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The effect of nonlinear interaction of instability eigenmodes on jet flow transition and its near
acoustic field for a high-subsonic round jet at a Reynolds number of Re=4.5�105 and a Mach
number of Ma=0.9 is investigated using large-eddy simulations. At the inflow, helical perturbations
of azimuthal wavenumbers �n�=4, . . . ,8 determined from linear stability theory are superimposed on
a laminar base flow in order to trigger transition to turbulence. The disturbance amplitude is varied
parametrically in the range from 1.5% to 4.5% of the jet exit velocity Uj. Thereby we aim to
characterize sources of noise generation and, in particular, underlying mode interactions. With
increasing forcing amplitude, the transitional behavior of the jet changes which affects the mean
flow and also the acoustic near-field, which are both analyzed in detail. As the forcing amplitude is
increased, the axial root-mean-square peak levels along the jet centerline are reduced by
approximately 7%. Simultaneously, pronounced dual-peak distributions are generated along the jet
lip line which are related to the localization of vortex pairings of the jet column mode. For
low-amplitude excitation the azimuthal turbulent kinetic energy spectra show that the unexcited,
naturally least stable axisymmetric mode n=0 and the helical mode n=1 dominate the early
nonlinear regimes between z�6r0 and 9r0 where r0 is the jet radius. An analysis of the Fourier
mode amplitude clarifies that this energy rise is linked to the helical mode n=1. For higher forcing
amplitudes, in addition to the varicose mode n=0 interactions between the excited even mode
n=4 and higher azimuthal harmonics thereof dominate the azimuthal energy spectra. These
differences in the early nonlinear development of the eigenmodes are found to alter the acoustic
near-field. At small angles from the downstream jet axis, the peak acoustic frequency occurs at a
Strouhal number based on the angular frequency � and the jet diameter Dj of St=�Dj / �2�Uj�
�0.4. For low-amplitude forcing sound pressure levels are slightly enhanced which can be linked
to the dominant low azimuthal wavenumbers identified in the transitional region. In the sideline
direction, regardless of the excitation level, broadbanded spectra with maxima in the band 0.7
�St�0.8 are found which is maintained at intermediate observer angles. For high forcing
amplitude, however, a tonal component outside the initially excited frequency range is observed.
This peak at St�0.88 can be explained by weakly nonlinear interactions of initially forced
eigenmodes n=4 and n=8 together with the jet column mode. © 2009 American Institute of
Physics. �DOI: 10.1063/1.3112686�

I. INTRODUCTION

Noise prediction methods used in today’s design process
of jet engine nozzles largely rely on the Reynolds-averaged
Navier–Stokes equations combined with acoustic
analogies.1,2 These methods are well established for specific
geometries, however, they remain at best semiempirical and
need tuning of coefficients to particular cases in order to
obtain reliable turbulence predictions. In contrast, aeroacous-
tic research on turbulent jets focuses on time-dependent
simulation methods since the flow unsteadiness is the inher-
ent source of sound. Direct numerical simulations �DNSs�
were used for relatively low Reynolds number
configurations.3,4 Far-reaching conclusions can be drawn

from such simulations concerning, for example, mechanisms
of sound generation and the structure of noise sources. This
demonstrated the applicability of direct noise computation,
i.e., calculating directly the aerodynamically generated sound
together with the flow in a unified approach. However, be-
cause of the high computational cost, DNS is restricted to
flows in the low Reynolds number regime. At higher Rey-
nolds numbers, as in the present work, large-eddy simula-
tions �LES� can be employed in which only the large scales
are fully resolved while the effects of subgrid scales �SGSs�
are modeled. Bogey et al.,5,6 Bodony and Lele,7,8 Uzun
et al.,9 and Andersson et al.,10,11 among others, demonstrated
that it is possible to directly compute the generated noise
using LES.

All flow computation approaches share the problem of
suitable boundary conditions at the edges of the computa-
tional domain. In the context of aeroacoustics this becomes
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even more important: as in all transitional/turbulent numeri-
cal experiments either turbulent inflow conditions are to be
prescribed or disturbances have to be introduced to a laminar
flow to initiate transition to turbulence. However, care has to
be taken when transition is triggered artificially as this nu-
merical noise may overwhelm the physical one. The distur-
bances can be either artificial or, as in the present work,
based on eigenmodes of some underlying base-flow jet pro-
file. For a survey of different treatments of the inflow bound-
ary in the context of jet noise predictions using LES we refer
to Ref. 12.

The pronounced sensitivity of jets to variations of the
inflow condition has been demonstrated experimentally13,14

as well as numerically.15,16 Hence, investigating the sensitiv-
ity of the simulations to changes in disturbance amplitudes
seems appropriate. The particularity of the present work lies
in the nature of the disturbances introduced at the inflow. The
nonlinear development of eigenmodes is believed to play an
important role in the sound generation process of forced
jets.17 For example, Sandham et al.18 found qualitative agree-
ment for a model consisting of nonlinear mode interaction of
a convected vortex packet with full Navier–Stokes simula-
tion data. They reason that the wavenumber difference of
disturbances and their nonlinear interaction dominate the
subsonic sound radiation from eigenmodes. In contrast,
Cheung et al.19,20 focus on nonlinear parabolized stability
equations �PSE� and demonstrate that this approach accu-
rately captures the acoustic near-field of subsonic jet flow
�and when combined with an acoustic analogy also the far
field�. Only recently, Sandham and Salgado21 investigated
nonlinear mode-by-mode interactions using linear PSE. Em-
ploying these modes to drive a source term of an acoustic
analogy they found good agreement with experimental refer-
ence data. The latter two approaches may remain restricted to
lower Reynolds numbers because the rapid amplitude growth
of modes may result in convergence problems or even diver-
gence as well as in an axially fast developing flow,
which contradicts the underlying assumption in the deriva-
tion of the PSE.20 The findings of Sandham and Salgado and
Cheung et al., regardless of the relatively low Reynolds
number, are however important as there is experimental
evidence22 that instability waves are present in fully turbu-
lent jets at high Reynolds number. In the present study
we therefore investigate inflow conditions based on linearly
unstable eigenmodes and attempt to clarify effects of
the inflow forcing amplitude on the transitional behavior
of the jet. From changes in transition and resulting variations
of the aerodynamic properties we aim at inferring the
dominant modes and structures in the breakdown process
of the jet. Possibly, in the combination with the directly
computed acoustic near-field, conclusions might be drawn
about the underlying mechanisms of noise generation
focusing, in particular, on the early nonlinear mode interac-
tions.

This paper is organized as follows. In Sec. II the
numerical code and physical parameters of the jet flow
are described. The results, given in Sec. III, are subdivided
into instantaneous data in Sec. III A, mean flow results
in Sec. III B followed by results for the directly computed

jet noise in Sec. III C Finally, in Sec. III D, an attempt
is made to establish a link between the tonal com-
ponent present in the acoustic near-field and the events in
the flow field. A summary and conclusions are given in
Sec. IV.

II. SIMULATION APPROACH

A. Governing equations and numerical method

Our simulation code is based on a conservative formu-
lation of the compressible Navier–Stokes equations ex-
pressed in generalized coordinates.23 We employ a mapping
from Cartesian �x ,y ,z� to cylindrical �r ,� ,z� coordinates to
retain the conservative formulation which eliminates prob-
lems related to the specific numerical treatment of additional
force terms �centrifugal force and Coriolis force� that arise in
other formulations. The singularity of the governing equa-
tions in cylindrical coordinates at r=0 is treated by an ap-
proach which uses a shifted grid in the radial direction and
thus, avoids placing a grid point at the pole.24 By doing so,
no change in the numerical scheme in the region of interest
becomes necessary and differentiation can be performed
across the centerline without need for any boundary scheme.
In the azimuthal direction ��� a Fourier spectral method is
employed. As a result of the cylindrical coordinate system
the azimuthal grid spacing becomes excessively fine near the
pole. To avoid unnecessarily small time steps, the number of
retained Fourier modes is linearly reduced toward the pole.25

For the LES presented herein, the convective as well as the
diffusive terms are discretized in the radial �r� and axial �z�
directions using a tenth-order compact central scheme26 at
interior points. Toward the streamwise and radial boundaries
the order is gradually reduced to sixth, fifth, and third order,
where the latter two stencils are asymmetric. The approxima-
tion properties of the first derivative can be found in the
work of Lele.26 Note that for the tenth-order scheme em-
ployed in the interior the modified wavenumber �̃ is close to
the exact wavenumber for ��3� /4.

The grid is stretched in the radial and axial directions to
adequately resolve the jet shear layers and the downstream
development. In order to satisfy the symmetry constraint at
the pole, the radial grid stretching is based on a family of
mappings originally proposed to enhance the accuracy of
pseudospectral approximations.27 Time integration uses a re-
cently introduced low-storage explicit fourth-order accurate
Runge–Kutta method optimized with respect to its dispersion
and dissipation properties.28

For the LES, the filtered set of the governing equations
is solved which leads to unclosed SGS terms. As SGS model
we use the ADM-RT �relaxation term� model for compress-
ible flows.29,30 The relaxation term is added to the right-hand
side of the governing equations and acts only on the band of
smallest resolved scales. Following the nomenclature of
Stolz et al.29 the deconvolution operator QN applied to the
primary filter G describes the form of this explicit secondary
filter. In Fig. 1 the transfer functions of the primary and

secondary filter, Ĝ and Q̂N · Ĝ, are shown along with the

transfer function of the approximate inverse Q̂N for the de-
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convolution order N=5 employed throughout this study. Pre-
vious work30,31 has demonstrated excellent results with this
approach. The nondimensional governing equations solved
here are thus given by

��J−1Q�
�t

+
��J−1�FE − FS��

��
+

��J−1�GE − GS��
�	

+
��J−1�HE − HS��

�

= − ��I − QN � G� � Q , �1�

where Q denotes the vector of conservative variables
Q= �� ,�u ,�v ,�w ,E�T and J is the Jacobian of the coordinate
transformation. FE, GE, and HE are the convective fluxes
whereas FS, GS, and HS are the viscous fluxes.32 In Eq. �1�
the variable t denotes time, and �, 	, and 
 are the equidistant
computational coordinates. The equation of state for a per-
fect gas is assumed to be valid and the viscosity is deter-
mined using Sutherland’s law. The relaxation coefficient � is
set equal to the inverse of the computational time step,
�=1 /
t, in this study.

