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Abstract

A state observer is proposed for a class of uniformly observable systems involving bounded disturbances. The system outputs
are delayed with a known (time-varying) delay and their measurements are continuously available over some time horizons
and sampled over other ones. The rational behind the proposed observer design consists in the consideration of an appropriate
corrective term provided by a linear Delay Differential Equation (DDE), which accounts for the form under which the output
measurements are available as well as for the presence of delay, through a well defined piece-wise continuous function depending
on the sampling instants and on the output (time-varying) delay. Of particular interest, the proposed observer has the same
dimension as the system and is of the high gain variety in the case where the magnitude of the output (time-varying) delay is
relatively small. The arbitrarily long delays are handled thanks to a suitable observer structure composed of cascaded subsystems
each one of which has the same dimension as the system. More specifically, the cascade observer is first designed in the constant
long delay case before being extended to the time-varying long delay case using a suitable procedure. The convergence analysis
is performed thanks to a comprehensive Lyapunov approach under a well-defined condition on the maximum value of the
sampling partition diameter. The effectiveness of the proposed observer is emphasized through illustrative simulation results.

Key words: Nonlinear systems, Output delay, Sampled outputs, Time-varying delay, High gain observer, Cascade observer.

1 Introduction

Over the last two decades, an intensive research activ-
ity has been devoted to investigate the state estimation
problem for linear and nonlinear systems involving de-
layed outputs. The underlying observer design problem
has been comprehensively examined in [9] for linear sys-
tems and many state observers have been proposed for
nonlinear systems using various approaches (see [10] and
references therein for small output delays and [6, 7, 12]
for arbitrarily long output delays). A special attention
has been paid to the state observer design of systems
subject to unknown disturbances and delayed outputs
which is still a challenging problem (See for instance
[3] and [4]). An unknown input observer has been pro-
posed in [4] using an appropriate LMI-based approach.
The observer error was shown to be bounded up to the
feasibility of a LMI set. A cascade observer has been
proposed in [3] for a class of uniformly observable non-
linear systems assuming that the output measurements
are continuously available. This observer has been sub-
sequently redesigned to deal with the output measure-
ment sampling process. Of fundamental interest, it has

been shown that the ultimate bound of the asymptotic
estimation error is a non increasing function of the cas-
cade length.
The aforementioned results have been obtained by as-
suming that the delayed output measurements are ex-
clusively available under a continuous form or through
an appropriate sampling process. A redesign of the pro-
posed observers is hence always required to account for
the nature under which the (delayed) output measure-
ments are available. Moreover, most of available results
dealing with output delays have been devoted to the con-
stant delay case. In [2], a class of uniformly observable
systems with long time-varying delays has been consid-
ered. The authors considered a non uniform partition of
the time delays and proposed a cascade observer con-
stituted by m chained dynamical systems which are de-
signed such that the head of the cascade provides an es-
timate of the actual state. However, in order to account
for the delays time variations, the structure of the cor-
rective term involved in each system is not fixed as in the
constant delay case but it is appropriately updated ac-
cording to the instantaneous values of the delays. In [5],
the authors proposed a solution that handles the time-
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varying delays in a similar way as the constant ones.
The idea is to introduce a further delay on the available
delayed output in such a way that the resulting over-
all delay is constant and it is equal to the maximum of
the original time-varying output delay. In [2] and [5], the
delayed output measurements are assumed to be avail-
able in a continuous way; the time delay was assumed
to be continuous with respect to time in [2] while it was
assumed in [5] to be differentiable with respect to time
with a first time derivative strictly lower than 1.
This paper is devoted to further developments of the ob-
server design for a class of MIMO disturbed uniformly
observable systems with delayed outputs, similar to that
considered in [4]. Three main features are worth to be
emphasized with respect to the class considered in [4].
Firstly, the delayed output measurements which were
assumed to be available exclusively under one form, i.e.
continuously in time or only under samples, may be avail-
able in the actual context under a mixed form, i.e. con-
tinuously in time over some intervals of time and only
under samples over other ones. Secondly, the observer
design is particularly alleviated in the case of arbitrar-
ily small output delays. Indeed, one will show that it is
possible to handle the observer design in the case of rel-
atively small delays using a high gain observer having
the same dimension as the system unlike in [4] where the
cascade observer is required whatever the output delay
value is. Thirdly, the output delay may be time-varying
unlike in [4] where it is assumed to be constant. Of a
fundamental interest, the time-varying delay problem is
turned into a constant delay problem thanks to a suit-
able procedure.
The paper is organized as follows. Section 2 is devoted
to the introduction of the class of systems that will be
considered for the observer design throughout the paper
together with a technical lemma that will be used to per-
form the convergence analysis of the proposed observers.
The scenario describing the output measurements avail-
ability is detailed in section 3. Section 4 is devoted to the
observer design in the case of an output delay, possibly
time-varying, with a relatively small magnitude. A par-
ticular emphasis is put on the recovery of the delay-free
output case within the proposed design framework. The
long constant delay case is addressed in section 5 thanks
to a suitable cascade structure. Section 6 is dedicated
to the case of long time-varying delays. More specifi-
cally, an appropriate procedure is used to reformulate
the time-varying delay problem as a constant long delay
one, allowing thereby to perform the observer design us-
ing the approach pursued in section 5. The effectiveness
of the proposed observers is highlighted through an illus-
trative academic example in section 7. Some concluding
remarks are given in section 8 to further precise the main
motivations of the paper and the related open problems.
Throughout the paper, IR+, In and 0n will respectively
denote the set of non negative reals, the n-dimensional
identity and zero matrices, and ∥·∥ denotes the euclidian
norm.

2 Problem formulation and preliminaries

Consider the class of multivariable nonlinear systems
that are diffeomorphic to the following block triangular
form {

ẋ(t) = Ax(t) + φ(u(t), x(t)) +Bε(t)

ya(t) = Cx(t− d̄(t)) = x(1)(t− d̄(t))
(1)

with
x =

(
x(1)T . . . x(q)T

)T
∈ IRn, x(k) ∈ IRp, k = 1, . . . , q,

φ(u, x) =
(
φ(1)T (u, x(1)) . . . φ(q)T (u, x)

)T
,

A =

 0(q−1)p,p I(q−1)p

0p,p 0p,(q−1)p

 , B =
(
0p . . . 0p Ip

)T
,

C =
(
Ip 0p . . . 0p

)
(2)

where x(k) ∈ IRp are the state variables blocks, each
nonlinear function φ(k)(u, x) ∈ IRp is triangular with
respect to x, for k = 1, . . . , q, u(t) ∈ U a compact subset
of IRm denotes the system input and ya ∈ IRp denotes
the available output; ε : IR+ 7→ IRp is an unknown dis-
turbance. It is worth noticing that the available output
ya is expressed as a function of d̄ which denotes a piece-
wise time continuous function which accounts for the
form of the output measurements (continuous in time
or a sequence of samples) with the eventual presence of
a (time-varying) delay. The specification of this signal
will be given later.
The objective consists in designing a state observer
which performs a continuous time estimation of the
full state of system (1) using the available output mea-
surements. The observer design requires the following
assumptions.
A1.The state x(t) and the control u(t) are bounded, i.e.
x(t) ∈ Ω and u(t) ∈ U where Ω ⊂ IRn and U ⊂ IR are com-
pact sets.
A2. The functions φ(i), i = 1, . . . , q, are Lipschitz with
respect to x uniformly in u, i.e.
∃Lφ > 0; ∀u ∈ U ; ∀(x, x̄) ∈ Ω× Ω,

∥φ(i) (u, x)− φ(i) (u, x̄) ∥ ≤ Lφ∥x− x̄∥. (3)

A3. The unknown disturbance ε is an essentially
bounded function, i.e.

