example, in the design of the new generation
of jet engines, CMCs will be used in the com-
buster, the turbine disks and the nozzle section.
In this paper we will focus our attention on
rotating parts, i.e. an element in the turbine stages
where angular rotation induces mechanical load-
ing. To simplify the analysis, we will consider axi-
symmetric structures. The structures are assumed
to be reinforced by fibers in the circumferential
direction. The main goal of this paper is to predict
the initiatton of a macrocrack in the structure,
which often constitutes the early stages of the final
failure by fracture of the structure, Starting from a
material which is assumed free from any initial
macro defect, the initiation can be predicted using
Continuum Damage Mechanics (CDM). In this
paper we will neglect the matrix cracking process.
This degradation takes place at an early stage of
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loading and often does not lead to final failure of a
structure. Matrix cracks gradually develop as the
load level increases. They usually saturate
because of the shear effects induced by the inter-
face between fibers and matrix.? The results pre-
sented herein are valid when the steady matrix
stress® is less than the ultimate strength of a fiber
reinforced composite.* When that hypothesis is
satisfied, the key mechanism leading to a final
failure is fiber breakage. The fiber breakage
mechanism is accompanied by distributed fiber
pull-out; a broken fiber pulls out of the matrix and
involves shear stresses along the interface to
recover its original load level. This mechanism
distinguishes the behavior of fiber reinforced
CMCs from classical fiber-bundle behavior.’
From a design point of view it is interesting to
evaluate their differences, especially in terms of
load levels.

The degradation mechanism will be described
by an internal variable called damage. In the
framework of CDM, the initiation of a macro-
crack corresponds to a localization of the defor-
mations, which corresponds to the onset of a
surface across which the velocity gradient is dis-
continuous. Physically, it corresponds to localized
pull-out, whereby one macrocrack develops and
pull-out continues to evolve in the vicinity of that
macrocrack only. This phenomenon leads to a
different behavior, compared to the homogeneous
solution for which damage is still evolving in a
diffusive manner. Under a small-deformations



assumption, localization is mainly driven by the
damage mechanism that causes strain softening.’

In Section 2, the main results concerning loss of
uniqueness and localization will be recalled. In
particular a property giving a necessary and suffi-
cient condition of loss of uniqueness and localiza-
tion will be proven and will be applied in Section
3. Section 3 deals with two constitutive laws
modeling fiber breakage. The condition of locali-
zation and loss of uniqueness will be studied, and
general criteria may be derived using the property
given in Section 2. Section 4 presents two strate-
gies to predict the initiation of a macrocrack. The
first one, which is referred to as fully coupled
approach, consists of calculating the stresses and
strains evolution in elasticity coupled with
damage; therefore the damage evolution is fully
coupled with the evolution of the stresses and the
strains. The second approach, which is referred to
as decoupled approach and which is an easier
calculation more amenable to design, consists of
an elastic computation and the use of the failure
criterion derived from the localization analysis in
Section 3. The differences between the two
approaches are analyzed. The results, in terms of
loads at localization, are also compared to the
corresponding cumulative failure probability
when the structure is assumed to be made of a
brittle material.

2 LOCALIZATION AND LOSS OF
UNIQUENESS

2.1 General theory

The failure at a meso-level, which corresponds to
the initiation of a macrocrack, is defined as the
bifurcation of the rate problem in certain modes,
viz. the appearance of a surface across which
the velocity gradient is discontinuous.” This
phenomenon is referred to as localization, and
corresponds to the failure of the ellipticity condi-
tion The condition of localization can also be
compared to the loss of uniqueness of the rate
problem.

Stationary waves were studied by Hadamard®
in elasticity and by Hill'® and Mandel!'' in elasto-
plasticity. Rice!? related the localization of plastic
shear bands to jumps of the velocity gradient.
Borré and Maier,'* who extended the results given
by Rice'? and Rice and Rudnicki,'*'? have given
necessary and sufficient conditions for the onset
of modes inside the body.

Under the small strains assumption and in
elasticity coupled with damage, the behavior of a
material is assumed to be described by the follow-
ing piece-wise linear rate constitutive law

- |E:éift D=0 -
=] o (1)
H:éif D#0

where ¢ and ¢ denote the stress and strain rates,
respectively, E and H are fourth-rank tensors, E is
assumed to be positive, definite, and D is either a
single damage variable or a set of damage vari-
ables.

Localization occurs inside the body, if and only

i34
Det(n-H'n)=0 (2)

for any vector n#0 and at any point inside a
structure Q.

