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Abstract: In many applications it is natural to seek to extract a characteristic scale for a
function’s variations by reference to a frequency spectrum. Although the moments of a spectrum
appear to promise simple options to make such a connection, standard Fourier methods fail
to yield finite moments when the function’s domain is itself finite. We investigate a family of
Fourier-like bases with rapidly decaying spectra that yield well-defined moments for such cases.
These bases are derived by considering classes of functions for which a normalised mean square
derivative is stationary. They are shown to provide precisely the type of spectrum needed to
complete a recent investigation of mid-spatial frequency structure on optical surfaces [K. Liang,
Opt. Express 27, 3390-3408 (2019)].

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Fourier methods have a well-earned status in the toolbox of science and technology. The standard
methods include Fourier transforms –both continuous and discrete– as well as Fourier series.
The associated spectra, typically in terms of spatial or temporal frequencies, have widespread
applications. Oftentimes, however, generalisations or variations of the standard methods give a
vital boost to utility in certain contexts. These variations include such things as time-frequency
analysis [1], wavelets [2], and linear canonical transformations [3]. Further, since the Fourier
series is just one special case of Sturm-Liouville methods [4], other instances are close cousins
with similar orthogonality-related properties and potential advantages.

It turns out that Fourier methods often encounter significant challenges in situations where
a function is known over only a finite domain. Standard methods can sometimes be applied
in these cases by taking arbitrary steps such as replicating the function to make it complete
and periodic or by assuming the function to be zero outside the finite domain (for the Fourier
series or transform, respectively). In both these cases, however, even when the finite domain can
be replicated to effectively tesselate a complete function that is periodic in each independent
variable, it is difficult to avoid spectral artefacts associated with the edges of the original domain.
The methods described below can be considered as potentially useful tools in these frequently
encountered situations.
A relevant context for this discussion is the study of the surface shape of as-built optical

surfaces with complex nominal shapes including aspheric and freeform optics [5–7]. The tool
marks left by the associated fabrication steps are generally referred to as mid-spatial frequency
structure (MSF). In order to (i) characterise, (ii) model the optical impact of, and (iii) set
tolerances for MSF, it is natural to seek the benefits that typically come from an intuitive spectral
decomposition. For most of these purposes, an orthogonal polynomial basis has been shown
to be well matched [8]. The second of these steps, however, is typically performed by using a
perturbation approximation and we recently showed that the accuracy of that approximation can
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be estimated in terms of the mean squared Laplacian of the MSF [9]. In a simple one-dimensional
model, it is the mean squared second derivative that is required, of course. Although we claimed
that such entities could be related to a fourth moment of the associated Fourier spectrum, we
did not explicitly show how such a spectrum can be computed in general. In fact, we did not
appreciate the subtleties involved and, once they were understood, came to the view that the
required methods and ideas are valuable in themselves and potentially of more general interest.
To have a finite fourth moment, a spectrum must be sufficiently well localised. Figure 1(a)

shows for an analytic function that orthogonal (Legendre) polynomials yield spectra that decay
exponentially [10], and hence possess finite spectral moments of any order. On the other hand,
the standard Fourier basis decays slowly and is not localised enough for the calculation of a
fourth – or even second – spectral moment. It is shown below that a class of rapidly decaying
Fourier-like (RDF) decompositions has increasingly compact spectra, as demonstrated in Fig. 1,
and can provide a useful connection between these two limits. In this way, we finally resolve
the nature of the spectra referred to in [9] that gives access to an intuitive characteristic scale of
a function’s variations. Interestingly, some of these RDF bases are useful in a range of other
applications [11–15].

Fig. 1. Two different depictions of the power spectra of various bases as functions of (a)
basis element index and (b) eigenvalue, for the antisymmetric sinusoid with 8.8 cycles over
a finite region shown in the inset at top right of (a). Note that only the coefficients of the
odd elements in each basis are shown since those of the even components vanish. The
Fourier basis and the Legendre polynomials, shown only in (a), give the slowest and fastest
decay rates, respectively. The artificial high-frequency components in the Fourier series are
associated with the mismatched behavior at the interval’s ends; in keeping with Parseval’s
theorem, the spectrum for the low frequency content is lowest for the Fourier basis. The
RDF bases exhibit intermediate decay rates and admit progressively more finite moments.