∃δε > 0 such that ∥ε∥∞
∆
= ess sup

t≥0
∥ε(t)∥ ≤ δε. (4)

More specifically, one will use the following notation

• ∆θ is the (block) diagonal matrix given by
∆θ = diag

(
Ip, 1/θIp, . . . , 1/θ

q−1Ip
)

with θ > 0, (5)

• K is a n× p matrix defined as follows

K =
(
k1Ip . . . kqIp

)T
∈ IRn×p such that

Ã
∆
= A−KC is a Hurwitz matrix, (6)

where A and C are given in (2) and ki > 0, i = 1, . . . , q

are real numbers. Notice that since the matrix Ã ∆
= A−

KC is Hurwitz, there exist a n×n Symmetric Positive
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Definite (SPD) matrix P and a positive real µ such
that

PÃ+ ÃTP ≤ −2µIn (7)

• λM (resp. λm) is the maximum (resp. minimum) eigen-
value of the SPD matrix P given by (7) and σ =√
λM/λm is its conditioning number.

Remark 2.1 As pointed out in [4], since the system
state trajectory lies in a bounded set Ω, one can extend
the nonlinearities φ(u, x) in such a way that this extension
becomes globally Lipschitz on the entire state space IRn.
The observer synthesis will then be based on the resulting
extended system which coincides with the original system
on the domain of interest i.e. Ω. One can refer to [11, 8]
and references therein for more details on how to carry
globally Lipschitz prolongations in the state observation
context.

Before detailing the scenario describing the output mea-
surements availability, one states the following technical
lemma the proof of which is given in Appendix A.

Lemma 2.1 Consider a differentiable function v : t ∈
[t0 − δ,+∞[7→ v(t) ∈ IR+ with t0, δ ≥ 0, satisfying the fol-
lowing inequality

v̇(t)≤−av(t) + b

∫ t

t−δ
v(s)ds+ p(t), ∀t ≥ t0, (8)

where a > 0, b ≥ 0 and p(t) : IR+ → IR+ is an essentially
bounded function with |p|∞ = ess sup

t≥t0

p(t) ≤ δp.

If bδ/a < 1, then the function v satisfies for all t ≥ t0,

v(t) ≤ e−ϵa(t−t0) (1 + (1− ϵ)δa) max
ν∈[t0−δ,t0]

v(ν) + δp/(ϵa), (9)

where ϵ is such that 0 < ϵ ≤ 1 and satisfies

b

a

(eϵaδ − 1)

ϵa
≤ 1− ϵ. (10)

Now, one shall describe more precisely the scenario re-
lated to the availability of the output measurements.

3 Availability of the output measurements

The output measurements may be available under a con-
tinuous form over some time intervals and only under
sampling measurements over other ones. In both cases,
these output measurements are available with no delay
or affected by a delay which may be time-varying. More
precisely, let N0 ≥ 0 and Ni > 0, i = 1, 2, . . . be integer
numbers and let 0 ≤ t

(0)
0 ≤ t

(N0)
0 < t

(0)
1 < t

(N1)
1 < . . . < t

(0)
k <

t
(Nk)
k < t

(0)
k+1 < . . . be real numbers. The output measure-

ments take one of the following forms

1. For all t ∈ [t
(0)
k , t

(Nk)
k [, k ≥ 0, n = 0, . . . , Nk − 1, the output

measurements are available only at some sampling
time instants. This means that each interval [t(0)k , t

(Nk)
k [

is the union of Nk sub-intervals, i.e. [t
(0)
k , t

(Nk)
k [=

Nk−1∪
n=0

[t
(n)
k , t

(n+1)
k [ with t

(0)
k < t

(1)
k < . . . < t

(Nk)
k , such that

a sample of the output measurements is available
at each sampling instant t

(n)
k , n = 0, . . . , Nk − 1. Fur-

thermore, one shall naturally assume that there exist
0 < τm ≤ τM < +∞ such that, ∀k ≥ 0, n = 0, . . . , Nk − 1,

0 < τm ≤ τ
(n)
k = t

(n+1)
k − t

(n)
k ≤ τM , (11)

2. For all t ∈ [t
(Nk)
k , t

(0)
k+1[, the output measurements are

continuously available.

Notice that the time instants t(0)0 and t
(N0)
0 are such that

t
(0)
0 ≤ t

(N0)
0 . Hence, in the case where N0 = 0, the first out-

put measurements are continuously available over the
time interval [t(0)0 , t

(0)
1 [ and they become available only at

sampling time instants over the time interval [t(0)1 , t
(N1)
1 [.

The output measurement at the sampling time instant
t
(0)
1 can be interpreted as being the last output mea-
surement received from a continuous flow output mea-
surements over the interval [t

(0)
0 , t

(0)
1 [. In the case where

N0 > 0, the first output measurements are available un-
der the form of samples at the time instants t(0)0 , . . . , t

(N0)
0 .

The output measurement at the sampling time instant
t
(N0)
0 can be interpreted as the last sampled output mea-
surement on the interval [t

(0)
0 , t

(N0)
0 [. But, since the out-

put measurements become continuously available at the
time instant t(N0)

0 , the sampled output measurement at
the instant t

(N0)
0 can also be interpreted as the initial

data received from the output measurements continuous
flow over the interval [t(N0)

0 , t
(0)
1 [.

Now, let us denote by d(t) the delay which may affect the
output. Such a delay can be expressed as follows{
d(t) = dc(t), ∀t ∈ [t

(Nk)
k , t

(0)
k+1], k ≥ 0,

d(t) = dc
(
t
(n)
k

)
, ∀t ∈ [t

(n)
k , t

(n+1)
k [, k ≥ 0, n = 0, . . . , Nk − 1,

(12)

where dc : [t
(0)
0 ,+∞[→ IR+ is a non negative real-valued

function which is assumed to be known, continuous with
respect to time and bounded by dM > 0. According to
the definition (12), the delay function d(t) is bounded for
all t ≥ t

(0)
0 , i.e.

∃dM > 0; ∀t ≥ t
(0)
0 , |d(t)| ≤ dM . (13)

Notice that, in the case where the output measurements
are available with no delay, one obviously has d(t) ≡ 0,
for all t ≥ t

(0)
0 .