A sketch of the computational domain and the employed
boundary conditions is shown in Fig. 2. At all boundaries
of the computational domain, nonreflecting boundary
conditions33 are implemented where, in addition, the curvi-
linear formulation at the lateral boundary is taken into
account.34 These boundary conditions are supplemented by
sponge layers35,36 to define the inflow condition and the lat-
eral and outflow boundary conditions. In the inflow sponge
region, disturbances equivalent to amplified eigenmodes pre-
dicted by linear stability theory �LST� are superimposed on a
hyperbolic-tangent inflow profile in a similar fashion as done
by Lui and Lele37 and Bodony and Lele.7 For an example of

instability-wave excitation in jet noise investigations we re-
fer to the works of Bodony and co-worker,8,36 where, in par-
ticular, the latter addresses issues of the sponge technique in
this context. Implementation details of the disturbance trig-
gering can be found in Appendix A. Close to the jet-inflow
region a sponge surrounding the computational domain in
the radial and upstream directions is employed to prevent a
mean pressure drift reported for example in the work of
Colonius et al.3 This small sponge region exclusively acts on
density and pressure and maintains their ambient-state val-
ues, eliminating the need to impose any reference solution
there such as results of a precursor RANS simulation as done
in Refs. 7 and 8. In the following, we refer to this sponge
region as the ambient sponge described in more detail in
Appendix B.

At the outflow the instantaneous flow field is relaxed
toward a spatially varying axisymmetric mean flow to pre-
vent spurious acoustic reflections generated by passing vor-
tices that violate the 1D nonreflecting boundary conditions.
This outflow sponge reference solution is based on a three-
dimensional simulation of the same setup without an outflow
sponge averaged over 25 flow-through times Lz /Uj as well as
in the azimuthal direction. The same outflow reference solu-
tion is employed for all simulations. Further details can also
be found in Appendix B.

B. Specification of jet flow and simulation parameters

1. Jet flow parameters

The subject of this study is an isothermal round jet, i.e.,
the jet-to-ambient temperature ratio is Tj /T�=1. The jet
Mach number Ma=Uj /��RTj is Ma=0.9 using �=1.4 and
common notation. The governing equations are nondimen-
sionalized using the jet radius r0=Dj /2, velocity Uj, jet den-
sity � j, the dynamic viscosity � j, and jet temperature Tj �all
taken at the nozzle exit on the jet centerline�. The Reynolds
number Re=� jUjDj /� j =4.5�105 is between those of the
reference cases at Re=1.0�106 and Re=5.0�105 �experi-
ments by Lau et al.38 and Arakeri et al.,39 respectively� and
at Re=4.0�105 �LES by Bogey and Bailly6,16�. The differ-
ences in the viscous effects associated with the different Rey-
nolds number are here considered negligible.40

2. Computational grid and simulation parameters

The cylindrical computational domain with dimensions
Lr /r0=20 and Lz /r0=40 is discretized using Nr�N��Nz

=237�50�349 ��4.1�106� grid points. A cut through
the computational grid in two planes is shown in Fig. 3. In
the radial direction the grid is refined in the vicinity of
the shear layers and has a minimum radial spacing of

r /r0=0.05 at r /r0=1. It is stretched toward the boundary
with a maximum spacing of 
r /r0=0.28 at the radial bound-
ary. In the streamwise direction, the grid spacing is of con-
stant size 
z /r0=0.1 up to Lz /r0�30 and continuously in-
creased beyond. The maximum grid spacing 
z /r0=0.6 is
reached at the outflow boundary Lz /r0=40. Only a small
fraction of the radial domain is covered by the ambient
sponge, and because of the low sponge amplitude the physi-
cal region of the domain covers Lr /r0=19.4 and Lz /r0=32.
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Ĝ
,Q̂

N
·Ĝ

Q̂
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ω

FIG. 1. Transfer functions of �––� explicit primary filter Ĝ, �– – –� approxi-

mate inverse Q̂N, and �−· ·−� secondary filter Q̂N · Ĝ for N=5.

0 32 40 z/r0

r/r0

r0

20

Nonreflecting b.c. Sponge for ρ∞, p∞

Sponge for inflow profile
& disturbances

Grid stretching
& sponge for
mean outflow

FIG. 2. Sketch of computational domain, boundary conditions, and simula-
tion setup. Shaded areas denote sponge layers and the grid-stretching area/
sponge layer in the outflow region.
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The resolution of the grid in combination with the employed
discretization schemes determines the maximum frequency
that can be represented. This frequency, sometimes referred
to as grid cutoff frequency or in dimensionless terms as grid
Strouhal number Stg �Ref. 8� can be determined approxi-
mately for waves that are perfectly aligned with the grid. In
the part of the computational domain where acoustic near-
field data will be provided, the grid cutoff is Stg�5 at the
downstream observer location for downstream propagating
waves and, due to the radially stretched grid, Stg�3 for the
sideline observer location for radially propagating waves.
Note that the effective cutoff depends on the phase speed
anisotropy and on the propagation direction due to the grid
anisotropy.

The simulation time for all cases presented hereafter is
Tsim=1000r0 /Uj which corresponds to a minimal Strouhal
number of St=Dj / �TsimUj�=2�10−3. The time step is set to

t=0.02r0 /Uj, where every fifth time step is analyzed for the
flow statistics �10 000 samples� and every tenth step is stored
on disk for the acoustic analysis and postprocessing �5000
samples�. Using the Nyquist theorem these sampling rates
correspond to maximum resolved Strouhal numbers of
StN=10 for the flow data and StN=5 for the velocity spectra,
azimuthal correlation coefficients and near-field spectra of
the pressure. To reduce the variance of the spectra, the sam-
pling interval is divided into subintervals that overlap by
50% and all data in the azimuthal direction is employed, i.e.,
the spectra are averaged over the number of subintervals and
azimuthal grid points N�. The side effects of employing
finite-time intervals are reduced by applying a Hann window

to each subinterval before performing a discrete Fourier
transform in time. The interval length for the analysis of the
velocity spectra is selected such as to resolve a nondimen-
sional frequency of St=0.04. Similar to Ref. 41 the pressure
signals are analyzed using shorter subintervals that resolve a
minimal Strouhal number of St=0.1. In order to determine
the frequency of a tonal contribution observed in the pressure
spectra more accurately, an analysis with increased interval
length has been performed in addition.

3. Inflow disturbance seeding

At the inflow a hyperbolic-tangent base-flow profile rep-
resentative for jet flow profiles close to the jet nozzle exit,42

wb

Uj
=

1

2
�1 + tanh	 r0

2�0

1 −

r

r0
��
 , �2�

is imposed where the initial momentum thickness is set to
�0 /r0=1 /20. This value is chosen such that the steep gradi-
ent of the velocity profile can adequately be resolved by the
grid used and thus, in numerical studies and in LES, in par-
ticular, is driven by computational cost constraints. Experi-
mentally observed initial momentum thicknesses can be
smaller by at least an order of magnitude. Zaman,14 for ex-
ample, reports �0 /r0�1 /200 for jets at Reynolds numbers of
ReD�2.5�105. Correspondingly, a jet exit boundary layer
with the currently investigated initial momentum thickness
would be laminar and at Reynolds numbers below 105, as
also supported by the data of Zaman.

In order to trigger transition to turbulence, a number of
instability modes of the inflow profile are superimposed onto
the base flow. To determine these, a classical wave ansatz
for the disturbances is introduced into the linearized com-
pressible Navier–Stokes equations in cylindrical coordinates
and the resulting eigenvalues problem is solved using a
Chebyshev collocation method.43,44 Different azimuthal
wavenumbers n are investigated with respect to their linear
spatial stability properties. Note that at the inflow plane two
length scales are appropriate for the jet flow, the initial mo-
mentum thickness �0 and the jet diameter Dj. Here, we rely
on a scaling of the frequency � based on the diameter Dj

because we are interested in the downstream development
where the thickness becomes comparable to Dj and thus
curvature effects become important. The growth rates as
well as phase speeds associated with the viscous instabilities
of the inflow profile �Eq. �2�� are shown in Fig. 4 as a func-
tion of the Strouhal number St=�Dj / �2�Uj�. In Fig. 4�a�,
the growth rate is indicated by the imaginary part of the
streamwise wavenumber �i and in Fig. 4�b� the phase speed
of the disturbances � /�r is shown. In agreement with
results reported in literature42 we find the axisymmetric
or varicose mode n=0 to be least stable reaching maximum
amplification around St=0.676. This corresponds to
St�=��0 / �2�Uj�=0.0169 which is in good agreement with
the inviscid theoretical value of St�=0.0165.42 At low fre-
quencies � the growth rates −�i for mode n=0 are no longer
dominant and for St�0.42 the helical mode n=1 is least
stable. In Fig. 4�b� one finds that all disturbances with
St�0.8 propagate with similar phase speed � /�r.