2. RDF bases in one dimension

The derivation of the basis elements with the desired properties proceeds by requiring a certain
normalized mean square derivative over the finite domain a = [−L/2,L/2] to take a stationary
value. In particular, we look for real functions V(x) such that the ratio∫

a[V
(N)(x)]2 dx∫

a V
2(x) dx

, (1)

is stationary, where N ≥ 1 is a positive integer and V(N)(x) denotes the N-th derivative. This
can be achieved by introducing α, a Lagrange multiplier, in order to construct the following
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functional:
L(V,α) =

∫
a
[V(N)(x)]2 dx − α2N

∫
a
V2(x) dx. (2)

Upon slightly perturbing V, namely V(x) → V(x) + ε(x), there should be no change to L at first
order [or equivalently to the value of the expression in Eq. (1)]. By making this substitution and
expanding, we find

L(V + ε,α) =L(V,α)+2
[∫

a
V(N)(x)ε(N)(x) dx − α2N

∫
a
V(x)ε(x) dx

]
+O(ε2). (3)

Stationarity follows upon choosing V so that the quantity within square brackets in Eq. (3)
vanishes for any ε(x). It is possible to rewrite this term by performing integration by parts N
times on the first integral in order to shift all of the derivatives from ε to V. The resulting
expression contains terms evaluated at the endpoints plus an integral in x whose integrand has
a global factor of ε(x). Requiring the result to vanish for arbitrary ε(x) leads to the following
2N-th order Sturm-Liouville differential (eigenvalue) system:

V(2N)(x) = (−α2)NV(x), V(j)
(
−

L
2

)
= V(j)

(
L
2

)
= 0 for j = N, . . . , 2N − 1. (4)

The solutions to Eq. (4) naturally split into even and odd forms given by

NVe,i(x) = N
Γe,i

N−1∑̀
=0

a` cos
[
(−1)`/Nαe,ix

]
, (5a)

NVo,i(x) = N
Γo,i

N−1∑̀
=0

b` sin
[
(−1)`/Nαo,ix

]
, (5b)

where (without loss of generality) a0 = b0 = 1, and the remaining values of a` , b` as well as the
eigenvalues αe,i and αo,i are determined by the boundary conditions in Eq. (4). Finally, NΓe,i and
NΓo,i are normalization constants chosen such that∫

a

[NVe,i(x)
]2 dx = 1 and

∫
a

[NVo,i(x)
]2 dx = 1. (6)

Although it is not immediately obvious, it turns out that the RDF elements in Eqs. (5) are
real-valued. Because this is a Sturm-Liouville problem, it is guaranteed that there are an infinite
number of eigenvalues (found to be roughly proportional to i).
In addition to the solutions in Eqs. (5), there are N solutions (degenerate for N>1) with

eigenvalue equal to zero that, in keeping with orthonormality, can be taken to be

NVd,i(x) =

√
i + 1/2

L/2
Pi

(
x

L/2

)
, for i = 0, . . . ,N − 1, (7)

where the Legendre polynomial Pi(x) is taken to be defined over [−1, 1]. Note that these
degenerate solutions are also alternately even and odd and automatically satisfy the boundary
conditions of Eq. (4). In the limit N →∞, only this degenerate polynomial subspace remains,
with eigenvalue α = 0. This observation reveals an explicit connection of this family of bases
between polynomials (N → ∞) and the Fourier basis (similar to the case of N = 1). For
intermediate values of N, the non-degenerate subspace of solutions given in Eqs. (5) has
properties that transition between orthogonal polynomials and Fourier series.
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Since Eq. (4) is a Sturm-Liouville differential equation, it is well-known that the values of
αe,i and αo,i alternate in ascending order. Hence, it is straightforward to assign a global ordering
to RDF elements simply through the order of their associated eigenvalues. The degenerate
orthogonal polynomials (which all have zero eigenvalue) can be ordered as the first N elements
through their polynomial degree. Once ordered, the basis elements can simply be referred to
through NVn(x) with eigenvalue αn, where n corresponds to the number of zeros. Figure 2 shows
some of these functions for N = 1, 2, 3, and 4, along with the standard Fourier basis and the
Legendre polynomials (N →∞) for comparison. It is evident that larger N values give rise to
non-degenerate basis elements that are steeper near the boundaries of the region.