To summarize, the (delayed) output measurements are
available according to the following scenario.
• For t ∈ [t

(Nk)
k , t

(0)
k+1[, the (delayed) output measurements

are continuously available

ya(t) = y(t− d(t)), ∀t ∈ [t
(Nk)
k , t

(0)
k+1[, k ≥ 0. (14)

•For t ∈ [t
(n)
k , t

(n+1)
k [, the (delayed) output measurements

are available only at sampling time instants

ya(t
(n)
k ) = y

(
t
(n)
k − d

(
t
(n)
k

))
, ∀k ≥ 0, n = 0, . . . , Nk − 1, (15)

= y
(
t− (t− t

(n)
k + d

(
t
(n)
k

)
)
)
. (16)
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Now, one shall define the time-varying signal d̄ :

[t
(0)
0 ,+∞[→ IR+ given in (1), which allows to express the

output measurements whatever is the form under which
it is available, i.e. continuous or sampled form, and in
both cases, the output delay-free case and the delayed
output case. Indeed, one defines d̄ as follows
d̄(t) = d(t), ∀t ∈ [t

(Nk)
k , t

(0)
k+1], k ≥ 0,

d̄(t) = t− t
(n)
k + d

(
t
(n)
k

)
,

∀t ∈ [t
(n)
k , t

(n+1)
k [, k ≥ 0, n = 0, . . . , Nk − 1.

It is worth noticing that the function d̄ is well defined on
[t
(0)
0 ,+∞[ and is continuous on each [t

(Nk)
k , t

(0)
k+1[ for k ≥ 0 as

well as on each [t
(n)
k , t

(n+1)
k [ for k ≥ 0 and n = 0, . . . , Nk − 1.

Furthermore, this function is piece-wise continuous on
[t
(0)
0 ,+∞[ and is bounded, i.e.

∀t ≥ t
(0)
0 , d̄(t) ≤ dM + τM , (17)

where τM and dM are given by (11) and (13), respec-
tively. Now, according to equations (14) and (16) which
give the expressions of the available output measure-
ments under the continuous and sampled forms, respec-
tively, it is easy to check that these expressions can be
merged into the following single expression:

∀t ≥ t
(0)
0 , ya(t) = y(t− d̄(t)) = Cx(t− d̄(t)). (18)

In the remaining of the paper, one shall consider the ob-
server design in three situations, namely the relatively
small (time-varying) delay, the constant arbitrarily long
delay and finally the time varying arbitrarily long de-
lay. It should be emphasized, that the output delay is
assumed to be known in all these situations.

4 Small (time-varying) delay case

Assume that the considered class of systems exhibits a
relatively small (time-varying) delay, then the state es-
timation problem can be handled by the following ob-
server

˙̂x(t) = Ax̂(t) + φ(u(t), x̂(t))−G(t), where ∀t ≥ t
(0)
0 ,

G(t) = θ∆−1
θ K

(
g(t)− g(t− d̄(t)) + Cx̂(t− d̄(t))− ya(t)

)
,

ġ(t) = −θk1
(
g(t)− g(t− d̄(t)) + Cx̂(t− d̄(t))− ya(t)

)
,

g(s) = ψ(s), ∀s ∈ [t
(0)
0 − dM − τM , t

(0)
0 ],

(19)

where x̂ ∈ IRn is the state estimate, K is a n × p matrix
satisfying the property (6), ∆θ is the (block) diagonal
matrix given by (5) where θ constitutes a design param-
eter, ya is the available measured output given by (18),
d̄ is given by (17), ψ(s) is any arbitrary continuous func-
tion on [t

(0)
0 − dM − τM , t

(0)
0 ], dM is the upper bound of the

output (time-varying) delay given by (13) and finally τM
is the upper bound of the sampling partition diameter
defined in (11).
The following theorem, the proof of which is given in Ap-
pendix B, provides the main properties of the observer
while specifying the notion of small (time-varying) delay.

Theorem 4.1 Consider system (1) subject to Assump-
tion A1 to A3 together with system (19). Then, ∃θ0 > 0,
∀θ ≥ θ0, ∀u ∈ U, if the upper bound of the sampling parti-
tion diameter τM and the upper bound of the time delay
dM respectively given by (11) and (13) are such that

(τM + dM ) < χθ, (20)

then for every x̂(0) ∈ IRn, one has
∥x̃(t)∥ ≤ ρ̄0e

−ϵ̄aθ(t−t
(0)
0 ) sup

s∈[t
(0)
0 −τM−dM ,t

(0)
0 ]

∥x̃(s)∥

+ M̄0δε, ∀t ≥ t
(0)
0 , where (21)

χθ =
µ

2(Lφ + θ)σ∥K∥λM
, aθ =

µθ

2λM
, M̄0 =

σ

ϵ̄aθ
,

ρ̄0 = σθq−1 (1 + (1− ϵ̄)aθ(τM + dM )) , ϵ̄ is such that

0 < ϵ̄ ≤ 1 with (eϵ̄aθ(τM+dM ) − 1)/(ϵ̄aθ) ≤ (1− ϵ̄)χθ,

(22)

where x̃(t) = x̂(t)−x(t) with x being the unknown trajectory
of (1) associated to the input u, x̂ is any trajectory of
system (19) associated to (u, ya), θ0 = max(1, 2Lφ

√
nλM/µ),

Lφ and µ are defined in (3) and (7), respectively and
finally λM is the largest eigenvalue of the matrix SPD
matrix P defined in (7).

Remark 4.1 From (22), one can easily check that the
ultimate bound of the asymptotic observation error M̄0δε

as given by (21) can be made small enough by choosing
values of θ sufficiently high (while satisfying condition
(20)).

Notice that the upper bound of the output delay, dM ,
has to satisfy condition (20), i.e. the magnitude of the
output delay has to be relatively small. It should be em-
phasized that observer (19) can be used in the delay-free
case, i.e. dM = 0. In what follows, one shall show that
in the absence of output delay, observer (19) can be in-
terpreted as a generalization of two high gain observers
designed in [1] for system (1) in the case where the out-
put measurements are available either exclusively under
a continuous form for the first observer or exclusively
under a sampled form for the second one. Indeed, let
us express the gain G in the output delay-free case, i.e.
d(t) ≡ 0 and let us show that the underlying expressions
meet those given in [1].

Let t ∈ [t
(Nk)
k , t

(0)
k+1[, k ≥ 0. Then, d̄(t) ≡ 0 and ya(t) ≡ y(t).

It is easy to check that the expression of G(t) given by
(19) becomes G(t) = θ∆−1

θ K (Cx̂(t)− y(t)). The so derived
expression of G is identical to that corresponding to the
high gain observer proposed in [1] in the case where the
output measurements are available exclusively under a
continuous form.
Now, let t ∈ [t

(n)
k , t

(n+1)
k [, k ≥ 0, n = 0, . . . , Nk − 1. Then,

d̄(t) = t − t
(n)
k and ya(t) ≡ y(t

(n)
k ). The dynamics of g(t)

given by (19) specializes as follows
ġ(t) = −θk1

(
g(t)− g(t

(n)
k ) + Cx̂(t

(n)
k )− y(t

(n)
k )

)
. (23)

The above first order ODE (23) can be easily solved
and one can check that g(t)− g(t

(n)
k )−Cx̂(t

(n)
k )− y(t

(n)
k ) =

4



−e−θk1(t−t
(n)
k

)(Cx̂(t
(n)
k ) − y(t

(n)
k )), allowing thereby to

rewrite the expression of G(t) given by (19) as follows

G(t) = θ∆−1
θ Ke−θk1(t−t

(n)
k

)(Cx̂(t
(n)
k )− y(t

(n)
k )). (24)

Again, the expression of G given by (24) is identical to
that involved in the continuous-discrete time high ob-
server proposed in [1] in the case where the output mea-
surements are available exclusively under samples.