(a)

�
r/r0

�
�
�
�

�
�

θ

(b)

�
z/r00 32 40

�
r/r0

0

20

FIG. 3. Computational grid in �a� the r-� plane and �b� the r-z half plane. In
the azimuthal direction only every second grid line is shown of a grid
corresponding to N�=48 points. Only every fourth grid line is shown in the
radial and axial directions. The vertical line �– · –� denotes the beginning of
the outflow sponge zone.
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In the present study we exclude the low-order modes
n�3 from the forcing for two reasons: First, Bodony and
Lele12,45 reported overestimated sound pressure levels
�SPLs� and link it to the dominant axisymmetric mode when
disturbing LST modes n=0, �1, �2 in their study. Second,
Bogey and Bailly16 reported a delayed streamwise develop-
ment of the jet flow and observe a reduction of SPL when
excluding modes n=0 through n=3 from their ring-vortex
forcing method. Note that the numerical reference data16

employs a total of sixteen azimuthal modes �n��15 for
the inflow excitation. Here, the inflow disturbances are
seeded by superimposing a total of ten eigenmodes onto the
base flow. Left- and right-turning azimuthal wavenumbers
�n�= �n=4, . . . ,8 are excited at the frequencies which give
the maximum growth rate. In the following we refer to these
frequencies as the fundamental ones. The wavenumbers and
corresponding forcing frequencies are ��n� ,St�= �4,0.63�,
�5,0.61�, �6,0.57�, �7,0.51�, and �8,0.43�. The linear superpo-
sition of the eigenmodes is given by

Qinfl�r,�,z,t� = Qb�r� + �
�n�=4

8

Qn��r,�,z,t�

= Qb�r� + Atotal,LST

�
��n�=4

8 AnR�Q̂n�r�ei��nz+n�−�nt+�n��

��n�=4
8 An

, �3�

where Qinfl denotes the conservative variables Q at the in-

flow. In Eq. �3�, Qb denotes the base flow and Q̂ the complex
eigenfunction that is normalized by setting max�ŵ�=1. The
laminar base-flow profile Qb�r� is derived from Eq. �2�, em-

ploying the Crocco–Busemann relation for an isothermal jet
flow as well as the linearized equation of state. The eigen-
modes are modulated in amplitude An and phase �n in a
random walk fashion �see Appendix A for details� in order to
prevent phase locking.7 The superposition of instability
waves is scaled with the sum of amplitudes An to obtain the
total disturbance amplitude Atotal,LST which will be varied
parametrically. The disturbed inflow profile Qinfl is imposed
by the inflow sponge in order to prevent reflections at the
inflow as well as to allow for entrainment of surrounding
fluid toward the jet shear layers. The reference state is de-
fined by Eq. �3�, i.e., by a spatially and temporally varying
superposition of linearly unstable modes onto a laminar ve-
locity profile.

In this study, we restrict ourselves to unstable modes
�according to the viscous linear stability theory these are azi-
muthal wavenumbers n=0, . . . ,8� and focus on the influence
of changes of disturbance amplitude Atotal,LST on the flow
field development and its associated noise. This ensures con-
sistency with the complete set of governing equations in con-
trast to, e.g., using the ring-vortex disturbance method.9,16

The effect of a change in Atotal,LST is investigated in detail to
further clarify the sensitivity of transitional jet simulation
results to inflow disturbances. The variation of the forcing
amplitude is expected to alter the noise generation mecha-
nism and, hence, might offer the possibility to investigate the
relative contributions of different sources. Using linear sta-
bility disturbances the effect of the nonlinear development
of eigenmodes and their role in the transition process and
the resulting noise can be assessed. In the following three
cases are reported with parameters given in Table I: cases
Low, Med, and High with a total disturbance amplitude of
Atotal,LST=1.5%, 3.0%, and 4.5% based on the jet exit
velocity.

III. RESULTS

A. Instantaneous data

Figure 5 shows snapshots of the vorticity magnitude ���
for the three investigated cases in the developing region of
the shear layers. At first sight, the jet shear layer develop-
ment looks similar for all cases. However, the specific details
of the transitional behavior are different: with increasing dis-
turbance amplitude the rollup process is shifted in the up-
stream direction. As the shear layers roll up �marked by ① in
all graphs�, we observe large dominant structures for case
Low. In contrast, when enforcing larger disturbance ampli-
tudes, as done in cases Med and High, the developing shear
layer roll up into smaller vortical structures. For low-
amplitude forcing consecutive structures are spatially sepa-
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FIG. 4. �a� Growth rate −�i vs St and �b� phase speed � /�r vs St for
different azimuthal wavenumbers n.

TABLE I. Nomenclature and inflow forcing parameters of cases investi-
gated.

Case Atotal,LST Modes �n�

Low 0.015 4, . . . ,8

Med 0.030 4, . . . ,8

High 0.045 4, . . . ,8
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rated and start to interact downstream of z /r0�7, whereas
for larger disturbance amplitude the structures merge and
interact more quickly. As these structures are convected
downstream, the breakdown process continues and smaller
and smaller scales are generated leading to several vortex
cores marked by a high concentration of vorticity �see en-
circled area ②�. Clearly, the spatial extent in which the
breakdown into smaller scales takes place is much shorter for
case Low compared to a more moderate and spatially elon-
gated process for the higher amplitude cases. The gray box in
each graph �③� shows the extent of the transitional region to
be looked at in more detail in Fig. 6.

The flow animations �see Fig. 5 enhanced online� show
vortex pairings of the large-scale structures. Compared to a
tonally excited jet flow or mixing layer these pairings are
less pronounced and occur only occasionally. The occurrence
is disguised by the random rollup process which introduces a
variation of the spatial location as well as a jitter of the

scales. To some extent, this randomness is reduced by in-
creasing the forcing amplitude, as we can see from the or-
dering of the vortices: they are ordered in a helical manner at
opposite sides of the shear layer for case Low, whereas the
mechanism for case High seems to be dominated by an axi-
symmetric component.

In Fig. 6, the transition regions of the three jets are vi-
sualized in three different views using the �2 vortex identi-
fication criterion46 for the same vortical structures as before.
The quality of the isosurface visualizations is enhanced by
spectrally interpolating the data onto N�=300 allowing a
more accurate representation of isosurfaces. The isosurfaces
�2=−1 show the same upstream-shifted transition as in the
previous visualizations of the vorticity magnitude. However,
using the �2 criterion the differences in spatial extent of the
structures become more evident, as can be seen in the side
view given in row �A�. For case Low, large azimuthally cor-
related structures dominate the rollup whereas three-
dimensional and streamwise-elongated small vortex fila-
ments or vortex tubes initiate the breakdown process for
higher disturbance levels. The front views in row �B� show
that the hairpin vortices emerging in the radial direction have
significantly smaller azimuthal spacing but increased radial
extent for larger forcing amplitude. In the three-dimensional
view presented in row �C� the strong azimuthal coherence
and the interaction of the structures for case Low can be
seen, whereas cases Med and High show significantly dis-
torted toroidal structures which disintegrate into small struc-
tures. In summary, the transitional development is initiated at
larger distances from the inflow and is more rapid when us-
ing the low excitation level. Thereby, larger, clearly sepa-
rated structures are generated in the shear layer. However,
the position of interacting structures itself is localized with
increasing forcing amplitude and occurs in a more axisym-
metric fashion. To support these observations quantitatively,
the one-dimensional azimuthal turbulent kinetic energy spec-
tra will be investigated in Sec. III B.

To obtain an impression of the instantaneous near-field
noise of the jet flow, the same data is visualized again in Fig.
7, together with the pressure fluctuations p� in the outer part
of the domain. We only present case Med since the differ-
ences in the visualizations of the instantaneous near-field
pressure data are minute for the investigated cases. For all
simulated cases, sound waves are emitted slightly upstream
of the position where the instantaneous shear layers merge.
At the radial and upstream boundaries, all pressure waves
propagate outwards without causing any reflections. This
demonstrates that the chosen combination of nonreflecting
boundary conditions supplemented by sponge layers is
appropriate.

B. Mean flow and turbulence results

The influence of different forcing amplitudes on the
mean flow and jet development is now investigated. The
mean flow is visualized in Fig. 8 to assess the quality of the
current simulation setup to model free-stream boundaries and
to allow for entrainment of surrounding fluid. Unless stated
otherwise, we denote mean quantities by �·�, determined by
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FIG. 5. Visualization of vortical structures by ��� in the r-z plane at �=0 for
cases �a� Low �URL: http://dx.doi.org/10.1063/1.3112686.1�, �b� Med
�URL: http://dx.doi.org/10.1063/1.3112686.2�, and �c� High �URL: http://
dx.doi.org/10.1063/1.3112686.3�. The gray contour levels from light to dark
are within 0� ����13. ① dominant structure during rollup of shear layer;
② interaction of large-scale structures; ③ gray frame is the zoomed region
of Fig. 6 �enhanced online�.
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averaging over time and in azimuthal direction. The length of
the potential core zc, defined by the position where the mean
axial velocity on the centerline wc= �w�r�0�� is equal to
0.95Uj, is zc /r0�12.17. The dotted-dashed line corresponds
to the mean flow value �w�=0.95Uj, whereas the dashed line
denotes �w�=0.05Uj and exhibits a rather linear spreading of
the jet downstream of around five jet diameters. The solid
line marks half the jet exit velocity and demonstrates the
slow decay of axial momentum which necessitates large
computational domains. The streamline patterns of the other
excitation levels differ only slightly and are therefore not
shown. The potential core lengths zc vary slightly with forc-
ing amplitude, and are listed in Table II. With an increased
forcing amplitude, we find reduced potential core lengths as
expected. In the same table other data characterizing the jet
development can be found, such as the growth rate of the jet
half-width, the virtual origin and the growth rate of the vor-
ticity thickness.

The streamwise development of the mean axial velocity
at the centerline wc and the jet half-width r1/2, given by
�w�r=r1/2��=0.5wc, are shown in Fig. 9. Since the forcing is
of Kelvin–Helmholtz instability type one can expect differ-
ences along the jet centerline to remain small upstream of the
potential core collapse. With increased forcing amplitude, the
centerline velocity starts to decay slightly further upstream,
while the decay itself remains almost unaffected. The results

compare favorably with the experimental reference data by
Lau et al.38 and Arakeri et al.39 as well as with the numerical
data by Bogey and Bailly.16 The reference LES has been
shifted in the axial direction by z0 /r0=2 in all graphs to
match the different core lengths. The experimental data de-
noted by symbols is shifted as follows: that of Arakeri et al.
by z0 /r0=−5 and that of Lau et al. by z0 /r0=−4. The numeri-
cal results exhibit a streamwise delayed but a slightly more
abrupt onset of velocity decay. In the experiments of Lau
et al. a faster decay of the mean centerline velocity is ob-
served leading to the lowest mean flow velocities in the in-
vestigated domain. Note that without this axial shift the ex-
perimental data exhibit a delayed potential core collapse
compared to the numerical data. This delayed but more
prompt onset of decay for the computational results might be
related to the aforementioned differences in the initial mo-
mentum thicknesses and in oncoming disturbance levels and
has been similarly reported in other investigations.7,12,16 The
disturbance-level effect, although small, is best seen for case
Low, where the delayed onset combined with an enhanced
decay eventually causes the distribution to cut across the
medium-amplitude one.