Fig. 2. The first seven elements of (a) the Fourier basis, (b) - (e) NVn(x) for N = 1, 2, 3, 4 and
(f) the Legendre polynomials, plotted over a region [−L/2,L/2]. The α = 0 (polynomial)
elements for the RDF bases are shown as dashed curves; as N becomes large, the RDF basis
approaches the Legendre polynomials. Note that NVn(x) has n zeros over [−L/2,L/2].

RDF functions are orthogonal under two different inner products:∫
a

NVn(x) NVn′(x) dx = δnn′ , (8a)∫
a

NV(N)n (x) NV
(N)
n′ (x) dx = α2N

n δnn′ , (8b)

While the first of these relations is a natural result of the fact that these are the eigenfunctions of
a Hermitian operator, namely (d/dx)2N along with Eq. (4), the proof of the second requires N
iterations of integration by parts as well as Eq. (4). It follows from the first of these orthogonality
relations that the RDF expansion of any function µ(x) (e.g. the height of a surface with MSF
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structure) can be written as

µ(x) =
∞∑

n=0

Ncn
NVn(x), where Ncn =

∫ L/2

−L/2
µ(x) NVn(x) dx. (9)

Additionally, the squared norm of µ(x), referred to here as M, can be expressed as the sum of the
square of the coefficients following Parseval’s relation as

M , 〈µ2(x)〉 =
∑

n

(
Ncn

)2
. (10)

By using Eq. (4) and integration by parts it is possible to rewrite the integral in Eq. (9) as

Ncn =
1
α2N

n

[
µ(N) NV(N−1)n

����
a
−

∫
a
µ(N+1)(x) NV(N−1)n (x) dx

]
. (11)

As can be seen from Eqs. (5), the first term inside the square brackets of Eq. (11) has a leading
behavior that is proportional to αN−1

n . Therefore, in the limit of large n, the spectral coefficients
|Ncn |

2 generally decay as α−(2N+2)
n , so the lines in the log-log plot in Fig. 1(a) approach a slope of

−(2N + 2) for large n. Note that continuing to integrate Eq. (11) by parts leads to a closed-form
expression for the RDF expansion whenever µ(x) is a polynomial.
The second orthogonality relation, Eq. (8b), gives access to a simple calculation for the

normalized mean square of the N-th derivative of µ(x) akin to the form appearing in Eq. (1):

1
M

〈[
∂N

∂xN µ(x)
]2〉
=

1
M

∫
a

[∑
n

Ncn
NV(N)n (x)

]2
dx

=
1
M

∑
n

∑
n′

Ncn
Ncn′

∫
a

NV(N)n (x) NV
(N)
n′ (x) dx,

=
1
M

∑
n

(
Ncn

)2
α2N

n ,

(12)

where Eq. (8b) was used in the last step and M is defined in Eq. (10). This equation reveals that
the mean square N-th derivative corresponds simply to a normalized spectral moment of order
2N. Furthermore, the n-th RDF element has n zeros across this region; this provides an intuitive
understanding as to why the RDF spectra shown in Fig. 1(a) peak around the seventeenth basis
element (the sinusoid in the inset of Fig. 1 has 17 zeros). In Fig. 1(b), which shows the same
coefficients plotted against their eigenvalues, the peak is approximately at 2π 8.8 ≈ 55.3.
To give a clearer appreciation, the RDF basis for each of the cases of N = 1 and N = 2 is

derived in the following subsections.