This criterion corresponds to the failure of the
ellipticity condition of the rate equilibrium equa-
tion; it also can be used as an indicator of the local
failure of the material, at a meso-scale.’

Furthermore, any loss of uniqueness, consi-
dered as bifurcation of the rate boundary value
problem, is excluded provided the operator

i .

Hy=7 (H+H') (3)
is strictly positive-definite everywhere within the
structure (where T denotes thie Euclidean transpo-
sition). This condition is equivalent to the
condition of hardening

a:€> 0. (4)

Equations (2) and (3) show. that the quantity that
defines loss of uniqueness and localization is the
linear tangent modulus H. In the following, we
analyze loss of uniqueness and loss of ellipticity
(i.e. localization) for plane states when

£, = OL&y, With a€R
e (5)
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The parameter a is referred to as strain ratio.
These particular states only are considered since
the computations will deal with shear-free states.
These states lead to a tangent modulus that takes
the following form

Hy,, Hj»n 0
H=4{H.,, Hyi 0 (6>
O 0 ngp



where H;,,=d0,/d¢,, are the components of the
tangent modulus H defined in eqn (1). For prob-
lems under hypothesis (5), the non-vanishing
components of vector n are »n, and n,, and the
matrix A=n" H'n reduces to'®

2 2
- nH, +nH,,, nlnz(H1213+H|122)
nminy(Hyy o+ Hayy) ”?H1212+ﬂ§f1’2222

(7)

We rewrite (n,, n,) =(cos 6,sin8), let X be equal to
tan’6, and let Y be equal to 1/X. The localization
condition (eqn (2)) can be written in terms of X or
Y

aX>+bX+c=0,a#0 (8.1)
cY’+bY+a=0,c#0 (8.2)
with
a=H 33 Ha3sy (9.1)
b=H|1||H2222"H||22H22|| —H»nH
= Hasy Hyayo (9.2)
c=HpyHp. (9.3)

If real positive roots are found, then the localiza-
tion direction is perpendicular to the vector (n,,
n,,0)=(cos 0,sin6, 0), characterized by the angle
6 (Fig. 1). The values of H,,,,, Ha3s2, H 22, Haay
and H|,,, are model-dependent.

2.2 Necessary and sufficient condition at
localization

In this section, general results concerning localiza-
tion are analyzed. A necessary and sufficient con-
dition at localization and loss of uniqueness will
be derived under the following conditions. Let us
assume that H, s, = Hyy, =vHay (v<|2), that
H,,,, and H,,,, are positive numbers and that
H,,,, can become negative (H;,, arc the com-
ponents of the tangent operator H). This condi-
tion will be satisfied in the models used later. It
can be seen from eqns (3) and (6) that there is no
loss of uniqueness, provided

A>0 (10.1)
where
24=H\ — Hpop
+{(Hiy1 = Hopn )+ 29 (Hopn)~ (10.2)

Furthermore, it is noticed that when H,,,, is
equal to zero, 4 is equal to zero (loss of unique-

Fig. 1. Localization mode.

ness) and the coefficients a, b, and ¢ of eqns (9)
reduce to

a=0, b=0, c=H, H..>0. (11)

Localization occurs since it is possible to find Y
satisfying eqn (8.2): Y=0, and the localization
direction is given by 6= /2. Therefore a suffi-
cient condition of loss of uniqueness and localiza-
tion is that H,,,, should be equal to zero.

Since localization corresponds to a particular
mode of all of the solutions after loss of unique-
ness, it suffices to show that H,,,, equal to zero is
a sufficient condition for loss of uniqueness. Using
the triangular inequality, we have

ol ion . (12)
2

Loss of uniqueness corresponds to 4 equal to
zero, and therefore H,,,,<0. Since it has been
shown that H,,,, equal to zero is sufficient to
define localization and loss of uniqueness, we
have the following property: a necessary and suffi-
cient condition to have localization and loss of
uniqueness is H,,,, equal to zero. The angle at
localization is equal to 7 |2,

Conversely, under the conditions H,,,= H,,,,
=vH,, (v<i2), H,,, and H,,,, are positive
numbers and H,,,, can become negative, a neces-
sary and sufficient condition to have localization
and loss of uniqueness is H,,,, equal to zero. The
angle at localization is equal to 0. The proof is the
same as previously when studying eqn (8.1).