The axial development of the jet half-width shown in
Fig. 9�b� varies only little for the range of investigated inflow
forcing levels. At the downstream position z /r0�5 the jet
spreading sets in. Downstream of the potential core the

(a)

(A)

(b) (c)

(B)

(C)

Ma

0.0 1.4

FIG. 6. �Color online� Visualization of
vortical structures by isosurfaces of
the �2 vortex identification criterion
�Ref. 46� in regions −1.725�r /r0

�1.725 and 4�z /r0�7.5 ��2=−1�.
�a� Low, �b� Med, and �c� High in a
�A� side view, �B� front view, and �C�
three-dimensional front-side view. The
dimensions of the shown graphs in
row �A� correspond to the gray frame
in Fig. 5. The isosurface is �color�
coded by the local Mach number 0
�Ma�1.4 from dark gray �blue� to
light gray �red�.
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spreading is significantly increased and the jet widens almost
linearly in the streamwise direction. Since the streamwise
extent of the computational domain is too short to contain
large parts of the self-similar region the spreading rates of
the jet flow have not been determined. Nevertheless, the
growth rates of the jet half-width for all simulations �deter-
mined by a linear fit to the data within 15�z /r0�30� are
given in Table II. They are between d�r1/2 /r0� /dz�0.052
and 0.062 as similarly reported by Bogey and Bailly,47 who,

when simulating in a box with twice the streamwise extent,
observed an increase in the downstream direction toward
asymptotic values reported in literature.

The root-mean-square �RMS� of the axial and radial ve-
locities along the jet centerline r /r0=0 are shown in Fig. 10.
Overall, the streamwise evolution of rise and subsequent fall
of RMS intensities is similar for all cases. In particular, cases
High and Med are almost indistinguishable. The axial fluc-
tuations presented in Fig. 10�a� saturate close to the inflow at
levels of �wc�

2�1/2 /Uj �0.01. In the transition region they rise
significantly until reaching their maxima around z /r0

=15, . . . ,17. With increasing forcing amplitude Atotal,LST, the
streamwise development is shifted slightly upstream and the
corresponding peaks also occur at shorter distances from the
inflow. The agreement between cases Med and High with the
recent experiments of Arakeri et al.39 is very good with re-
spect to the peak values and the streamwise evolution. Both
simulations reach a RMS peak of �wc�

2�1/2 /Uj =0.124. The
development of case Low is slightly delayed and reaches a
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FIG. 7. Visualization of vortical structures by contours of ��� in the near-
field r /r0�5 �gray contour levels from light to dark within 0� ����13� and
corresponding pressure fluctuations in the acoustic near-field r /r0�5 �gray
contour levels from dark to light within −5�10−4� p��5�10−4� for case
Med: �a� in the r-z plane at �=0 and �b� in the r-� plane at z /r0=12.
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FIG. 8. Visualization of mean flow streamlines for case Med. Lines denote
�−·−� �w�=0.95Uj, �––� �w�=0.5Uj, and �– – –� �w�=0.05Uj.

TABLE II. Potential core lengths zc /r0, growth rates of the jet half widths
d�r1/2 /r0� /dz �determined by a linear fit to the data within 15�z /r0�30�,
virtual origins z0 /r0 and growth rates of the vorticity thicknesses
d��� /r0� /dz �determined by a linear fit to the data within 6�z /r0�10� for
different simulations.

Case zc /r0 d�r1/2 /r0� /dz z0 /r0 d��� /r0� /dz

Low 12.63 0.062 �5.23 0.249

Med 12.17 0.056 �8.00 0.251

High 11.99 0.053 �9.78 0.246
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FIG. 9. �a� Mean axial velocity along the jet centerline wc and �b� jet half
width r1/2: �−·−� Low, �––� Med, �– – –� High, �· · ·� Bogey and Bailly �Ref.
16�, ��� Lau et al. �Ref. 38�, ��� Arakeri et al. �Ref. 39�; �- -, - - -,
- - - -� denote the linear fit to the half-width development for cases Low,
Med, and High.
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peak value of �wc�
2�1/2 /Uj =0.133 which is in good agreement

with the reference LES.16 Lau et al.38 reported the highest
peak, however, this is attributed to the analysis procedure
and lower values—similar to the Arakeri et al. data—were
reported in Ref. 48.

Figure 10�b� shows the radial velocity RMS fluctuations
together with the numerical reference data. For all forcing
amplitudes very similar profiles are found. Again, case Low
reaches highest peak values �u�2�1/2 /Uj =0.120 and its evo-
lution up to the peak location is in very good agreement with
the results by Bogey and Bailly,16 despite the fact that the
simulations use different numerical codes and, more impor-
tantly, different inflow forcing methods. Depending on the
amplitude the LST-based forcing alters the transition and
breakdown: the RMS of both velocity components along the
jet centerline are increased for case Low as the result of the
azimuthally coherent vortical structures described previously
�see Fig. 6� that dominate the rollup of the shear layers. In
contrast, lower RMS occur during the transition of cases
Med and High where toroidal vortices are strongly distorted
in circumferential direction indicating rising three-
dimensional instabilities. These differences will be addressed
in more detail below.

In the following, the effect of changes in forcing ampli-
tude on the early shear layer development is investigated. As
mentioned in Sec. III A, the alterations in the transitional
region are to be quantitatively supported by analyzing the
one-dimensional azimuthal turbulent kinetic energy spectra.
We define the spectrum at location �r ,z� as

E�n� = �ûiûi
�� , �4�

where E�n� is the turbulent kinetic energy �TKE� contained
in the azimuthal Fourier mode n, ûi denotes the one-
dimensional Fourier transform of the velocity component ui

and the asterisk its complex conjugate. In Eq. �4�, we use �·�
to denote a time average only. The one-dimensional turbulent
kinetic energy of the axisymmetric mode and the first helical
mode are determined at five downstream positions along the
nozzle lip line �r=r0� and are shown in Figs. 11�a� and 11�b�
for the three forcing amplitudes. The energy is normalized by
the energy of case Med at the jet-inflow plane z=0 contained
in mode n=0. As could be seen in the instantaneous snap-
shots, the vortical structures caused by instability waves alter
the flow significantly at z /r0�6. At this location, enhanced
TKE levels are observed and the alignment for the three
cases follows their initial forcing amplitudes. The modal en-
ergy has grown by approximately 16%, 28%, and 40% for
cases Low, Med, and High, respectively. At z /r0=9, we find
that the roles are inverted: case Low exhibits the largest
amount of energy, which also corresponds to the global
maximum for the analyzed positions and all excitation am-
plitudes. Compared to the inflow level, mode n=0 of case
Low has a 60% TKE increase. Further downstream, the dif-
ferences between the three cases are reduced. However, even
at z /r0=15 the low-amplitude excitation results in higher en-
ergy in mode n=0 than the higher amplitude cases.

The helical mode n=1, which seems to dominate the
instantaneous rollup process for case Low, is analyzed in
Fig. 11�b�. Its downstream evolution is characterized by very
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FIG. 10. RMS of �a� axial velocity fluctuations �wc�
2�1/2 and �b� radial ve-

locity fluctuations �uc�
2�1/2 along the jet centerline: �−·−� Low, �––� Med,

�– – –� High, �· · ·� Bogey and Bailly �Ref. 16�, ��� Lau et al. �Ref. 38�, ���
Arakeri et al. �Ref. 39�.
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small initial amplitudes. A similar inversion of the alignment
for the three amplitudes is observed slightly closer to the
inflow region compared to n=0. Case Low has, for instance,
a TKE increased by more than four orders of magnitude
within a short streamwise distance of three nozzle diameters
and exceeds the two other cases. Further downstream, this
difference in mode n=1 for the three cases becomes gradu-
ally smaller and the results are almost indistinguishable
downstream of z /r0=12.

We now turn to the downstream development of the
higher azimuthal wavenumbers, focusing in particular on the
excited modes n=4, . . . ,8 and the redistribution of modal
energy. Five equidistant downstream locations in the transi-
tional region along the nozzle lip line are evaluated and
shown in Fig. 12. At the inflow, we see the effect of the
introduced disturbances, i.e., the TKE in azimuthal wave-
numbers n=4–8 is higher, at least by an order of magnitude
compared to the unexcited modes. Also, the effect of the
amplitude at the inflow is reflected by the different energy
levels of the three cases. Further downstream, the energy
increases in all modes, i.e., the initially undisturbed modes
also rise. In particular, n=4 outweighs the other excited
modes. The other forced modes exhibit less increase in ki-
netic energy and undisturbed modes, e.g., n=1, reach com-
parable values. At the third streamwise position z /r0=6, case
Low exhibits the previously noticed sudden rise of n=1
which substantiates the previously made observation of heli-
cal structures during its transition process. As pointed out
before, this rise of mode one is accompanied by a
downstream-delayed rise of TKE in the all-dominant axi-
symmetric mode. Significantly enhanced TKE also occurs in
the even mode n=4 for all cases and the differences in initial
amplitude are diminished. Cases Med and High are not only
characterized by n=4 but also by higher harmonics thereof.
In particular, a pronounced rise in the azimuthal wavenumber
n=8 can be observed which seems to allow for further inter-

actions of a weakly developed higher harmonic n=12. In
contrast, case Low with its prominent increase in mode n
=1, exhibits only small changes in the higher wavenumbers
n=9 and 12 and, more importantly, no distinct peak at n=8.
A redistribution of TKE between the dominant modes might
be the reason for the reduction in dominance of n=4 together
with the rise of n=8, or the onset of secondary instabilities
and nonlinear interactions of modes as appreciable distur-
bance level are attained at this downstream location. Follow-
ing Hussain,49 this interaction could be related to a break-
down process of structures termed cut-and-connect, which
describes the connection of two adjoining vortices. The oc-
currence of vortex heads in circumferential direction visual-
ized by the �2 representation in Fig. 6 for cases Med and
High compares favorably with the sketch of an idealized
breakdown process �see Ref. 49, Fig. 14, p. 339�. Further
downstream, the amplitude of the asymmetric mode for case
Low decays and n=4 is found to contain most energy at
z /r0=9 for all cases. At the last investigated axial position,
we observe a broadbanded energy distribution and for wave-
numbers n�16 a drop-off of about two orders of magnitude.