5 Constant long delay case

Assume that the delay is constant and arbitrarily long
so that condition (20) is no longer satisfied, i.e. τM + d ≥
χθ where χθ is given by (22). Then, the observer (19)
cannot be used to deal with the state estimation problem
under consideration. The latter can be handled using a
cascade observer similar to those proposed in [4]. More
specifically, suppose that τM < χθ and let d0 be a non
negative real such that τM + d0 < χθ; one defines the
function: d̄0 : [t

(0)
0 ,+∞[→ IR+ as follows

d̄0(t) = d0, ∀t ∈ [t
(Nk)
k , t

(0)
k+1[, k ≥ 0,

d̄0(t) = t− t
(n)
k + d0, ∀t ∈ [t

(n)
k , t

(n+1)
k [,

k ≥ 0, n = 0, . . . , Nk − 1.

(25)

It is easy to check that the function d̄0 is piece-wise con-
tinuous on [t

(0)
0 ,+∞[ and bounded by d0 + τM where τM

is given by (11).
Now, one introduces the following notations that have
already been used in cascade observers [6, 7, 5], xj(t) =

x
(
t− d+ j

m
d
)
, uj(t) = u

(
t− d+ j

m
d
)
, j = 0, . . . ,m, t ≥

−j d
m

, where m is a positive integer that shall be specified
more precisely later and

d = d− d0. (26)

It should be emphasized that the rational behind the
cascade observer design is based upon the following prop-
erties

xj

(
t−

d

m

)
= xj−1(t), uj

(
t−

d

m

)
= uj−1(t), j = 1, . . . ,m.

(27)
The considered state estimation problem can be han-

dled by the cascade observer described by the following
cascaded dynamical subsystems

˙̂x0(t) = Ax̂0(t) + φ(u0(t), x̂0(t))−G0(t),

G0(t) = θ∆−1
θ K

(
g(t)− g(t− d̄0(t))

+ Cx̂0(t− d̄0(t))− ya(t)
)
,

ġ(t) = −k1θ
(
g(t)− g(t− d̄0(t))

+ Cx̂0(t− d̄0(t))− ya(t)
)
,

and for j = 1, . . . ,m, (28)
˙̂xj(t) = Ax̂j(t) + φ(uj(t), x̂j(t))−Gj(t),

Gj(t) = eĀ
d

m

(
Gj−1(t) +

(
A− Ā

) (
x̂j

(
t− d

m

)
− x̂j−1(t)

)
+φ

(
uj−1(t), x̂j

(
t− d

m

))
− φ(uj−1(t), x̂j−1(t))

)
,

where x̂j ∈ IRn is the estimate of xj for j = 0, . . . ,m, K is a
n×p matrix satisfying the property (6), ∆θ is the (block)
diagonal matrix given by (5), ya is the available measured
output given by (18) where d̄ is given by (17), d̄0 is defined

as in (25) and finally Ā ∈ IRn×n is a Hurwitz matrix which
constitutes a design parameter for the cascade observer
(28). Now, since the matrix Ā is Hurwitz, it satisfies the
following property which is of fundamental interest for
the observer convergence analysis [4, 5]

∃β ≥ 1 such that ∥eĀt∥ ≤ βe−āt ∀t ≥ 0

with ā = min
i∈{1,...,n}

∣∣ℜ(λi(Ā))
∣∣, (29)

where λi(Ā), i = 1, . . . , n are the n eigenvalues of Ā (with
negative real parts).
The above observer delay differential equations are ini-
tialized as follows
x̂0(t

(0)
0 ) = x̂

(
t
(0)
0 − d

)
, g(s) = ψ(s), ∀s ∈ [t

(0)
0 − d0 − τM , t

(0)
0 ],

x̂j(s) = x̂

(
s− d+

j

m
d

)
, ∀s ∈

[
t
(0)
0 −

d

m
, t

(0)
0

]
, j = 1, . . . ,m,

where x̂(s), s ∈ [t
(0)
0 − d, t

(0)
0 ] is any a priori selected esti-

mate of the state vector and ψ(s), s ∈ [t
(0)
0 − d0 − τM , t

(0)
0 ]

is any arbitrary continuous function.
Observer (28) has a cascade structure with m+1 chained
subsystems. The head of the cascade the state of which
is denoted x̂0 is a high gain observer and it provides an
estimate of the system delayed state x(t − d + d0). Such
an estimate is indeed a prediction of the delayed state
x(t−d) with a prediction horizon equal to d0. Each of the
remaining subsystems in the cascade, the state of which
is denoted x̂j , predicts the state of the preceding subsys-
tem with a prediction horizon equal to d

m
= d−d0

m
in such

a way that the state of the last subsystem is an estimate
of the system actual state x(t). Notice that an interest-
ing property of observer (28) lies in the fact that only
the expression of G0 depends on the form under which
the output measurements are available. The remaining
subsystems in the cascade, i.e. subsystems with states
x̂j , j = 1, . . . ,m, are by no means of the high gain variety
and they keep the same structure over time whatever
is the form under which the output measurements are
available. Notice that two observers have been proposed
in [4] for system (1) and each one is devoted to the case
where the (delayed) output measurements are available
exclusively under one form. It is worth to be noticed
that in the case where d0 = 0, observer (28) coincides
with each of these observers and the subsystem located
at the head of the cascade provides an estimate of the
system delayed state x(t− d).
The properties of the cascade observer are similar to
those of the cascade observers proposed in [4]. These
properties are summarized in the following theorem
which proof is quite similar to those of Theorems 3.1
and 4.1 in [4].

Theorem 5.1 Consider system (1) subject to Assump-
tion A1 to A3 together with system (28). Then, ∃θ0 > 0;
∀θ ≥ θ0; ∀u ∈ U, if

• the upper bound of the sampling partition diameter τM
and d0 satisfy τM + d0 < χ(θ) where χ(θ) is given by (22),
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• the matrix Ā is chosen such that ā ≤ aθ where ā and aθ
are respectively given by (29) and (22),

• the number m is chosen such that
ξ(d− d0)/m < 1, with ξ

∆
= β(Lφ + ∥Ā−A∥), (30)

where Lφ is the Lipschitz constant of φ, A is the block
anti-shift matrix given by (2) and β is given by (29),

then, one has for j = 1, . . . ,m,

∥x̃j(t)∥
∆
= ∥x̂j(t)− xj(t)∥ ≤ ρ̄je

−āt + M̄jδε, t ≥ t
(0)
0 , with

(31)

ρ̄j = βχj
mρ̄0∥x̃0(0)∥+ 1/ (1− ξ(d− d0)/m)ξ ∫ 0

−(d−d0)/m
∥x̃j(s)∥ds+ β

j−1∑
k=0

χk
m∥rj−k(0)∥

,
M̄j = βχj

mM̄0 + ((β(d− d0)/m) / (1− ξ(d− d0)/m)

j−1∑
i=0

χi
m,

where ρ̄0 and M̄0 are given by (22), respectively, and δε
is the upper essential bound of ∥ε∥ defined in Assumption
A3. The rk’s, k = 1, . . . , j, are time-varying functions
which are governed by the following stable ODE, ṙk(t) =
Ārk(t),∀t ≥ 0. Finally, the expression of χm is given by

χm = e−ā
d−d0

m / (1− ξ(d− d0)/m) . (32)

Remark 5.1 Let M̄mδε be the ultimate bound of the error
between the actual state x(t) of system (1) and the state
of the last subsystem x̂m(t) in the cascade observer (28)
as given by (31) for j = m, i.e. lim sup

t→∞
∥x̂m(t)− x(t)∥ ≤

M̄mδε. Then, it has been shown in ([4], Proposition 3.1)
that the sequence

(
M̄m

)
m∈IN⋆ is non increasing with

lim
m→∞

M̄m = βM̄0e
(ξ−ā)d + β

(
e(ξ−ā)d − 1

)
/(ξ − ā), (33)

where M̄0 is given by (22), β, ā are given by (29) and ξ

by (30).