2.1. N = 1
For N = 1, Eq. (4) can be solved to give even and odd orthonormal solutions of the form

1Ve,i(x) =
√

2
L

cos(αe,ix), (13a)

1Vo,i(x) =
√

2
L

sin(αo,ix), (13b)

where the allowed values of αe,i and αo,i are given by

αe,i =
2π
L

i and αo,i =
2π
L

(
i +

1
2

)
, (14)
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for i ≥ 1. The zero eigenvalue has the solution 1Vd,0 = 1/
√

L. After ordering the even, odd, and
degenerate solutions in the manner described earlier, the eigenvalues can be written as αn = πn/L,
with n ≥ 0. Note that the solutions given by Eqs. (13) satisfy Neumann boundary conditions,
whereas the standard Fourier basis functions satisfy periodic boundary conditions (see Fig. 2).

2.2. N = 2
For N = 2, Eq. (4) can be solved to give orthonormal, non-degenerate solutions of the form

2Ve,i(x) =
√

1
L

[ cos
(
αe,ix

)
cos(αe,iL/2)

+
cosh

(
αe,ix

)
cosh(αe,iL/2)

]
, (15a)

2Vo,i(x) =
√

1
L

[ sin
(
αo,ix

)
sin(αo,iL/2)

+
sinh

(
αo,ix

)
sinh(αo,iL/2)

]
, (15b)

where the allowed values of αe,i and αo,i correspond to the roots of the following transcendental
equations:

tan(αe,iL/2) = − tanh(αe,iL/2) and tan(αo,iL/2) = tanh(αo,iL/2). (16)

The roots to Eq. (16) are well approximated by the simple expressions

αe,i ≈
2π
L

(
i −

1
4

)
and αo,i ≈

2π
L

(
i +

1
4

)
, (17)

for i ≥ 1. The two degenerate solutions are given by 2Vd,0(x) =
√
1/L and 2Vd,1(x) =

√
12/L3x.

It should be noted that the RDF elements for N = 2 correspond directly to the vibrational
modes of an unclamped one-dimensional bar [11–13]. As alluded to in Sec. 1, this basis is also a
natural choice for the assessment of the validity of the perturbation model for the propagation of
one-dimensional MSF structures in imaging systems and – as given in Eq. (12) – it has a valuable
fourth spectral moment in that context [9].

3. RDF elements in two dimensions: flat space

The analysis in Secs. 2.1 and 2.2 is readily extended to find two-dimensional RDF bases for
the case of a circular region a with radius R, where plane polar coordinates (r, φ) are a natural
choice. For this case, there are multiple ways to generalize higher derivatives from one to two
dimensions. In keeping with the motivation of minimizing RMS-derived quantities of the surface
structure, consider the following functional that is analogous to Eq. (2):

L(V,α) =
∬

a

��∇NV(r, φ)
��2 r dr dφ − α2N

∬
a
V2(r, φ)r dr dφ, (18)

where we adopt the notation

∇N ,

{
(∇2)N/2, N even,
∇(∇2)(N−1)/2, N odd.

(19)

This means that the vertical bars in the first integral of Eq. (18) represent either a scalar (N even)
or a vector (N odd) absolute value.
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Similar variational calculations, described in Appendix A, can now be performed to ultimately
arrive at the following 2N-th order Sturm-Liouville differential (eigenvalue) system:

∇2NV(r, φ) = (−α2)NV(r, φ), D̂jV(r, φ)
����
r=R
= 0, for j = N, . . . , 2N − 1, (20)

where the differential operator D̂j is given by

D̂j ,

{
(∇2)j/2, j even,
∂r(∇

2)(j−1)/2, j odd.
(21)

The differential equation in Eq. (20) can be solved by first performing a separation of variables
where the solution is expressed as NVm

n (r, φ) = NRm
n (r)Φm(φ). [Once again, the Sturm-Liouville

nature of Eq. (20) guarantees that the solutions are orthogonal and form a basis.] For all values
of N, the azimuthal part of the solution can be written according to