3 CONSTITUTIVE LAWS

This section is concerned with the development of
two constitutive laws in the case of CMCs rein-



forced in one direction. Since these models will be
used to study spinning structures, we choose a
cylindrical coordinate system (r,¢) as shown in
Fig. 2(a). We assume a plane stress hypothesis.
This hypothesis is consistent with the results
derived in Section 2: eqn (6) is still valid. The
fibers are assumed to be in the hoop direction,
and the two analyzed geometries are a disk of
outer radius a, and a ring of outer radius a and
inner radius b (a=2b) shown in Figs 2(b) and 2(c).
We let w denote the angular rotation speed. Since
the structure, the boundary conditions and the
loading are axisymmetric, the problem is axi-
symmetric, and the only non-zero stresses are
related to the corresponding strains by '’
E,
k{1-v;,(1-D,)k}

0,=

X{e,+ v, (1= D,)ke,,} (13)
_ __E1-D,)
o 1—vf¢(1—Dq,)k

where E denotes the Young’s modulus in the
hoop direction, v,, denotes the Poisson’s ratio, &

(gt Vegls)  (14)
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Fig. 2. Analyzed structures. The quantity w represents.the
angular velocity: (a) coordinate system; (b) spinning disk; (c)
spinning ring.

denotes the ratio of the Young's modulus in the
fiber direction (E ) to the Young’s modulus in the
radial direction (g,), and D, denotes the damage
variable modeling the fiber degradation. The
damage variable can be defined as the percentage
of broken fibers.'®-2® The percentage of broken
fibers is given by the corresponding cumulative
failure probability which will be modeled by a
Weibull expression.?! A first expression of the
damage variable can be obtained? by extending a
study of fiber-bundle to 2D configurations, and
will be referred to as model No. 0

(0! r o i
DYV'=1-exp{—— {— b —
! p [ Fo {“ - 'D.‘:}i)farl] l

if £,,>0and £,,>0 (15)
where m and o, are the shape and scale para-
meters of a Weibull law, 277, is the corresponding
gauge length, r is the fiber radius (since the fiber
length is 27r) and fis the volume fraction of fibers
in the hoop direction. This first expression corre-
sponds to a generalization of the behavior of a
fiber-bundle in the hoop direction embedded in a
matrix. This means that if a fiber breaks, it will not
be able to carry any load (i.e. no distributed pull-
out takes place) and therefore this model eonsti-
tutes a Jower bound of the expected behavior of
the composite,

On the other hand, it has been proven®? that
due to distributed pull-out, the evolution of fiber
breakage is not dictated by the length of the fiber
(here 2xr) but by the length over which the tensile
stress field recovers its original level. Using a
shear lag approach?-** with constant interfacial
shear stress 7, this length, also called recovery
length, L .., is given by (Fig. 3)

Le=2 (16)

where R is the fiber radius, 7 is the tensile stress
in the unbroken fibers. In this case, the relevant
length to consider is the recovery length L . By
equilibrium considerations, the tensile stress T is
related to the external applied stress o, by
fr=—Te (17)
(1=12.)

Therefore, instead of r in eqn (15), we will con-
sider L .. We then end up with a second type of
damage evolution which will be referred to as
model No. 1
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Fig. 3. Definition of the recovery length. Stress in the fiber
against fiber axis x: (a) just before the break; (b) just after the
break.

m+1
Wi - ) %
Dy =l-ew { [(l—n';,'_.‘)foe

if ¢,,>0and €, >0 (18.1)

where the expression of the scaling o, stress is
given by

| |
(Uﬂ?nr” 'c) famr
P ——— .

- (18.2)

This stress has been previously used by Phoenix et
al,>*2" and by Curtin?’ and is referred to as
characteristic strength. It can also be noted that
this expression is valid under a global load-
sharing hypothesis, i.e. when a fiber breaks, the
load it was carrying is evenly distributed to the
unbroken fibers. Although shear is involved on a
microscale, we assume that the macroscopic stress
state is shear-free so that eqn (5) still applies.
Therefore, all of the results derived in Section 2.2
can be used.

With these two models the ultimate tensile
strength in the fiber direction is given by

r Iim
fa, (_n._) for model No. 0
emr

O0,,=0,~ {

1 V/m+
fac(e(m+ 1)) for model
\ No. 1

(19)

It is worth noting that the ultimate tensile strength
in the fiber direction does depend on the fiber
length for model No. 0, whereas it is independent
of the fiber length for model No. 1. Equation
(19) shows that the characteristic strength g,
corresponds to the scaling stress of the ultimate
tensile strength in the fiber direction. In particular,
this result shows that the ultimate strength is in-
dependent of the total length of the fiber. Instead
it depends on the recovery length at the ultimate,
which is proportional to the characteristic length?’
L.=Ro,[7. Furthermore, in this paper only the
fiber breakage mechanism is taken into account
since it is the most important mechanism com-
pared to the pull-out mechanism in terms of the
contribution to the stress levels.?>? The damage
level at the ultimate tensile point is given by

.
-1
I —exp (_nT) for model No. 0

1
1 —exp ( ) for model No. 1.
| m+1
(20)

In both models it can be noticed that the percen-
tage of broken fibers at the ultimate tensile point
(D,) is independent of all material parameters but
the Weibull modulus.