Remark 5.2 The expression of the limit of M̄m given by
(33) is constituted by two additive terms. The first term
can be made as small as desired by choosing values of θ
high enough as pointed out in Remark 4.1. The second
term is fixed and corresponds to some limit when m is
chosen sufficiently high. An appropriate advise consists
in specifying the cascade length m according to the con-
dition (30) with an appropriate trade-off between the ob-
server complexity (due to high values of m) and an ad-
missible behavior of the estimation error (see Remarks
3.2 and 3.3 in [4]).

6 Time-varying long delay case

Assume that the time delay is still arbitrarily large as
before but now it is time-varying. As in the constant
case, this delay is assumed to be known. A similar prob-
lem has been already addressed in [4] where the output
measurements are assumed to be continuously available
and the time delay is differentiable with ḋ(t) < 1, ∀t ≥ 0.
The rational behind the proposed solution consists in

reformulating the problem with a time-varying delay as
an appropriate problem with a constant delay that can
be naturally handled using the cascade observer given
in the above section. The involved reformulation allows
to recover the essential property of the cascade observer
design, namely the identity xj

(
t− d

m

)
= xj−1(t), which

is no longer satisfied in the case of a time-varying delay.
Such a recovery requirement has been achieved by in-
troducing an additional time-varying delay on the avail-
able delayed output measurements in such a way that
the resulting overall delay is constant and is equal to the
maximum of the original time-varying output delay. It is
worth noticing that the extension of the approach pro-
posed in [5], where the (delayed) output measurements
are assumed to be available exclusively under a contin-
uous form, to the case under study is by no means ob-
vious. It requires a significant reconsideration that shall
be detailed hereafter using the time-varying delay defi-
nition given by the expression (12).
The output measurement samples are available at the
time instants t

(n)
k , k ≥ 0, 0 ≤ n ≤ Nk and each of these

samples corresponds to the output measurements at the
time instant t(n)

k − d(t
(n)
k ). Hence, one shall naturally as-

sume that
(
t
(n)
k − d(t

(n)
k )

)
0≤n≤Nk−1

is an increasing se-

quence. Notice that the time instant
(
t
(Nk)
k − d(t

(Nk)
k )

)
corresponds to the starting point of an interval along
which the output measurements will be continuously re-
ceived; this is why this time instant has not been consid-
ered in the above sequence. Similarly, one also naturally
assumes that the function t 7→ t−d(t) is increasing over the
time intervals [t

(Nk)
k , t

(0)
k+1[, k ≥ 0, throughout which the

output measurements are continuously available. Oth-
erwise said, one assumes that the following conditions
hold true.
• ∀t ∈ [t

(Nk)
k , t

(0)
k+1[, k ≥ 0, the function t 7→ t− d(t) is increasing.

• For a fixed k ≥ 0,

(i) the sequence
(
t
(n)
k − d(t

(n)
k )

)
0≤n≤Nk−1

is increasing,(34)

(ii) t
(Nk−1)
k − d(t

(Nk−1)
k ) ≤ t

(Nk)
k − d(t

(Nk)
k ). (35)

Furthermore, one naturally assumes that the delay func-
tion d(t) is bounded, i.e.
∃dM > 0;∀t ≥ 0 : 0 ≤ d(t) ≤ dM . (36)

Notice that since the function t − d(t) is increasing on
[t
(Nk)
k , t

(0)
k+1[, then according to Lebesgue’s Theorem for

the differentiability of monotone functions, this func-
tion is differentiable almost everywhere on [t

(Nk)
k , t

(0)
k+1[.

To simplify, one shall assume that t−d(t) is differentiable
everywhere on each interval ]t

(Nk)
k , t

(0)
k+1[, i.e. as long as

the (delayed) output measurements are available under
a continuous form, the underlying time delay is assumed
to be differentiable. It should be emphasized that this
assumption was not required in the case of small delays.
Now, let

(
ν
(n)
k

)
0≤n≤Nk

be the sequence of time instants
defined as follows
ν
(n)
k = t

(n)
k − d(t

(n)
k ) + dM , k ≥ 0, 0 ≤ n ≤ Nk. (37)

For 0 ≤ n ≤ Nk − 1, set τ (n)
k = ν

(n+1)
k − ν

(n)
k . The variable

τ
(n)
k is the sampling period taking into account the time-
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varying delay d(t) and according to (34) and (35), one
has τ (n)

k > 0 for all k ≥ 0, n = 0, . . . , Nk−2, and τ
(Nk−1)
k ≥ 0.

One shall denote by τ̄M the maximum value of τ (n)
k , i.e.

τ̄M = max
0≤n≤Nk−1,k≥0

τnk . (38)

The rational behind the observer design in the time-
varying long delay case is based on the use of a delayed
version of the available delayed output measurements
in such a way that the overall delay in the so obtained
delayed version is constant. Now, one shall explain how
to define and compute the additional delay. Indeed, let
us define the function ζ :

[
ν
(0)
0 ,+∞

[
−→ IR+ as follows

• ζ(t) = t+ d(ζ(t))− dM , ∀t ∈
[
ν
(Nk)
k , ν

(0)
k+1

[
,

with ζ(ν
(Nk)
k ) = t

(Nk)
k , k ≥ 0,

• ζ(t) = t
(n)
k , ∀t ∈

[
ν
(n)
k , ν

(n+1)
k

[
, k ≥ 0, n = 0, . . . , Nk − 1.

(39)

The function ζ(t) satisfies some properties which are
summarized in the following proposition the proof of
which is given in the Appendix C.

Proposition 6.1 The function ζ defined by (39) is such
that

1. (i) ∀t ≥ ν
(0)
k , ζ(t) ≤ t,

(ii) ∀t ∈
[
ν
(Nk)
k , ν

(0)
k+1

[
, ζ(t) − d(ζ(t)) = t − dM ∈[

t
(Nk)
k − d(t

(Nk)
k ), t

(0)
k+1 − d(t

(0)
k+1)

[
,

(iii) ∀t ∈
[
ν
(n)
k , ν

(n+1)
k

[
, k ≥ 0, 0 ≤ n ≤ Nk − 1,

ζ(t)− d(ζ(t)) = t
(n)
k − d(t

(n)
k ) = ν

(n)
k − dM .