As noted above, the eigenfunctions employed in the
forcing reach their maxima in the shear layer of the base-
flow profile. Thus, the effects of changes in forcing are ex-
pected to be most pronounced in the quantities along the jet
nozzle lip line r /r0=1, on which we will focus in the follow-
ing. The streamwise development of the axial and radial ve-
locity fluctuations is given in Figs. 13�a� and 13�b�, respec-
tively. Consistent with the expectations the RMS of the axial
velocity fluctuations varies greatly and, in addition, exhibits
a pronounced dual-peak distribution. Even for a small distur-
bance amplitude, such as 1.5% in case Low, the axial distri-
bution of �w�2�1/2 /Uj starts to rise at the inflow plane and
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FIG. 12. One-dimensional turbulence energy spectra E in the �-direction
along the nozzle lip line at streamwise positions z /r0= i�3 �i=0, . . . ,4 from
bottom to top�: �−·−� Low, �––� Med, and �– – –� High. The groups of
spectra are shifted by a factor of 10 for clarity.
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FIG. 13. RMS of �a� axial velocity fluctuations �w�2�1/2 and �b� radial ve-
locity fluctuations �u�2�1/2 along the nozzle lip line: �−·−� Low, �––� Med,
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reaches a local maximum three nozzle diameters down-
stream, before attaining the global maximum at z /r0�8, i.e.,
upstream the end of the potential core. As before, increasing
the forcing amplitude shifts the transition process upstream
and amplifies the dual-peak structure for which the global
maximum now occurs at the first streamwise position. This
dual-peak distribution is most likely a result of the localiza-
tion of vortex pairings50 at this particular axial position. This
assumption is further supported by the following arguments:
As could be observed in various quantities so far, an in-
creased forcing amplitude shifts the development of the
shear layer upstream but also significantly reduces the
streamwise jitter of the shear layer rollup. As the computa-
tion of the mean quantities also involves an azimuthal aver-
age, the dual peaks are more pronounced for cases Med and
High compared to case Low. Azimuthal averaging over a
helical alignment tends to smear out gradients, whereas an
axisymmetric orientation due to the localization tends to am-
plify the dual-peak structure. The overall streamwise evolu-
tion of simulation Low is closest to results by Bogey and
Bailly,16 however, because of the differences in the inflow
forcing procedure their result does not exhibit a second peak
related to the localized vortex pairings. Similar variations of
the centerline longitudinal fluctuation intensity can for ex-
ample be found in the experimental work of Zaman and
Hussain50 where profiles exhibit strong dual-peak distribu-
tions �see, e.g., their Figs. 3�a� or 27, pp. 455 and 483�.
There, vortex pairing in an axisymmetric jet flow under ex-
citation has been investigated. For an excitation frequency
corresponding to St=0.85 a dual-peak distribution is estab-
lished, characterized by a trough region with reduced fluc-
tuations located at the nozzle lip line which extends toward
the jet centerline.

In contrast to the axial velocity, the development of the
radial RMS fluctuations remains almost unaffected by the
changes of the inflow forcing. This is also in agreement with
experimental results50 which document that radial RMS fluc-
tuations of a jet with controlled vortex pairing exhibit less
variation compared to the axial component. Again, a reduc-
tion in amplitude seems to slow down the streamwise evolu-
tion. Best agreement with the results by Bogey and Bailly is
found again for simulation Low. For completeness, we point
out, however, that the axial profiles for the radial velocity
RMS are higher than observed experimentally �overesti-
mated by �40%, see Ref. 16�, which is also related to the
artificially increased initial momentum thickness addressed
before.

The effect of the forcing on the development of the vor-
ticity thickness ��, determined by ��=Uj / �maxr���w� /�r��, is
shown in Fig. 14. The initially laminar shear layer thicken
further upstream when increasing the disturbance amplitude.
The streamwise growth is almost linear once the spreading
has started. The growth rates of the vorticity thickness given
in Table II have been determined by a linear fit to the data
within 6�z /r0�10. The predicted values of d��� /r0� /dz
�0.25 are higher than those observed experimentally �see
summary of experimental values in Ref. 51, ranging from
0.112 to 0.218�, but are again in agreement with the study by
Bogey and Bailly.16 Also note that case High has a stepwise

increase in the vorticity thickness with a discontinuity
around the location where the local minimum in the dual-
peak distribution of the lip line RMS is observed.

The differences in the onset of the shear layer develop-
ment also affect the turbulent stresses. This is exemplified by
looking at the radial Reynolds normal stress and the shear
stress in Figs. 15�a� and 15�b�. The profiles are taken at equi-
distant streamwise locations z /r0=3, 6, and 9 and are shifted
by the marked amount. Far upstream of the closing of
the potential core the values rise rapidly, saturate within a
distance of three radii, reach their maxima in the range
z /r0�5–6 and decay in the streamwise direction. Corre-
sponding to the previously noted occurrence of streamwise-
elongated vortical structures further upstream for larger dis-
turbance amplitudes, the peaks are higher at corresponding
streamwise locations for higher forcing amplitudes. Down-
stream of z /r0=6, which corresponds to the second profile in
Fig. 15, the orientation changes and we now find case Low,
whose streamwise development is delayed the strongest, to
reach the largest Reynolds stress values. This very rapid de-
velopment for case Low compared to the higher amplitude
cases confirms the impression from the snapshots of instan-
taneous processes �see Figs. 5 and 6� that transition occurs in
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FIG. 14. Streamwise development of vorticity thickness ��: �−·−� Low,
�––� Med, �– – –� High, �· · ·� Bogey and Bailly �Ref. 16�.
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a spatially more confined area and is more rapid. Also, as
noted before, the process can be linked to the dominance of
azimuthal wavenumbers n=0 and n=1 in this streamwise
region as, for example, found in the one-dimensional turbu-
lence kinetic energy spectra presented in Figs. 11 and 12.

This section is concluded by investigating the spectral
composition of the axial velocity fluctuations along the jet
centerline and the nozzle lip line. Nondimensional frequen-
cies St=0.04 are resolved in the spectra and we refer to Sec.
II B for details concerning the data analysis. We focus on the
transitional region of the jet flow and show the axial velocity
spectra at different downstream positions in Fig. 16. The
spectra at the inflow plane are as expected, i.e., the peak

values along the jet centerline and the nozzle lip differ by
two orders of magnitude �Fig. 16�a� versus Fig. 16�b��. High-
est peaks occur along the lip line where the magnitude of the
axial velocity eigenfunction reaches its maximum and the
alignment of the spectral amplitude follows the enforced dis-
turbance amplitudes. In agreement with literature52 the flow
is found to be most receptive to disturbances in a Strouhal
number range around St�0.4, which corresponds to the col-
umn mode frequency50 �also referred to as preferred mode53�.
Overall, we observe a persistent and dominant existence of
structures with this Strouhal number that are present along
the centerline and the lip line. In combination with the TKE
spectra shown in Figs. 11 and 12, we note that the
eigenmode-based forcing does excite modes n=4 through n
=8 at the inflow, however, further downstream this interac-
tion results in most-amplified structures with wavenumbers
n=0 and n=4 at the frequency of St=0.43. This Strouhal
number corresponds to the excitation frequency of the mode
n=8. A second dominant frequency, St�0.88, emerges at
z /r0=3 along the lip line presented in Fig. 16�b� and the
three cases order according to their excitation amplitude.
This frequency persists further downstream and at z /r0=6 it
appears at the jet centerline at z /r0=6 ,9. It is important to
note that at the centerline this peak at St�0.88 is observed
only for cases Med and High and is not contained in the
velocity signals of case Low.

At z /r0=6 a pronounced subharmonic at St�0.2
emerges along the lip line, most obviously for the weakly
disturbed flow. This subharmonic is marked by the symbol
“SH” in Fig. 16�b�. Its appearance is smeared out because
the occurrence of the pairings with the fundamental fre-
quency St�0.43 is random as pointed out before. For case
Med, this subharmonic is less pronounced and decays much
faster in the streamwise direction and in case High it appears
only weakly. This supports the previously made observation
that low-amplitude forcing results in a random but detectable
vortex pairing and a persistent dominance of low frequencies
�St�0.5� downstream of z /r0=6, whereas for case High a
broader range of scales interact.

At z /r0=6 case Low shows a distinct rise of a frequency
around St�0.7 which is denoted by the symbol “F” in Fig.
16�b�. This peak corresponds to the fundamental frequency
of the asymmetric least stable mode n=1 that plays a domi-
nant role in the transition process although it is initially
unexcited �instantaneous data as well as TKE spectra, cf.
Sec. III A�. This frequency is in very good agreement with
the linear stability theory,42,54 according to which the azi-
muthal wavenumbers n=0,1 reach their highest growth rates
at the fundamental frequency of St=0.67 and St=0.68, re-
spectively. Furthermore, with increasing distance from the
orifice the ratio of the initial momentum thickness �0 to jet
radius r0 increases and, hence, linear theory predicts a domi-
nance of the helical wavenumber n=1 over the axisymmetric
mode n=0.

In order to clarify the roles of the axisymmetric and the
first helical shear layer instability modes during the onset of
transition of case Low, the downstream development of the
azimuthal Fourier amplitude ŵ�n� is determined for two fre-
quencies. The investigated fundamental frequencies of the
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ŵ

∗ )
1/

2 /
U

2 j
r 0

(b)

10
-5

10
-4

10
-3

0 0.4 0.8 1.2 1.6

St

(ŵ
ŵ

∗ )
1/

2 /
U

2 j
r 0

SH
�
�

F
�

FIG. 16. Axial velocity spectra at streamwise positions z /r0= i�3
�i=0, . . . ,4 from bottom to top� along: �a� jet centerline, �b� jet lip line:
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modes n=0 and n=1 correspond to the Strouhal numbers
St0

n=0=0.676 and St0
n=1=0.681. According to LST the growth

rates are −�i
n=0r0=1.60 and −�i

n=1r0=1.55, respectively. As
the frequency difference between these two modes is very
small the corresponding changes in growth rates are less than
two decimal places. Figure 17 shows the downstream devel-
opment of the modal amplitudes beyond the point of the
closing of the potential core. For both frequencies, the modal
amplitudes of the helical mode are significantly larger than
the amplitude of the axisymmetric mode, in particular,
around the relevant streamwise position z /r0�6. Thereby it
is substantiated that the occurrence of the fundamental fre-
quency can be linked to the helical azimuthal wavenumber
n=1. As a side remark, we note that a very good agreement
of the downstream development with the prediction of LST
is observed for both modes shortly downstream of the inflow
region, as can be seen in the inlays of Figs. 17�a� and 17�b�.