For both models the tangent operator H takes
the form

F,FF{

Hyp=F = 21.1

T RFY (21.1)
F,

Hr/"fﬂwsm. (21.2)

H’W"Q’z HWP": vrgz Hq;gugoq: (213)

Hr¢rw=2Gr¢>0 (21.4)

where G, corresponds to the shear modulus of
the composite (assumed to be constant), the expli-
cit expressions for F; are given in Appendix 1; the
superscript (i) refers to either model No. 0 (0) or
model No. 1 (1). It is worth noting that all condi-
tions presupposed in the property derived in
Section 2 are satisifed. Furthermore, it is easily
seen that when D is equal to D, then /Y tends to
infinity, and thus #,,,, vanishes. On the other
hand, #,, and H,,, remain positive. Con-
sequently, localization and loss of uniqueness



occur if and only if
D,=D,

Ope™= Oy -

(22.1)
(22.2)

These two criteria are easier to compute than the
general criteria of localization and loss of umque-
ness. Moreover, the criterion refers to a maximum
critical stress which does not need a computation
when elasticity is coupled with damage. Indeed, an
elastic computation can use criterion (22.2),
whereas a computation where elasticity is coupled
with damage can use both criteria. Therefore a
post-processing approach described by Lemai-
tre’ is not necessary, in this particular case, since
criterion (22.2) does not refer to damage
variables. On the other hand, as it will be shown in
the next section, the damaged zone is not small
compared to the dimensions of the structures.
Therefore a locally coupled approach® is not very
interesting in this particular case.

It is also worth noting that criteria (22) are
independent of the strain ratio a (5) and therefore
the knowledge of the ultimate tensile strength is
particularly crucial. The angle at localization is
equal to x/2, i.e. perpendicular to the fiber direc-
tion (Fig. 4(a)).

If the fibers are in the radial direction, then
using the corollary of the property derived in
Section 2, we find that localization and loss of

1

|

”“"lh

y

()

Fig. 4. Localization angles 6 for: (a) fibers parallel to the
2-axis (6= 7 /2); (b) fibers parallel to the 1-axis (=0).

uniqueness can be characterized by

D,=D, (23.1)

(23.2)
where D, denotes the damage variable modeling
the degradation of the fibers in the radial direc-
tion. The angle at localization is equal to 0, ie.

again perpendicular to the fiber direction (Fig.
4(b)).

a;r= GU

4 INITIATION OF MACROCRACKS IN
SPINNING STRUCTURES

As mentioned earlier, we will apply these results
to two spinning geometries (Figs 2(b) and 2(c)). In
each case, the external boundaries are supposed
to be traction-free. The first part of this section is
devoted to the direct application with the two
models presented in Section 3. The second part
deals with a simplified approach using elastic
computations. The third part is concerned with
the comparisons between the previous computa-
tions and the assessment of the reliability of those
structures using a Weibull-type approach.

4.1 Fully coupled computations

When the constitutive equations presented in-
Section 3 are considered, it proved impossible to
derive a closed-form solution for the stress state
and the damage state. Instead, the problem is
solved using the Finite Element Method. Consti-
tutive laws (13)-(15), and (18) are implemented
into a standard finite element code ABAQUS,*
and a solution is sought for by dlSCICtlZlng the
problem using two-node axisyminetric shell ele-
ments. Since the linear tangent modulus H had to
be implemented into the finite element code, the
load (i.e. the angular rotation speed) requ1red for
loss of uniqueness and localization could be
conveniently calculated using ABAQUS through
a UMAT routine. In summary, the complete con-
stitutive equations given by damage coupled with
elasticity were implemented. Therefore these
computations will be referred to as fully coupled.

It should be noted that due to the non-explicit
expression for the damage parameter givenin (15)
and (18), an iterative procedure had to be outlined
to determine the damage state characterized by
D, at every time the calculated strain field
Lhdnged at a certain Gauss point. This was done
by using a standard bisection method. A test of



mesh dependence of the numerical results is also
performed. The number of elements proves to
have a very weak influence on the solution, and
satisfactory results for the stress and state variable
can be obtained by modeling the disk with only 20
elements.