2. ∀t ∈
]
ν
(Nk)
k , ν

(0)
k+1

[
, ζ(t) ∈

]
t
(Nk)
k , t

(0)
k+1

[
and ζ(t) is differ-

entiable at t with
ζ̇(t) = 1/

(
1− ḋ(ζ(t))

)
, ζ(ν

(Nk)
k ) = t

(Nk)
k . (40)

Let us evaluate the available output ya(t) at ζ(t). Notice
that the obtained signal, i.e. ya(ζ(t)), is a delayed version
of ya(t) since ζ(t) ≤ t according to 1.(i) of Proposition
6.1. Besides, according to (18), ya(ζ(t)) = y(ζ(t) − d̄(ζ(t)))

where d̄(t) is defined as in (17).

For t ∈ [ν
(Nk)
k , ν

(0)
k+1[= [t

(Nk)
k + dM − d(t

(Nk)
k ), t

(0)
k+1 + dM −

d(t
(0)
k+1)[ and according to (17), one has ya(ζ(t)) =

y(ζ(t)−d(ζ(t))) and such a signal is always available since
on one hand ζ(t)− d(ζ(t)) ∈ [t

(Nk)
k − d(t

(Nk)
k ), t

(0)
k+1 − d(t

(0)
k+1)[

according to 1.(ii) of Proposition 6.1, and on the
other hand the output is continuously available on
[t
(Nk)
k − d(t

(Nk)
k ), t

(0)
k+1 − d(t

(0)
k+1)[.

Similarly, for t ∈ [ν
(n)
k , ν

(n+1)
k [= [t

(n)
k + dM − d(t

(n)
k ), t

(n+1)
k +

dM − d(t
(n+1)
k )[ and according to (17), one has ya(ζ(t)) =

y
(
ζ(t)− (ζ(t)− t

(n)
k + d(t

(n)
k ))

)
= y(t

(n)
k − d(t

(n)
k )) which is

available since t(n)
k − d(t

(n)
k ) ≤ ν

(n)
k according to (37).

Hence, the signal ya(ζ(t)) is available for all t ≥ ν
(0)
0 . No-

tice that the obtention of ya(ζ(t)) requires the calcula-
tion of ζ(t). The latter is equal to t

(n)
k for t ∈ [ν

(n)
k , ν

(n+1)
k [

and it is the solution of the ODE given by (40) for
t ∈ [ν

(Nk)
k , ν

(0)
k+1[, i.e.

• ∀t ∈ [ν
(n)
k , ν

(n+1)
k [, k ≥ 0, 0 ≤ n ≤ Nk − 1, ζ(t) = t

(n)
k ,

• ∀t ∈ [ν
(Nk)
k , ν

(0)
k+1[, k ≥ 0,

ζ̇(t) = 1/
(
1− ḋ(ζ(t))

)
, ζ(ν

(Nk)
k ) = t

(Nk)
k .

(41)

At this step, one has proved the availability of the signal
ya(ζ(t)). Now, let us put forward a simple expression of
ya(ζ(t)). Indeed, according to 1.(ii) and 1.(iii) of Propo-
sition 6.1, the delayed output ya(ζ(t)) can be expressed
as follows

• ∀t ∈ [ν
(Nk)
k , ν

(0)
k+1[, ya(ζ(t)) = y(ζ(t)− d(ζ(t))) = y(t− dM ),

• ∀t ∈ [ν
(n)
k , ν

(n+1)
k [, k ≥ 0, 0 ≤ n ≤ Nk − 1,

ya(ζ(t)) = y(ζ(t)− d(ζ(t))) = y
(
ν
(n)
k − dM

)
.

(42)

According to (42), the delayed output ya(ζ(t)) is nothing
else than a particular delayed version of the actual out-
put, namely the actual output delayed with a constant
delay equal to dM . Hence, an observer similar to that
proposed in the constant long delay case can be designed
to estimate the system actual state. The equations of the
observer are identical to those of the observer proposed
in the constant long delay case, i.e. equations of system
(28) with d = dM − d0 and d̄0 : [ν

(0)
0 ,+∞[→ IR+ is given by

(compare with (17) and (25))
d̄0(t) = d0, ∀t ∈ [ν

(Nk)
k , ν

(0)
k+1[, k ≥ 0,

d̄0(t) = t− ν
(n)
k + d0,

∀t ∈ [ν
(n)
k , ν

(n+1)
k [, k ≥ 0, n = 0, . . . , Nk − 1.

(43)

Recall that d̄0 allows an automatic update of the ob-
server corrective term and as in the small delay case, d̄0(t)
is piece-wise continuous on [ν

(0)
0 ,+∞[ and is bounded by

d0+τ̄M where τ̄M is given by (38). Notice that the delayed
available output ya(t) used in the constant delay case has
to be replaced by its delayed version ya(ζ(t)) where ζ(t)

is computed as in (41).

7 Example

The effectiveness of the proposed cascade observer is
investigated through the following dynamical system
ẋ1(t) = x2(t)− 0.1x1(t) + u1(t)

ẋ2(t) = x3(t)− 0.01x2 − 0.5x32(t) + u2(t)− x1(t)
ẋ3(t) = −0.3x3(t) + 0.1 tanh(x3(t))− x2 + ε(t)
ya(t) = x1(t− d̄(t))

(44)

It is easy to see that system (44) is under form (1) with
q = 3, p = 1, x =

(
x1 x2 x3

)T
∈ IR3 is the system state

and u =
(
u1 u2

)T
∈ IR2 is the system input. Moreover,

one can check that the system states are bounded.
One assumes that the measurements are recovered at
regular time intervals

[
t
(Nk)
k , t

(1)
k+1, . . . , t

(Nk+1)

k+1

[
which the

length of each is equal to τ = τc + (N − 1)τm + τM where
τc, τm and τM are positive reals, with N0 = 0 (i.e. t(0)0 = 0),
Nk = N > 0 for k ≥ 1, and
t
(Nk)
k = kτ and t

(n)
k+1 = kτ + τc + nτm, n = 0, . . . , N − 1, k ≥ 0.
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The delay d(t) is chosen equal to d(t) = 3.75 + 0.25 sin(πt)

for all t ≥ t
(0)
0 = 0 which leads to dM = 4s. The available

delayed output measurements can be expressed as ya(t) =
y(t− d̄(t)) where d̄ is defined as in (17).
A cascade observer with a time-varying delay has been
designed and simulated using the following parameters
setting and design parameters

τ = 2s, τc = 0.5s, τm = 0.25s, τM = 0.5s, N = 6,

θ = 5, m = 6, d0 = 0.1s, K =
(
3 3 1

)T
, Ā = A− 2I3. (45)

The system inputs have been set to u1(t) = 20 cos(0.4πt)

and u2(t) = 20 sin(0.4πt), and the initial conditions of the
system and the cascade observer have been chosen as
xT (0) =

(
1 1 1

)
and x̂T (s) =

(
0 0 0

)
for s ∈ [−dM+τM , 0].