C. Acoustic results

The three LES provide the directly computed jet noise in
the acoustic near-field. These data allow to investigate the
effect of the change in forcing amplitude on the pressure
spectra, sound pressure levels, azimuthal two-point autocor-
relations of the pressure fluctuations and, hopefully, allows to
infer details of the underlying noise sources. To verify that
hydrodynamic effects are separated from the acoustic re-
gime, we follow Arndt et al.55 and choose an ad hoc thresh-
old for k ·rs�2 where rs is the perpendicular distance from
the jet centerline and k the wavenumber given by k=� /a�.
This value has proven to be a reliable estimate56 and an

approximate Strouhal number can readily be determined. The
closest and most critical radial location to be analyzed in the
following is rs=9r0, for which St=k ·rsr0 / �� Ma jrs�
�0.079. For all radial locations, the estimated Strouhal num-
bers are therefore below St=0.1 and the near-field pressure
signals represent acoustic data.

In Fig. 18, the pressure spectra at different locations for
the three investigated forcing amplitudes are shown. Recall
that St=0.1 is resolved in the analysis of the pressure spectra.
For details of the time-signal processing we refer to Sec.
II B. The end of the potential core of case Med is selected as
the origin of a spherical coordinate system �R ,� ,��. Three
measurement points, with similar polar distances R and polar
angles that correspond to ��30°, 60°, and 90° measured
from the positive jet axis r=0, are analyzed in Figs.
18�a�–18�c�. A close-up view of the range 0.6�St�1.2 can
be found in graphs �d�–�f�. The cylindrical and polar coordi-
nates for the three observer locations are reported in Table
III. Experimental reference data, shown by solid square sym-
bols, are taken from a measurement campaign focusing on
the spectral properties of noise in the acoustic near-field as
well as the acoustic far-field57 of a Ma=0.9 jet at Re=7.8
�105. Dotted lines represent LES data reported in Ref. 58.
As tabulated in Table IV, the reference data are measured at
slightly different polar angles and, more importantly, at dif-
ferent polar distances R from the previously defined origin.
Assuming a 1 /R-decay for the pressure levels, a correction

SPL is determined with respect to the common polar dis-
tance R�=18r0 and accounted for in all graphs. Note that the
largest correction is 
SPL=1.3 dB for the reference data and
that the small differences in polar distances of the three cases
Low, Med, and High are not accounted for. The spectra in
Fig. 18 exhibit a strong dependence on the observation angle
�, whereas the effect of the disturbance amplitude is noticed
most dominantly at low frequencies and at intermediate ob-
server angles. For small polar angles �Figs. 18�a� and 18�d��,
the spectra are found in very good agreement, i.e., the spec-
tral shape and also the peak of 125 dB is closely reproduced
by our results which reach peak values between 124 and 127
dB depending on forcing amplitude. Our LES spectra are
dominated by a frequency band below St=0.4, which is the
peak frequency for all cases. However, the experimentally
determined peak of the spectra is around St�0.2 and the
reference LES peak appears at a slightly higher Strouhal
number, St�0.3. The spectrum for case Low exhibits more
contributions at lower frequencies compared to the cases
with higher excitation amplitudes. This enhanced low-
frequency band is related to the randomly occurring vortex
pairings with helical wavenumber n=1 �see prominent rise
of helical mode n=1 in Figs. 11, 12, and 17� whose funda-
mental frequency is halved to St�0.35 during the pairing.
This kind of vortex pairings is known to efficiently contrib-
ute to noise emissions, in particular, in the downstream
directions.3,59,60 Overall, case Low compares favorable with
the reference LES. With increasing disturbance amplitude we
observe less low-frequency noise, however, a tonal compo-
nent around St�0.9 starts to appear which is most noticeable
in the close-up provided in Fig. 18�d�. The strength of the
tonal peak is tied to less noise in the high-frequency range
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FIG. 17. Downstream development of Fourier modal amplitude ŵ�n� of
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and, thus, the SPL drop-off sets in at lower frequencies for
larger excitation levels.

At an increased observation angle, the overall domi-
nance of the low frequencies is significantly reduced. In Figs.
18�b� and 18�e�, at ��60°, we find generally lower sound
pressure levels for frequencies below St=0.4, but again the
induced large two-dimensional structures for case Low result

in the highest amplitudes among the three investigated cases.
For higher frequencies the experimental data are reproduced
only qualitatively up to St�2. In the band 0.5�St�2 a
large over prediction by approximately 5 dB is observed,
whereas experiments yield 120 dB. Again, cases Med and
High exhibit a tonal component which is also the global
maximum and, as before, its strength is positively correlated
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FIG. 18. Near-field pressure spectra in dB at �a� �=30°, �b� �=60°, and �c� �=90°: �−·−� Low, �––� Med, and �– – –� High. ��� Bogey et al. �Ref. 57�;
�· · ·� Bogey and Bailly �Ref. 58� at �a� �=30° and �c� �=90° only. Graphs �d�–�f� show close-up of frequencies 0.6�St�1.2.

TABLE III. Observer locations of spectra measurements and polar distances R and angles �exact for all cases.

� r /r0 z /r0

R /r0 �exact

Low Med High Low Med High

30° 9 27 17.0 17.3 17.5 32.1° 31.3° 30.9°

60° 15 21 17.2 17.4 17.5 60.8° 59.5° 59.0°

90° 18 12 18.0 18.0 18.0 92.0° 90.5° 90.0°
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with the excitation level. The SPL peak of case High is very
strong, 7 dB larger than the experimentally determined
broadbanded spectrum, and still 3 dB larger than case Low.
It is interesting to note that these peaks around St=0.9 are
outside of the range of initially excited frequencies but can
equally be observed in the axial velocity spectra at the jet
centerline and at the nozzle lip line �see Fig. 16�.

In agreement with experimental as well as LES data, we
find that at right angles to the jet axis the emitted noise is
characterized by a broadband spectrum with no dominant
frequencies, as can be seen for �=90° in Figs. 18�c� and
18�f�. Again, we find significantly overpredicted sound pres-
sure levels, i.e., the current simulations have a peak of 120
dB which is 6 dB higher compared to the experiments.57 For
case Low a similar spectrum as in the reference LES is found
but, as before, with a 2 dB enhancement in the low frequen-
cies St�0.3. All numerical results predict a slight shift of the
peaks to higher Strouhal numbers, St�0.8 compared to
St�0.6 in the experiments. The significantly overestimated
pressure levels �in particular, in the sideline direction� might
be related naturally to the increased radial RMS fluctuations
observed before �see Sec. III B and Refs. 12, 16, and 58�.

Overall, the main trends of the spectra provided by the
simulations are in accordance with the reference data with a
shift from a dominant low-frequency band at small angles
from the jet axis to a broadband character in the sideline
direction. However, the differences in the disturbance ampli-
tude, and the associated changes in the transition process,
generate a tonal peak around a Strouhal number of St�0.9
which is outside the band of excited frequencies. Nonlinear
interaction of excited and initially unexcited eigenmodes, in
connection with the preferred mode, might lead to the domi-
nance of this frequency. This aspect, together with possible
explanations, will be addressed in Sec. III C.

This section is concluded by a comparison of the
azimuthal correlation properties of recorded pressure signals
at two locations corresponding to the polar angles �=30°
and �=90°. The correlation coefficient is determined accord-
ing to

Rpp�
�� =
�p��r,�0,z,t�p��r,�0 + 
�,z,t��

�p�2�r,�0,z,t��1/2�p�2�r,�0 + 
�,z,t��1/2 , �5�

using 5000 samples in time. At small angles from the jet
axis, e.g., at �=30° as shown in Fig. 19�a�, the pressure
fluctuations for 
��60° are correlated similarly for the dif-
ferent forcing amplitudes and in accordance with the compu-

tation by Bogey and Bailly58 �the locations of their measure-
ments are given in Table IV� and the far-field experiments by
Maestrello61 �taken at R /r0�345�. For increasing azimuthal
distances 
�, the correlations of cases Med and High de-
crease to Rpp�180°��0.3 and Rpp�180°��0.35, values that
are clearly below the reference data that give Rpp�180°�
�0.5. The correlation in this sector is slightly enhanced,
Rpp�0.4, for case Low. Overall, the results for �=30° sug-
gest a systematic lack of axisymmetric scales in the signal.
Also, the naturally dominant helical mode that emerges dur-
ing the early stages of transition in case Low �see one-
dimensional turbulence spectra, Figs. 11 and 12, and modal
amplitude, Fig. 17� increases the correlations over all azi-
muthal distances. We also note that the ordering of the cor-
relation coefficients for the three cases corresponds to the
amount of turbulent kinetic energy contained in the low azi-
muthal wavenumbers n=1 and n=2, as shown in Fig. 12.
Again, this shows the emission efficiency of low azimuthal
wavenumbers in the downstream direction. With respect to
the pronounced reduction of coherence we note that Juvé
et al.62,63 reported correlation values for the unexcited jet of
Rpp�180°�=0.25, which is in better agreement with our data.
In addition, they find an increase to values in the range of the
reference data when exciting the flow tonally at St=0.68 �jet
at Re=1.8�105, Ma=0.4, and Rpp�180°��0.54�.

The correlations for polar angle �=90° are shown in
Fig. 19�b�. At this location, similar results for all cases are
found. For 
��45°, the signals are almost uncorrelated,
which is in agreement with the LES results by Bogey and

TABLE IV. Observer locations of spectra measurements and polar distances
R and angles �exact for reference data together with polar distance correction

SPL with respect to the common polar distance R�=18r0.