The material analyzed herein is a CMC defined
in Appendix 2. The numerical values are close to
those found by Jansson and Leckie®? for a lithium
alumino-silicate (LAS) matrix reinforced with sili-
con carbide fibers (commercial name Nicalon).

In Fig. §, the stress field in the hoop direction
obtained with a fully coupled computation is com-
pared to the elastic stress field at the same load
level. It can be noted that the load level corre-
sponds to the localization speed for the ring with
model No. 1. Due to the damage coupling, a re-
distribution takes place. In particular it is worth
noting that the stress levels in the most loaded
part (r=0-23 m) are larger in the elastic computa-
tion. This trend is the same for both models and
both structures.

In Fig. 6, the outer displacement of the ring
obtained by an elastic computation and a fully
coupled computation (model No. 1) are com-
pared. Due to the gradual distribution of the
damage all over the structure, the ‘global’ stiffness
of the damaged structure softens as the applied
load increases. The higher the load, the higher the
softening.

In terms of load levels at localization, Table 1a
summarizes the results. Note that model No. 1
gives much higher load levels than model No. 0.
This is mainly due to the radial dependence of the
ultimate tensile strength (19) of model No. 0, com-
pared to the radial independence of model No. 1.
In Figs 7 and 8 where the stresses in the hoop
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Fig. 5. Hoop stress o,,(r) as a function of the radius
obtained by fully coupled computation and a decoupled
computation at localization (pw>=226 10" kgm s~ ) for
the ring wih model No. 1. Note the stress redistribution,

direction are plotted against the radius, the stress
levels at localization (i.e. when the curve o_,()
intersects the curve g, criterion (22.2)) are in the
same ratio as the load levels. It is worth noting
that, as mentioned earlier, the ultimate tensile
strength is r-dependent for model No. 0 (Fig. 7)
and r-independent for model No. 1 (Fig. 8). Crite-

25 [T ———'—'l
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Fig. 6. Outer radial displacement as a function of the

applied load (pw?) obtained by a fully coupled computation

and a decoupled computation up to localization (0w =2-26

10" kg m~*s~2) for the ring with model No. 1. Note the stiff-
ness softening.

Table 1a. Load levels (pw@?) at localization for the two
structures and the two models predicted by the fully coupled

approach
pw* Disk Ring
(10" kgm~'s™?)
Modcl No. 0 0-59 071
Model No. | 187 226
400 = = =
350 ] \\ . |
T
g 20 ' b 1
b>
7 ™ |
<
a 150
Localization |
100 i |
50 | '
|
0 B e L P SR VA PR R SN SN I PR |
0 0.05 0.1 0.15 0.2 0.25 0.3
Radius, r (m)
Fig. 7a. Hoop stress o, (r) as a function of the radius

intersecting (see the arrow‘j the rdependent ultimate tensile

strength o,(r) at localization (pw® =059 10" kg m~* s~2)

for a fully coupled computation applied to the disk with

model No. 0. Note the r-dependence of the ultimate tensile
strength.
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rion (22.1) is shown in Figs 9 and 10 for model
No. 0 and No. 1, respectively; note the different
values for critical damage. In this case the locali-
zation point is very easy to spot compared to Figs
7 and 8.

Although the load levels in terms of pw? at
localization are very different for model No. 0 and
1, it can be noticed that when the dimensionless
parameter pw2a2/0,(r.) is studied (whére o,(r,.)
denotes the ultimate tensile strength at the locali-
zation radius) the results between model No. 0
and No. 1 come close together and the main
change is given by the ratio b/a (Table 1b). In first
approximation, a good estimate for the dimen-
sionless parameter pw’a’/a(r,) is 2.1 for the
disk (b/a=0-0) and 26 for the ring (b/a=0-5).

Finally, the accuracy of the numerical investiga-
tions is addressed. Figure 11 shows that the radius
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Fig. 9. Damage variable D (r) as a function of the radius
intersecting (see the arrow) the critical damage value at local-
ization (pw-"059 10" kg m~* s72) for a fully coupled

computation applied to the disk with model No. 0 :
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Fig. 10. Damage variable D, (r) as a function of the radius
mtcnccnng (see the arrow) thc critical damage value at local-

ization (ow==1-87 10 kg m~* s7?) for a fully coupled
computation applied to the disk with mode No. I.



at localization is well characterized over the range
of loads exceeding the localization load level. On
the other hand, in terms of damage at localization
(Fig. 12) and hoop stress at localization (Fig. 13),
localization needs to be spotted more precisely.
This phenomenon is more important in terms of
angle at localization (Fig. 14). In this case, the
number of decimal positions to get an angle at
localization of 89° (instead of 90°) is equal to 8!