The time evolution of the available delayed output is
reported in Figure 1 together with the unknown actual
output. Two sets of simulation results have been ob-

0 2 4 6 8
-30

-20

-10

0

10

20

UNKNOWN ACTUAL OUTPUT

AVAILABLE DELAYED OUTPUT

Fig. 1. Time evolution of the actual output with its available
delayed measurements

tained depending on whether the disturbance is consid-
ered or not. The first set of results corresponds to the
disturbance-free case and the underlying curves are re-
ported in Figure 2 where the estimate of each state of
the system is compared to its actual value issued from
the system simulation. In the second set of simulation,
the disturbance has been chosen as ε(t) = 0.1+0.5 cos(5t).
The resulting ultimate estimation errors obtained with
3 values of the cascade length m, namely m = 4, 10, 30 are
reported in Figure 3. The obtained results actually cor-
roborate the fundamental results and more specifically
an interesting property that has been pointed out in Re-
mark 5.2, namely the ultimate estimation error is a non
increasing function of the cascade observer length. No-
tice that other values of m greater than 30 have been
considered in the presence of the disturbance but no sig-
nificant decrease of the ultimate bound has been noticed.
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Fig. 2. Estimates of x1, x2 and x3
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Fig. 3. Norm of the ultimate estimation errors for
m = 4, 10, 30

8 Conclusion

This paper was mainly motivated by the design of state
observers incorporating a suitable ability to account
for the nature of the output measurements availability,
namely time-varying delayed output measurements that
are continuously available over some time horizons and
sampled over other ones. Two major assets are worth to
be emphasized from a design and fundamental points
of view. The first asset concerns the three observer
design features. Firstly, the dimension of the observer
is equal to that of the system in the case where the
(time-varying) output delay is small. Secondly, an ap-
propriate cascade observer is used to handle arbitrarily
long delays. Thirdly, the design of the cascade observer
has been first proposed in the constant delay case be-
fore being extended through a systematic procedure to
the time-varying delay one. The second asset is closely
related to the nature of the fundamental results. The
exponential convergence to zero of the observation error
has been first established in the disturbance-free case
under a well-defined condition on the maximum value of
the sampling partition diameter. Further analysis have
been carried out to establish the ultimate convergence
of the observation error in the presence of disturbances.
A particular emphasis has been put on the fact that the
underlying ultimate bound is a non increasing function
of the cascade length for arbitrarily long delays.
The proposed design assumes that all the outputs are
sampled simultaneously and are affected by the same
(time-varying) delay. The extension of the design to
multiple sampling rates and multiple output delays is
actually under study.
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A Proof of Lemma 2.1

Let us first prove the existence of ϵ given by (10). To this
end, notice that since bδ/a < 1 and from the fact that the
function α 7→ (eαδ − 1)/α where α > 0 is a real number, is
increasing on [0,+∞[, there exists ᾱ > 0 such that, for all
α ∈]0, ᾱ], one has [6, 5]

(b/a)(eαδ − 1)/α < 1. (A.1)

Now, let 0 < ε1 ≤ 1 be chosen such that ε1a ≤ ᾱ. It is clear
that (A.1) is satisfied with α = ε1a. Moreover, since all
the variables involved in the left side of inequality (A.1)
are constant, there exists ε2 with 0 < ε2 ≤ 1 such that

(b/a)(eε1aδ − 1)/(ε1a) ≤ 1− ε2 < 1. (A.2)

Two cases shall be considered depending on whether
ε1 ≤ ε2 or not.
Case 1: ε1 ≤ ε2. In this case, one has 1 − ε2 ≤ 1 − ε1 and
according to (A.2), one gets (b/a)(eε1aδ − 1)/(ε1a) ≤ 1− ε1.
Hence, inequality (10) is checked with ϵ = ε1.
Case 2: ε1 > ε2. In this case, one has
(b/a)(eε2aδ − 1)/(ε2a) < (b/a)(eε1aδ − 1)/(ε1a)

≤ 1− ε2 according to (A.2).

Here too, inequality (10) is checked with ϵ = ε2.
Consider the following candidate Lyapunov function

W (v, t) = v(t) + b

∫ δ

0

∫ t

t−s
eϵa(ν−t+s)v(ν)dνds, (A.3)

where ϵ is defined as in (10). One has

Ẇ (v, t) = v̇(t)−ϵa (W (v, t)− v(t))+b
eϵaδ − 1

ϵa
v(t)−b

∫ t

t−δ
v(s)ds.

(A.4)
Using (10), inequality (A.4) leads to
Ẇ (v, t) + ϵaW (v, t) ≤ v̇(t) + ϵav(t) + (1− ϵ)av(t)

−b
∫ t

t−δ
v(s)ds ≤ p(t). (A.5)

Using the comparison lemma, one gets

W (v(t), t) ≤ e−ϵa(t−t0)W (v(t0), t0) + δp/(ϵa), ∀t ≥ t0. (A.6)

According to (A.3), one has

W (v(t0), t0) ≤ v(t0) + b

∫ δ

0

∫ t0

t0−s
eϵa(ν−t0+s)dνds max

ν∈[t0−δ,t0]
v(ν)

≤ v(t0) + bδ

∫ δ

0
eϵasds max

ν∈[t0−δ,t0]
v(ν)

≤ v(t0) + (1− ϵ)δa max
ν∈[t0−δ,t0]

v(ν) according to (10). (A.7)

From the fact that v(t) ≤ W (v(t), t), ∀t ≥ t0, the com-
bination of (A.6) and (A.7) leads to (9). This ends the
proof of Lemma 2.1.�

B Proof of Theorem 4.1

Let x̃(t) = x̂(t) − x(t) be the observation error and set
x̄ = θq−1∆θx̃ where ∆θ is given by (5). According to (1)
and (19), one has
˙̃x(t) = Ax̃(t) + φ̃(u(t), x̂(t), x(t))−Bε(t)−G(t), (B.1)

where φ̃(u(t), x̂(t), x(t)) = φ(u(t), x̂(t)) − φ(u(t), x(t)). Using
(18), the first time derivative of g(t) as well as G(t) given
by (19) can be expressed as follows{
ġ(t) = −θk1(g(t)− g(t− d̄(t)) + Cx̃(t− d̄(t)),

G(t) = θ∆−1
θ K(g(t)− g(t− d̄(t)) + Cx̃(t− d̄(t)).

(B.2)

Taking into account the facts that ∆θA∆
−1
θ = θA and

C∆−1
θ = C yields

˙̄x(t) = θAx̄(t) + θq−1∆θφ̃(u(t), x̂(t), x(t))−Bε(t)

−θK(ḡ(t)− ḡ(t− d̄(t)) + Cx̄(t− d̄(t)), (B.3)

where ḡ(t) = θq−1g(t). Now, according to (B.2), one has
˙̄g(t) = −θk1(ḡ(t)− ḡ(t− d̄(t)) + Cx̄(t− d̄(t)). (B.4)

Adding and subtracting θKCx̄(t) to the right hand side
of equation (B.3), one gets
˙̄x(t) = θÃx̄(t) + θq−1∆θφ̃(u(t), x̂(t), x(t))−Bε(t) + θKz(t),

where Ã = A−KC is the Hurwitz matrix defined by (6)
and z(t) =

(
Cx̄(t)− Cx̄(t− d̄(t))

)
−

(
ḡ(t)− ḡ(t− d̄(t))

)
. The

expression of z(t) can be rewritten as follows

z(t) =

∫ t

t−d̄(t)

(
˙̄x(1)(s)− ˙̄g(s)

)
ds. (B.5)

Moreover, it is easy to check from (B.3) that
˙̄x(1)(t) = θx̄(2) + θq−1φ̃(1)(u(t), x̂(t), x(t))

−θk1(ḡ(t)− ḡ(t− d̄(t)) + Cx̄(t− d̄(t)).