� Ref. r /r0 z /r0 R /r0 �exact R /R� 
SPL /dB

30° 57 15 30 23.3 40.1° 0.74 +1.3

58 12 29 20.7 35.5° 0.83 +0.7

60° 57 15 20 16.9 62.4° 1.03 �0.1

90° 57 15 10 15.2 98.2° 1.18 �0.7

58 15 11 15.0 94.5° 1.20 �0.8
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FIG. 19. Azimuthal correlation coefficient Rpp for pressure signals at �a�
�=30° and �b� �=90°: �−·−� Low, �––� Med, and �– – –� High; �· · ·�
Bogey and Bailly �Ref. 58�; ��� Maestrello �Ref. 61�: �a� Re=5.2
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Bailly58 as well as with the far-field measurements by
Maestrello61 performed at a slightly lower Mach number of
Ma=0.74.

From the current findings for the azimuthal correlation
we conclude that with increased amplitude the eigenmode-
based inflow excitation of wavenumbers n=4, . . . ,8 tends to
break the symmetry with respect to the jet axis, especially at
small angles from the jet axis. Note that the previously ob-
served dominance of the helical wavenumber n=4 orders the
structures in an axisymmetric fashion during transition but
does not contribute to the correlation level at 
�=180°. The
reason for this loss of azimuthal coherence might be related
to the transition process, which is characterized by the eigen-
mode interaction and the exclusion of low azimuthal wave-
numbers from the inflow forcing, while exactly these wave-
numbers are believed to constitute major sound sources in
the downstream direction.58,61,62,64 Following Juvé et al.,62

we employ an azimuthal Fourier expansion to obtain a more
detailed picture of the different contributions of wavenum-
bers n to the spatial correlation coefficient Rpp in the form of

Rpp�
�� = �
n=0

N� /2

an cos�n
�� , �6�

where the sum of the coefficients an is normalized to unity.
The Fourier coefficients an of mode n with a contribution to
the acoustic energy of more than 1% are reported in Table V
for both observation angles �. As can be deduced from the
presented correlations in the downstream direction, there is a
reduced dominance of the axisymmetric mode n=0, but a
significantly enhanced contribution from the helical wave-
number n=1 compared to Ref. 58 �n=0,1: an=0.67,0.23�.
Again, we note that similar values to ours are reported in
Ref. 63 and it is shown there that excitation increases the
azimuthal correlation levels and accordingly the Fourier
component n=0 at small angles. In the sideline direction, the
Fourier coefficients are similarly reported in literature �see
the work of Bogey and Bailly:58 n=0, . . . ,3,: an=0.15, 0.29,
0.23, and 0.19�. However, the eigenmode forcing and the
increased forcing amplitude seem to result in a transfer of
energy from modes n=2,3, which are less energetic, to a
broader range of wavenumbers n�5.

D. Links between jet flow transition
and tonal near-field character

In the remaining part, we attempt to establish a connec-
tion between the flow transition which is characterized by the
eigenmode-based forcing and the tonal component observed
in the near-field spectra at intermediate observer angles. By
repeating the signal analysis with an enlarged subinterval
length, the precise frequency of the tonal component is de-
termined to be St�0.876. As pointed out before, the strength
of the tone increases with disturbance amplitude and at the
same time reduces the pressure levels over all other frequen-
cies. This effect of turbulence and noise amplification as well
as suppression is similar to effects investigated in a series of
experiments by Zaman and co-workers.14,50,65 The tonal
component could result from the breakdown process of
structures that develop during the rollup of the initially lami-
nar shear layers. The TKE analysis shows that the azimuthal
wavenumber n=4 has direct relevance to the rollup and as
this process proceeds its azimuthal higher harmonic n=8 ab-
sorbs significant amounts of turbulent kinetic energy. This
can indicate a nonlinear interaction of structures described by
the cut-and-connect process. The roles of interacting modes
can further be clarified by analyzing their Fourier mode am-
plitudes ŵ�n� at particular frequencies. We investigate the
tone frequency St=0.876 and its harmonics. Because of the
dominance of St�0.43 in the axial velocity spectra we refer
to this frequency as the fundamental St0

p=0.438, and thus its
first harmonic frequency, St1

p=2St0
p, corresponds to the peak

in the near-field spectra. For clarity, we restrict the presenta-
tion to these two relevant frequencies and the modes that
prevail during the transition process, i.e., modes n=0, 1, 4,
and 8. Regardless of the excitation amplitude, shown in rows
�a�–�c� of Fig. 20 for cases Low, Med, and High, similar
downstream developments of the modal amplitudes ŵ�n� are
observed for the fundamental frequency St0

p shown in column
�A� and the first harmonic frequency St1

p presented in column
�B�. Overall, the largest Fourier amplitudes occur at the fun-
damental frequency St0

p=0.438 for the wavenumber n=4, as
can be seen in Fig. 20�a�. Mode n=4 surmounts the complete
transitional region with a peak around z /r0�5, followed by
a slow downstream decay that lasts up to the potential core
collapse. Consistent with our previous observations, the peak
location shifts slightly upstream with increasing forcing am-
plitude. The varicose mode n=0 shortly rises close to the
inflow and then saturates at a Fourier amplitude which is
lower by one order of magnitude. As shown in Fig. 20�b�, the
analysis for St1

p=0.876 indicates that there are two relevant
modes, n=0 and n=8, which shape the breakdown process.
Their modal amplitudes are lower compared to the funda-
mental frequency and right from the inflow the axisymmetric
mode plays a prominent role and rises almost linearly down-
stream of z /r0�2. Its importance is slightly reduced around
z /r0�6, as can be seen from a small dip in ŵ which enlarges
with amplitude. This location, where n=8 has reached appre-
ciable amplitude levels, coincides with the position where
the dominant mode n=4 at St0

p=0.438 saturates. Thus, mode
n=4 saturates and its azimuthal higher harmonic n=8, to-
gether with n=0, rapidly rises at the first harmonic fre-

TABLE V. Contributions to the acoustic field in downstream direction
��=30°� and sideline direction ��=90°�.

� Case n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7

30° Low 0.56 0.31 0.08 0.03

Med 0.52 0.35 0.08 0.03

High 0.53 0.33 0.09 0.03

90° Low 0.14 0.34 0.18 0.14 0.09 0.05 0.02 0.01

Med 0.15 0.32 0.19 0.16 0.09 0.05 0.02 0.01

High 0.14 0.30 0.20 0.17 0.09 0.05 0.02 0.01
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quency. Exactly at the same downstream location the
Reynolds stresses, presented in Fig. 15, saturate as well.
Particularly for high forcing levels, the modal amplitude
ŵ�n=8� at St1

p=0.876 surpasses the axisymmetric mode at
z /r0�5.5. Further downstream, the amplitude of n=8 is
quickly reduced and the axisymmetric mode reassumes its
dominance. The other azimuthal wavenumbers are found not
to contribute to the overall process in a significant manner
and behave similarly as mode n=1, i.e., at the two presented
frequencies all other modes rise in a region between
2�z /r0�5 and then saturate at levels which are almost one
order of magnitude below the relevant modes.

The interaction conditions,66 according to which waves
are prone to subharmonic excitation when similar phase
speeds occur, are not satisfied as instability waves n=4 and
n=8 have drastically different phase speeds at St�0.43 �see
Fig. 4�. However, weakly nonlinear theory, as successfully
applied by Sandham and Salgado,21 can explain this mode
interaction. The frequency of the preferred mode seems to be

St�0.43 in our case because we force n=8 at exactly this
frequency �n= �8 are excited at St=0.43�. Therefore, mode
n=4 that initially is excited at St=0.63 also picks up this
particular frequency and grows. According to linear stability
theory, mode n=4 has larger growth rates compared to its
azimuthal harmonic n=8, which explains the dominance of
n=4 at St0

p=0.438. The nonlinear interaction of two waves
with wavenumber n=4 and frequency St1

p=0.438 generates
azimuthal wavenumbers n=0 and n=8 at the tone frequency
St1

p. The growth rate of mode n=4 according to LST is
−�i

n=4r0=0.889 and the nonlinearly excited modes n=0
and n=4 are found to grow at exactly twice this rate, i.e.,
−�ir0�1.778, which is included in the graphs for compari-
son. From our analysis of the Fourier modes we conclude
that nonlinear interactions of wavenumbers n=0,4 and
n=8 support the cut-and-connect process of toroidal
structures.

The approach by Sandham and Salgado,21 which showed
that driving an acoustic analogy with PSE-based mode-by-
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mode interactions can successfully model subsonic jet noise
generation mechanisms, was adapted or simplified to our
framework. Here, we apply the concept of weakly nonlinear
mode-by-mode interaction to a high Reynolds number jet
using eigenmodes determined from linear stability theory.
These eigenmodes are determined assuming a parallel base
flow and therefore neither the downstream development of
the jet nor the interaction of the instabilities with the base
flow are taken into account as done in the cases of linear/
nonlinear PSE.19,21 Nevertheless, the agreement between the
growth rate determined using mode-by-mode interactions
and the nonlinear simulation is striking and could help ex-
plaining an important subsonic noise generation mechanism
observed in high Reynolds number jet flow. Further research
in this area is necessary, as in the current study this nonlinear
theory is employed only in order to clarify the origin of this
tonal component in the near-field pressure spectra of the jet.
To gain further insight into the particular transition mecha-
nism and especially into the interaction of eigenmodes in the
early nonlinear stages, a more detailed investigation of Fou-
rier amplitudes in combination with PSE might be of inter-
est. Clearly, this concept has to be addressed in more detail.

IV. CONCLUSIONS

In this work results of three LES of a Ma=0.9 jet at
Re=4.5�105 were presented, in which the focus is on the
effect of inflow disturbances using a superposition of a
hyperbolic-tangent base-flow profile and linearly unstable
eigenmodes. The sensitivity of the simulation results to the
physical disturbance generation has been investigated by
varying the disturbance amplitude from 1.5% to 4.5% based
on the jet exit velocity. The effects of unstable eigenmodes of
azimuthal wavenumbers �n�=4, . . . ,8 on the flow field devel-
opment as well as on the directly computed near-field sound
were found to be large, especially with respect to the transi-
tion process and the noise properties at certain observer
angles.