In summary, from a numerical perspective,
localization needs to be spotted very accurately,

Table 1b. Normalized load levels (ow?a*/0,(r,)) at locali-
zation of the two structures and the two models predicted by
the fully coupled approach

P00y (Fe) Disk Ring
Model No. 0 22 27
Model No. | 2-1 2:6
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Fig. 11. Localization radius as a function of the load level,

for a fully coupled computation applied to the disk with
model No. 1.
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especially in terms of angle at localization. This
phenomenon is only due to numerical accuracy.
Statistical fluctuations do not enter this problem
since the constitutive laws (on a macroscale) are
deterministic, although they are based upon statis-
tical information (on a microscale). On a micro-
scale, however, there will be statistical fluctuations
leading to a post-localization behavior, strongly
dependent on these fluctuations, whereas the pre-
localization behavior will not lead to fluctuations.

4.2 Decoupled computations

In this sub-section, we will take advantage of the
criterion (22.2) which does not require a fully
coupled computation. Therefore a purely elastic
set of computations has been carried out. The aim
of this section is to compare the load levels pre-
dicted by the two types of approach. The results



are summarized in Table 2a. It can be noticed that
all of the load levels at localization are lower for
the decoupled analysis. This is due to redistribu-
tion, noticed earlier in Figs 7 and 8. Moreover, the
error measured as the ratio of the difference
between the decoupled angular speed and the
fully coupled angular speed to the fully coupled
angular speed is lower in the case of model No. 1.
This is due to a lower stress redistribution at
localization for model No. 1 since the value of
critical damage is equal to 0-181 (=1—exp(—1/
5)) compared to model No. 0 for which the critical
damage is equal to 0221 (=1 —exp(— 1/4)).

Again the load levels in terms of ow? at locali-
zation are very different for model No. 0 and No.
1, but in terms of the dimensionless parameter
pw*a*la(n..), the results are very close and the
main change is given by the ratio b/a (Table 2b).
In first approximation, a good estimate for the
dimensionless parameter pw?’a’/o,(r,.) is 2:0
(b/a=00) for the disk and 25 for the ring (b/
a=0-5). These results constitute a lower bound
when compared to the fully coupled results.

The maximum difference between the two
models approaches is — 6-1%, which is not signifi-
cant. Therefore a decoupled computation gives

good information of the loads that these kind of

structures can support. Furthermore, due to the
stress field redistribution, the decoupled appro-
ach gives conservative results of all of the ana-
lyzed cases. Therefore it constitutes a ‘good’ lower
bound approximation of the models No. 0 and
No. .

Table 2a. Load levels (ow?) at localization for the two

structures and the two models predicted by the decoupled

approach, in parenthesis () is the difference in terms of
angular velocity with the fully coupled approach

ow? (10" kgm™3s~7)

Disk Ring
Model No. 0 0-53 (~46%) 0:62 (= 6:1%)
Model No. [ 175 (~31%) 2:05 (—4-5%)

Table 2b. Normalized load levels (ow?a?/o,(r,,.)) at locali-
zation for the two structures and the two models predicted
by the decoupled approach

pw laz/ou(rltlc)

Disk Ring
Model No. 0 2-1 2:5
Model No. 1 21 2:5

4.3 Comparison with a Weibull-type of analysis

In this sub-section we compare the load levels at
localization, obtained by both approaches, to the
cumulative failure probability obtained by model-
ing the material as an elastic brittle material. The
conditions for first failure are determined at the
load levels obtained previously. We assume that
the disk and the ring are made of a manolithic
ceramic whose characteristics are identical to that
of the fibers (i.e. same m, g, and r,). This kind of
analysis may be used to assess the reliability of
these spinning structures, supposedly made of
brittle material. In the framework of the weakest
link assumption, the expression of the cumulative
failure probability P, is given by a Weibull expres-
ston?!

P.=1-exp LY dA (24)
Vo Js L an

where V), is the gauge volume (V= hnrg), and h
the disk or rmg thickness. Using the same normal-
ization as in the previous sections, the elastic
stress field can be scaled by writing the hoop
stress as follows

0yl )= (o0 a?)f(r) (25)

where the function f is a dimensionless function,
Since the function f depends only on the shape of
the stress field and not on its level, it ¢can charac-
terize the stress field heterogeneity; and the cumu-
lative failure probability can bé rewritten as

A 2o2\m
P.=1—expy—— H, !.0-—{-»—”—
All Uu

where H,, is a generalized definition of the stress
heterogeneity factor’? associated with a Weibull
law, and is defined as

(26a)

H,= 3 J 2rif(r)}" dr. (26b)

a —b-

Note that if the hoop stress is homogeneous then
H, is equal to 1; otherwise, as the stress field gets
more heterogeneous, H,, gets closer to zero. In the
case of the disk H_ =0 04 and in the case of the
ring H,=0-02. The stress heterogeneity factors
fully characterize the elastic stress field in terms of
cumulative failure probability, i.e. in terms of
reliability of these structures.