Φm(φ) =
1
√
π


1/
√
2, m = 0,

cos(mφ), m>0,
sin(|m|φ), m<0,

(22)

where m ∈ Z. It is always possible to label and order n such that n ∈ Z+. The remaining ordinary
differential equation for NRm

n (r), see Appendix B, has the solution

NRm
n (r) =

N
Γ

m
n

N−1∑̀
=0

c`Jm

[
(−1)`/Nαm

n r
]
, (23)

where c0 = 1 and NΓnm is a normalization constant determined by∬
a

��NVm
n (r, φ)

��2 r dr dφ = 1. (24)

The remaining values of c` and the allowed values of αm
n are determined by the boundary

conditions in Eq. (20).
The differential (eigenvalue) system in Eq. (20), for a given value of m and N>1, has bN/2c

solutions (degenerate for N>3) with eigenvalue α = 0. These are given by

NVm
d,j(r, φ) =

√
j + 1
πR2

r |m |

R |m |
Zm

j

(
r2

R2

)
Φm(φ), for j = 0, . . . , bN/2c − 1, (25)

where the radial Zernike polynomial Zm
j (x) is defined as in [16]. In addition, for odd N and m = 0,

there is one other solution for α = 0 of the form√
(N + 1)/2
πR2 Z0

N−1
2

(
r2

R2

)
. (26)

Once again, this degenerate subspace is all that remains as the solutions for Eq. (20) in the limit
of N →∞. All these solutions satisfy the following orthogonality relations:∬

a

NVm
n (r, φ) NVm′

n′ (r, φ) r dr dφ = δnn′ δmm′ , (27a)∬
a
∇N [NVm

n (r, φ)
]
· ∇N

[
NVm′

n′ (r, φ)
]

r dr dφ =
(
αm

n
)2N

δnn′ δmm′ . (27b)

We again consider the cases of N = 1 and N = 2 explicitly.



Research Article Vol. 27, No. 22 / 28 October 2019 / Optics Express 32270

3.1. N = 1

For N = 1, the two-dimensional version of Eq. (2) becomes

L(V,α) =
∬

a
|∇V(r, φ)|2r dr dφ − α2

∬
a
V2(r, φ)r dr dφ. (28)

The analogous variational calculation (see Appendix A) in two dimensions leads to the following
second-order Sturm-Liouville partial differential system:

∇2 V(r, φ) = −α2V(r, φ),
∂

∂r
V(r, φ)

����
r=R
= 0. (29)

Equation (29) can be solved to yield orthonormal solutions of the form 1Vm
n (r, φ) = 1Rm

n (r)Φm(φ),
where

1Rm
n (r) =

√
2 Jm(α

m
n r)

R
√

J2m(αm
n R) − J2m−1(α

m
n R)

, (30)

where Jm is the m-th order regular Bessel function of the first kind. The allowed values of αm
n are

given by the roots of the following transcendental equation:

Jm−1(α
m
n R) = Jm+1(α

m
n R). (31)

For a given value of |m|, these eigenvalues are approximately given by

αm
n ≈

π

R

(
n +
|m|
2
−
3
4

)
, (32)

for large n. The α = 0 solution, as indicated in Eq. (26), is the constant function

1V0
d,0(r, φ) =

1
√
πR2

Z0
0

(
r2

R2

)
=

1
√
πR2

. (33)

3.2. N = 2

For N = 2, the two-dimensional version of Eq. (2) becomes

L(V,α) =
∬

a
|∇2V(r, φ)|2r dr dφ − α4

∬
a
V2(r, φ)r dr dφ. (34)

Once again, variational calculations can be performed to yield a fourth-order Sturm-Liouville
partial differential equation:

∇4 V(r, φ) = α4V(r, φ), ∇2V(r, φ)
����
r=R
= 0,

∂

∂r
[∇2V(r, φ)]

����
r=R
= 0. (35)

Again with Eq. (22), Eq. (35) can be solved to yield orthonormal solutions of the form
2Vm

n (r, φ) = 2Rm
n (r)Φm(φ), where

2Rm
n (r) =

1
R

[
Jm(α

m
n r)

Jm(α
m
n R)
+

Im(α
m
n r)

Im(α
m
n R)