With increasing forcing amplitude the transition process
is shifted upstream as expected, which leads to an earlier
onset of growing velocity fluctuations along the jet nozzle lip
line and the jet centerline. As the forcing amplitude is in-
creased the rollup process of the shear layers is modified.
The analysis of the azimuthal mode dynamics shows that the
large azimuthally coherent structures generated by low-
amplitude excitation are dominated by the varicose and first
helical mode n=0 and n=1. In contrast, the rollup process
for high forcing amplitudes involves distorted three-
dimensional streamwise-elongated vortices dominated by the
varicose mode n=0 and even modes n=4 and n=8. On the
one hand, this amplitude-dependent modification of the
rollup leads to a significant reduction of turbulence intensi-
ties along the jet centerline. The downstream development of
the RMS fluctuations is found to be in good agreement with
experimental as well as numerical data reported in the litera-
ture. On the other hand, the eigenmode forcing results in
localized structures causing distinct dual-peak RMS distribu-
tions along the jet lip line as similarly observed in tonally
forced jet experiments.

This modification of the transition process and the tur-
bulence levels directly affects the acoustic near-field. As ex-
pected, the acoustic spectra significantly depend on the ob-
server location. With increasing angle from the downstream
jet axis, the dominance of a low-frequency band shifts from
St�0.4 to higher frequencies around St�0.9. The strong
emissions at Strouhal numbers St�0.4, in particular, for low
�1.5%� amplitude excitation, are linked to vortices that ran-
domly undergo vortex pairings that most efficiently radiate in
the downstream direction. These parings are caused by the
initially unexcited, naturally least stable helical mode n=1.
For medium �3%� and especially for high �4.5%� disturbance
amplitudes, the pressure spectra contain a tonal component
close to the higher harmonic of one of the forced fundamen-
tal frequencies as well as the frequency of the preferred �col-
umn� mode of the jet. The azimuthal correlation coefficients
of the pressure fluctuations were determined for two polar
angles �=30° and �=90° and support the established links.
At small angles from the jet axis, the observed correlations
are lower than the reference data, indicating less axisymmet-
ric contributions by large, coherent structures to the pressure
fluctuations. Experimental investigations of tonally excited
jets, however, report similar distributions. In the sideline di-
rection the signals are uncorrelated and match the data from
literature, thereby supporting the established concept of
noise emission associated with small-scale turbulence.

The analysis of Fourier mode amplitudes at the tone fre-
quency and harmonics thereof shows that the tone observed
in the near-field spectra can be linked to the rise, saturation
and breakdown of structures that are generated during the
early transition process. As a result of the excitation close to
the preferred mode, the helical modes n= �4 reach appre-
ciable disturbance levels allowing its azimuthal higher har-
monic n=8 as well as mode n=0 to rise with enhanced
growth rates. These modes significantly contribute to noise
emitted from a location slightly upstream of the collapse of
the potential core which is perceived dominantly at interme-
diate observer locations. Supported by weakly nonlinear
theory of eigenmode interaction this frequency can be ex-
plained as a result of an interaction of the axisymmetric
mode and the initially excited modes n= �4. The growth
rates observed in the LES are found in very good agreement
with estimates based on weakly nonlinear interactions of lin-
early unstable eigenmodes of the inflow profile.
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APPENDIX A: IMPLEMENTATION
OF DISTURBANCE TRIGGERING

For completeness, we provide specific details of the in-
flow treatment below. When using a sponge zone, an artifi-
cial term is added to the right-hand side of the Navier–Stokes
equations according to the general form,

�Q

�t
= RHS�Q� − ��Q − Qref� . �A1�

Here, Q denotes the unknown conservative state vector,
RHS represents all terms of the Navier–Stokes equations
written on the right-hand side, and Qref denotes a reference
state to be defined. If the sponge coefficient � �that may vary
in space and time� is greater than zero in Eq. �A1�, the vector
Q will be driven toward Qref. As pointed out in Sec. II A �see
Fig. 2�, the disturbances introduced at the inflow are locally
confined to the so-called inflow sponge. Its spatial extent is
given by a combination of an exponential decay in the radial
direction combined with a Gaussian-shaped profile in the
downstream direction. This local confinement enables en-
trainment of the surrounding fluid. The functional form of
this inflow sponge is given by

�infl�r,z� = � Aspg,infl�f�r�g�z�� , z � z0,infl,

Aspg,infl�f�r�g�z0,infl�� , 0 � z � z0,infl,

 �A2�

where the inflow sponge amplitude Aspg,infl=1.0 and f�r� and
g�z� are the radial and streamwise distributions defined as

f�r� = „1 + �exp�r2 log�rc/r0�� − 1�nr
…

−1, �A3�

g�z� = exp	− 
 z − zc,infl

dzinfl

�2� . �A4�

In Eq. �A2�, we set z0,infl=0.6r0 which shifts the starting
point of the semifinite Gaussian decay into the domain to
have a short entrance region of constant sponge amplitude.
Thus, for z�z0,infl the sponge strength is set to �infl�r ,z�
=�infl�r ,z0,infl�. The parameters determining the radial
decay in Eq. �A3� are chosen as rc=1.3r0 and nr=7.0. The
parameters of the Gaussian profile in Eq. �A4� are set to
zc,infl=0.3r0 and dzinfl

=0.4r0. In Fig. 21�a� the radial depen-
dence for this set of parameters is shown, whereas in Fig.
21�b� the streamwise profile is plotted. In Fig. 22 the sponge
amplitude for the inflow plane is visualized as a three-
dimensional surface in the r-z-plane. In the inflow region this
sponge is active, i.e., before the time advancement the con-
servative vector Q is driven toward the reference state Qinfl.
As described before �see Sec. II B�, Qinfl is based on a col-

TABLE VI. Description of random walk process with parameter bounds for
rnd1 and rnd2.

Change by 
 Range for An Range for �n

Increase 0.00�rnd1�0.55 0.00�rnd2�0.65

No change ¯ 0.65�rnd2�0.85

Decrease 0.55�rnd1�1.0 0.85�rnd2�1.0

TABLE VII. Amount of change 
 used for inflow randomization of ampli-
tude An and phase �n and lower and upper bounds of amplitude An.

Quantity 
 per time step Min Max

An 0.005 0.03 0.10

�n 0.1�n
t ¯ ¯
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FIG. 21. Inflow sponge strength distribution: �a� �infl�r ,z� in radial direction
for z=0 and �b� �infl�r ,z� in streamwise direction for first radial grid line
r=rmin.
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FIG. 22. Inflow sponge strength distribution viewing upstream: �infl�r ,z� in
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lection of instability waves that are superimposed on the
laminar inflow profile �see Eq. �3��. At each substep of the
Runge–Kutta integration the amplitude An and phase �n of
each azimuthal modes n are modified. We employ a similar
random walk process as described by Lui67 but here, in ad-
dition to the phase, also modify the forcing amplitude.
Therefore, random numbers rnd1 and rnd2 in the interval
rnd� �0,1� are determined �using the random number gen-
erator described in Ref. 68, p. 272�. Depending on the value
of rndi, the amplitude and the phase are varied in a random
walk process described in Table VI, i.e., increased or de-
creased by certain amounts 
 which are tabulated in Table
VII. The combination of the chosen parameters results in a
random distribution within the defined amplitude bounds,
whereas the phase relations between various modes is con-
tinuously varied and according to the chosen values mostly
increasing. Note that the amplitude of each mode n is non-
zero at all times as An� �0.03;0.10� and that the
maximum change per integration substep is restricted to

=0.005 �see Table VII�. For clarity this is exemplified by
looking at the azimuthal wavenumber n= �4 only. In Fig.
23�a� the temporal randomization of the disturbance ampli-

tude An for azimuthal wavenumbers n= �4 is shown along
with the corresponding development of the phase shift �n in
Fig. 23�b�. The amplitude values for the full Runge–Kutta
time steps �six-stage Runge–Kutta scheme� are marked by
symbols. All modal excitation amplitudes An are initialized
using An=min�An�+
An=0.035 before starting the random
walk process, but from thereon are independent of each
other, as can be seen in Fig. 23�a�.

APPENDIX B: IMPLEMENTATION OF SPONGE
LAYERS FOR PRESERVING AMBIENT STATE
AND OUTFLOW DAMPING

As described in Sec. II A, a drift of the mean pressure is
prevented by employing a surrounding sponge layer that we
refer to as ambient sponge. Similar to the inflow sponge, the
conservative state vector Q is driven toward a state corre-
sponding to ambient fluid at rest. However, in order not to
prevent surrounding fluid from being entrained, only the den-
sity and energy �and hence pressure� are acted on. The spatial
extent of the sponge layer is given by a combination of two
error functions described by

�spg,amb = Aspg,amb��r�1 − �z� + �z�1 − f�r��� , �B1�

where Aspg,amb is set to Aspg,amb=0.25. The functions � for the
radial and axial direction are given by the expressions

�r =
1

2
�1 − erf��r	− r + 
rmax −

Wr

2
��
� , �B2�

TABLE VIII. Parameters for inflow, ambient, and outflow sponge.

Inflow
i=infl

Ambient
i=amb

Outflow
i=out

Ai 1.0 0.25 1.0

�i �r=�z=5.5 0.5

Wi Wr=1.2;Wz=1.25 8.0

rmax Lr /r0

zmax Lz /r0
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FIG. 24. Ambient sponge strength distribution: �amb�r ,z� in the inflow
region.
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�z =
1

2
�1 − erf	�z
z −

Wz

2
��
 , �B3�

respectively. Here, �i denote the coefficients to adapt the
steepness of the profile and Wi is the corresponding spatial
extents of the sponge layer, where the subscripts r and z
denote the radial and axial directions. The algebraic formu-
lation is as proposed by Bodony and Lele8 and Bodony.36

Similarly as the inflow sponge region is confined radially by
f�r� �Eq. �A3��, the ambient sponge starts just outside the
inflow sponge by using the same function f�r�. The spatial
distribution of the ambient sponge in the vicinity of the in-
flow region can be seen in Fig. 24. Figure 25 shows the
inflow sponge and the ambient sponge in the jet entrance
region.

The outflow sponge is defined similarly to the stream-
wise part of the ambient sponge,

�out =
Aspg,out

2
�1 − erf��out	− z + 
zmax −

Wout

2
��
� .

�B4�

Here, Aspg,out=1 and denotes the amplitude at the outflow,
�out is the coefficient to adapt the steepness of the profile and
Wout the corresponding spatial extent of the sponge layer. All
sponge parameters are listed in Table VIII.
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