The results of cumulative faihire probability for

the same load levels as those predicted by the fully



coupled approach are summarized in Table 3. It
can be noticed that the cumulative failure proba-
bilities are very high. Therefore a design strategy
using this kind of reliability assessment can expect
quite high value in terms of the cumulative failure
probability corresponding to the load levels at
localization.

S CONCLUSIONS

In the framework of Continuum Damage
Mechanics, a localization criterion corresponds to
the initiation of a macrocrack. Under certain
hypotheses, the localization criterion can be
rewritten in terms of a necessary and sufficient
condition in terms of one component of the tan-
gent operator. This result is applied to derive
criteria at localization in terms of a critical
damage value and a maximum normal stress for
constitutive laws modeling the fiber breakage for
unidirectionally reinforced ceramic matrix com-
posites.

The constitutive laws are used to study axisym-
metric spinning structures made of CMCs. Two
approaches are analyzed. The fully coupled
approach where the complete constitutive law is
implemented in a FE code is compared to the
decoupled approach, that consists of using an
elastic computation. Indeed, one of the previous
criteria can be used in an elastic computation. The
result predicting localization are of the same
order of magnitude. Furthermore, the decoupled
approach gives conservative results in terms of
load at localization, and the results in the analyzed
structures are very close to those predicted by a
fully coupled method. The fact that the decoupled
approach gives conservative results is due to a
stress redistribution when the fully coupled
approach is used.

This kind of approach will also be carried out
in the case of structures reinforced by fibers in
two perpendicular directions. This enables us to

Table 3. Cumulative failure probability corresponding to
the localization load levels obtained by the decoupled and
fully coupled approaches

Py

Disk Ring
Model No. ) 060 053
Model No. | 1-:00 1-00

look for an optimum volume fraction of fibers in
terms of load at localization.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the financial
support of the US Air Force, through contract
AFOSR-90-0132 with the Department of
Mechanical and Environmental Engineering,
University of California at Santa Barbara, and the
support by the Advanced Research Project
Agency, through the University Research Initia-
tive.

REFERENCES

1. URI, Proceedings University Research Initiative,
University of California, Santa Barbara (1992).

. Aveston, I, Cooper, G. A. & Kelly, A, Single and multi-
ple fracture. In Conf. Proceedings of the National Physi-
cal Laboratory: Properties of Fiber Composites. 1PC
Science and Technology Press, Surrey, UK (1971),

3. Budiansky, B., Hutchinson, J. W. & Evans, A. G., Matrix
fracture in fiber-reinforced ceramics. J. Mech. Phys.
Solids, 34 (1986) 167-89.

4. Budiansky, B., Tensile strength of aligned-fiber com-
posites. Proceedings University Research Initiative,
Winter Study Group. University of California. Santa
Barbara (1993),

5. Coleman, B. D., On the strength of classical fibers and
fiber bundles. J. Mech. Phys. Solids, 7 (1958) 60-70.

6. Lemaitre, J., A Course on Damage Mechanics, Springer-
Verlag, Berlin (1992).

7. Billardon, R, & Doghri, L., Prévision de I'amorgage d'une
macro-fissure par la localisation de I'endommagement.
C. R. Acad. Sci. Paris, 308 (I1) (1989) 347-52.

8. Benallal, A, Billardon, R. & Geymonat, G., Localization
phenomena at the boundaries and interfaces of solids.
Proc. 3rd Conf. on Constitutive Laws for Engineering
Materials; Theory and Applications, Tucson, AZ (1991).

9. Hadamard, J., Le¢on sur la propagation des ondes et les
équations de I'hydrodynamique, Paris (1903).

10. Hill, R., Acceleration waves in solids, J. Mech. Phys.
Solids, 10 (1962) 1-16.

11. Mandel, J., Ondes plastiques dans un millicu indéfini a
trois dimensions. J. de Mécanique, 1 (1) (1962) 3-30,

12. Rice, J. R, The localization of plastic deformations.
(Proc )Theoretical and Applied Mechanics, Koiter, W, T.

1976).

13. Borré, G. & Maier, G., On linear versus nonlinear flaw
rules in strain localization analysis. Meccanica, 24
(1989) 36-41.