Using (B.4), the above equation can be rewritten as
˙̄x(1)(t) = θx̄(2) + θq−1φ̃(1)(u(t), x̂(t), x(t)) + ˙̄g(t). (B.6)

Combining (B.5) and (B.6), one gets

z(t) =

∫ t

t−d̄(t)

(
θx̄(2)(s) + θq−1φ̃(1)(u(s), x̂(s), x(s))

)
ds. (B.7)
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Now, let us consider the following candidate quadratic
Lyapunov function: V (x̄) = x̄TP x̄ where P is defined as in
(7). Proceeding as in [1] and using Assumption A2, one
can show that for θ ≥ 1, one has

V̇ (x̄) = 2x̄TP
(
θÃx̄+ θq−1∆θφ̃(u, x̂, x)−Bε+ θKz

)
≤ −(2µθ − 2Lφ

√
nλM )∥x̄∥2 + 2θx̄TPKz − 2x̄TPBε. (B.8)

Choosing θ such that 2µθ − 2Lφ
√
nλM > µθ, i.e. θ > θ0

∆
=

2Lφ
√
nλM/µ, inequality (B.8) becomes

V̇ (x̄) ≤ −
µθ

λM
V (x̄) + 2θ∥P x̄∥∥K∥∥z(t)∥+ 2∥P x̄∥∥ε(t)∥

≤ −
µθ

λM
V (x̄) + 2

√
λM

√
V (x̄) (θ∥K∥∥z(t)∥+ 2∥ε(t)∥) .(B.9)

Now, using (17), the variable z given by (B.7) can be
bounded as follows for all t ≥ t

(0)
0 ,

∥z(t)∥ ≤ (θ + Lφ)/
√
λm

∫ t

t−τM−dM

√
V (x̄(s))ds. (B.10)

Using (B.10), (B.8) leads to
d

dt

√
V (x̄(t)) ≤ −aθ

√
V (x̄(t)) + bθ

∫ t

t−τM−dM

√
V (x̄(s))ds+ p(t),

where
aθ = (µθ)/(2λM ), bθ = θσ∥K∥(Lφ + θ), p(t) =

√
λM∥ε(t)∥.

(B.11)
Notice that according to Assumption A3, the function
p(t) given by (B.11) is essentially bounded by √

λM δε.
Now, if the upper diameter of the sampling partition τM
as well as the upper bound of the delay dM satisfy the
following condition (bθ(τM + dM ))/aθ < 1, i.e. τM + dM <

aθ/bθ
∆
= χθ = µ/(2λMσ∥K∥(Lφ + θ)), then all the conditions

of Lemma 2.1 are fulfilled and according to this lemma,
one gets√
V (x̄(t)) ≤ e−ϵ̄aθ(t−t

(0)
0 ) (1 + (1− ϵ̄)aθ(τM + dM ))

max
ν∈[t

(0)
0 −τM−dM ,t

(0)
0 ]

√
V (x̄(ν)) +

√
λM δε

ϵ̄aθ
, ∀t ≥ t

(0)
0 ,

where ϵ̄ is such that 0 < ϵ̄ ≤ 1 and (bθ/aθ)(e
ϵ̄aθ(τM+dM ) −

1)/(ϵ̄aθ) ≤ 1− ϵ̄, i.e. (eϵ̄aθ(τM+dM ) − 1/(ϵ̄aθ) ≤ (1− ϵ̄)χθ.
Coming back to x̃(t) and using the fact that ∥x̃(t)∥ ≤
∥x̄(t)∥ ≤ θq−1∥x̃(t)∥ for all t ≥ t

(0)
0 with θ ≥ 1, one gets

∥x̃(t)∥ ≤ ρ̄0e
−ϵ̄aθ(t−t

(0)
0 ) max

ν∈[t
(0)
0 −τM−dM ,t

(0)
0 ]

∥x̃(ν)∥+ M̄0δε,

where ρ̄0 and M̄0 are given by (22). The proof of Theo-
rem 4.1 is ended. �

C Proof of Proposition 6.1

1. (i) On one hand, for t ∈ [ν
(Nk)
k , ν

(0)
k+1[, one has ζ(t) =

t−(dM −d(ζ(t))) ≤ t, according to the definition of dM . On
the other hand, for t ∈ [ν

(n)
k , ν

(n+1)
k [, one has ζ(t) = t

(n)
k ≤

t
(n)
k + dM − d(t

(n)
k ) = ν

(n)
k ≤ t.

(ii) Let t ∈ [ν
(Nk)
k , ν

(0)
k+1[. Since ζ(t)−d(ζ(t)) = t−dM , one has

ν
(Nk)
k −dM ≤ ζ(t)−d(ζ(t)) < ν

(0)
k+1−dM . Substituting in this

inequality ν
(Nk)
k and ν

(0)
k+1 by their respective expressions

given by (37), one gets
t
(Nk)
k − d(t

(Nk)
k ) ≤ ζ(t)− d(ζ(t)) < t

(0)
k+1 − d(t

(0)
k+1). (C.1)

(iii) Let t ∈ [ν
(n)
k , ν

(n+1)
k [. According to the definition of

ζ given by (39), one has
ζ(t)− d(ζ(t)) = t

(n)
k − d(t

(n)
k ) = ν

(n)
k − dM according to (37).

2. Let t ∈]ν(Nk)
k , ν

(0)
k+1[. One shall first show that ζ(t) ∈

]t
(Nk)
k , t

(0)
k+1[. Indeed, proceeding as for (C.1), one gets

t
(Nk)
k − d(t

(Nk)
k ) < ζ(t)− d(ζ(t)) < t

(0)
k+1 − d(t

(0)
k+1). (C.2)

Suppose that there exists t⋆ ∈]ν(Nk)
k , ν

(0)
k+1[ such that

ζ(t⋆) ≥ t
(0)
k+1. Then, since t 7→ t− d(t) is non decreasing for

all t ≥ t
(0)
0 , one gets ζ(t⋆)− d(ζ(t⋆)) ≥ t

(0)
k+1 − d(t

(0)
k+1), which

is in contradiction with (C.2). Similarly, suppose that
there exists t⋆ ∈]ν(Nk)

k , ν
(0)
k+1[ such that ζ(t⋆) ≤ t

(Nk)
k . Then,

since t 7→ t−d(t) is non decreasing for all t ≥ t
(0)
0 , one gets

ζ(t⋆)− d(ζ(t⋆)) ≤ t
(Nk)
k − d(t

(Nk)
k ), which is again in contra-

diction with (C.2).
Let us now prove that ζ(t) is differentiable at t with
ζ̇(t) given as in (40). Indeed, from the fact that ζ(t) ∈
]t
(Nk)
k , t

(0)
k+1[ and that d(t) is differentiable on ]t

(Nk)
k , t

(0)
k+1[

with ḋ(t) < 1 (since t 7→ t − d(t) is increasing and d(t)

is differentiable on this interval), one directly concludes
that ζ(t) is differentiable for all t ∈]ν(Nk)

k , ν
(0)
k+1[ and equa-

tion (40) can be derived by taking the time derivative of
both sides of ζ(t) = t + d(ζ(t)) − dM . This ends the proof
of Proposition 6.1. �
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