14, Rudnicki, J. W, & Rice, J. R., Conditions for localization
of deformation in pressure-sensitive dilatant materials. J.
Mech. Phys. Solids, 23 (1975) 371-94,

15. Rice, J. R. & Rudnicki, J. W., A note on some features of
the theory of localization of deformation. Int. J. Solids
Struct., 16 (1980) 597-605.

16. Ortiz, M., Leroy, Y. & Needelman, A, A finite element
method for localized failure analysis. Comput. Meths
Appl. Engng., 61 (1987) 189-214.

17. Hild, F,, Larsson, P-L. & Leckie, F. A., Localization due
to damage in fiber reinforced composites. Int. J. Solids
Struct., 29 (24)(1992) 3221-38.

(o)



18.

19.

20.

21,
22

23.

24,
25.

Krajcinovic, D. & Silva, M. A. G, Statistical aspects of
the continuous damage theory. Int. J. Solids Struct., 18
(7)(1982) 551-62.

Hulr, J. & Travnicek, L., Carrying capacity of fiber
buridles with varying strength and stiffness. J. de Méca-
nique Théorique et Appliquée, 2 (2)(1983) 643-57.
Hild, F., Larsson, P-L. & Leckie, F. A., Localization due
to damage in two-direction fiber-reinforced composites.
J. Appl. Mech.(1992) accepted.

Weibull, W., A statistical theory of the strength of mate-
rials, Ing. Vetenskap. Akad.; 15 (1939).

Curtin, W. A, Theory of mechanical properties of
ceramic matrix composites. J. Am. Ceram. Soc., 74 (11)
(1991) 2837-45.

Cox, H. L, The elasticity and the strength of paper and
other fibrous materials. Br. J. Appl. Phys., 3 (1952)
72-9.

Kelly, A., In Strong Solids. Oxford University Press, 2nd
edn, Oxford University Press (1973).

Henstenburg, R. B. & Phoenix, S. L., Interfacial shear
strength using single-filament-composite test, Part II: A
probability model and Monte Carlo simulations. Polym.
Comp., 10(5)(1989) 389-406.

APPENDIX 1

26.

27.

28,

29,

30.
31
32.

33

Phoenix, S. L. & Raj, R,, Scalings in fracture probabili-
ties for a Brittle matrix fiber composite. Acta Metall.
Mater., 40 (11)(1992) 2813-28.

Curtin, W. A., Exact theory of fiber fragmentation in
single-filament composite. J. Mar. Sei, 26 (1991)
5239-53.

Hild, F., Domergue, ].-M,, Evans, A. G. & Leckie, F. A,
Tensile and flexural ultimate strength of fiber reinforced
ceramic matrix composites. Int. J. Solids Struct., 31 (7)
(1994) 1035-45.

Phoenix, S. L., Statistical issues in the fracture of brittle
matrix fibrous composites. Comp. Sci. Tech., 48 (1993)
65-80.

Lemaitre, J., Micro-mechanics of crack initiation. Int. J.
Fract., 42 (1990) 87-99.

Hibbitt, H. D., Karlsson, B, I, & Sorenson, P., ABAQUS,
version 5.2 (1992).

Jansson, S. & Leckie, F. A., The mechanics of failure of
silicon carbide fiber-reinforced glass-matrix composites.
Acta Metall., 40 (11)(1993) 2967-78.

Hild, F,, Billardon, R. & Marquis, D., Stress heterogene-
ity influencé on failure of brittle materials. C. R. Acad.
Sci. Paris, 315 (I1)(1992) 1293-8. '

Model No. 0

No. 1

F

E

el

Fy=

“k1—vi(1-D

E v, y(Vig€,t

k)

[ )

S ) g™

2
ft‘p(

£
D, )k)’

Ev,1-D,)

F,=

1-—- v,v,(l

D,k

Eq.-( vFQreff + Sy,aq. )

FS:(I-—

vi,(1-D, k)

£

Fh=

m

(0) =f00

{ o lm- |
(1- D) fa

)
1- ml_____a_"i__ﬁ]
(1 _D(((pn)fail

Ft;ll"

a?’?’ ] N
(1-D')fa,

1—(m+1)l——-ﬂ~—~0;,, ll
(1 - Dq'l)fac

m+1

fo.




APPENDIX 2

Material parameters for the ceramic matrix fiber

composite analyzed in the finite element calcula-
tions are:

E,=20-0 GPa
E,=140-0 GPa
G,,=130GPa

v,,=00214
m=4-(

fo,=1450-0 MPa
r,=0002m

fo.=1300-0 MPa
a=03m, b=015m.