]
, (36)

for n ≥ 1, where Im is the m-th order modified Bessel function of the first kind. The allowed
(discrete) values of αm

n are the roots of the following transcendental equation:

Im−1(α
m
n R)

Im(α
m
n R)

=
Jm−1(α

m
n R)

Jm(α
m
n R)

. (37)
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For a given value of |m|, these eigenvalues satisfy

αm
n ≈

{
(n + |m|)π/R, m even,
(n + |m| − 1/2)π/R, m odd,

(38)

for large n. The solutions with α = 0, as indicated by Eq. (25), are

2Vm
d,0(r, φ) =

1
√
πR2

r |m |

R |m |
Zm
0

(
r2

R2

)
Φm(φ) =

1
√
πR2

r |m |

R |m |
Φm(φ). (39)

Figures 3 and 4 shows some of these basis elements. In analogy with the one-dimensional
solutions in Eqs. (15), the solutions given by 2Vm

n (r, φ) happen to describe the elastic modes of
unclamped thin disks [11–13], and have been used to study deformable mirrors [14]. Furthermore,
in two-dimensional paraxial imaging systems with MSF structures, these solutions are a natural
basis for the assessment of the perturbation model [15]; the basis required for analogous studies
of non-paraxial imaging systems is obtained by solving Eq. (35) on a sphere rather than on flat
space, and this is considered in Sec. 4.

Fig. 3. The radial parts, 2Rm
n (r), of the first seven (referring to index n) basis elements for

m = 0, 1, 2 and 3 are shown in (a)-(d), respectively over a region [0,R]. The elements with
α = 0 are shown as dashed.
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Fig. 4. Plots of 2Vm
n (r, φ) over a disk for several values of n and m. The plots for m<0

not shown here are identical, except for a rotation by π/(2|m|) about the z-axis. These
solutions correspond to the vibrational modes of a flat unclamped disk (except for the first
two solutions for n = 0). The row n = 0, which is encased in a dashed frame, represents
the solutions with α = 0. This 3D view of 2D functions is configured for consistency with
Fig. 5.

4. RDF bases in two dimensions: spherical space

Equation (35) can also be solved with the spherical polar coordinate system (ϑ, φ), where ϑ is
the colatitude (polar) angle and φ is once again the azimuthal angle. We define the region a to
be a spherical cap centered at the north pole, with colatitude boundary ϑ0. The derivation of
the Sturm-Liouville differential system, analogous to that in Eq. (20), is shown in Appendix A.
Furthermore, orthogonality relations like those in Eqs. (27) of the corresponding solutions to this
differential system (the RDF basis elements for a spherical cap) are also stated in Appendix A.
For brevity, we analyze only the case N = 2, whose elements happen to correspond to the

vibrational modes of an unclamped solid spherical cap. As mentioned at the end of Sec. 3.2, this
basis arises naturally in the analysis of the perturbation model for MSF structures in non-paraxial
imaging systems. For the coordinate system (ϑ, φ), the RDF elements are solutions to the
following differential system:

∇4 V(ϑ, φ) = α4V(ϑ, φ), ∇2V(ϑ, φ)
����
ϑ=ϑ0

= 0,
∂

∂ϑ
[∇2V(ϑ, φ)]

����
ϑ=ϑ0

= 0, (40)

where here ∇2 denotes the Laplacian in the spherical space. In this case, we find that the RDF
basis elements can be written in terms of the regular and modified spherical harmonics:

2Vm
n (ϑ, φ) = 2

Γ
m
n

{
Pm

f+(αm
n )
[cos(ϑ)]

Pm
f+(αm

n )
[cos(ϑ0)]

+
Pm

f−(αm
n )
[cos(ϑ)]

Pm
f−(αm

n )
[cos(ϑ0)]

}
Φm(φ), (41)

where m ∈ Z, n ≥ 1, Pm
f± is an associated Legendre function with

f±(αnm) ,
1
2

[
−1 +

√
1 ± 4 (αm

n )
2
]
. (42)

The allowed values of the eigenvalue αm
n correspond to the roots of the following transcendental

equation:

(f+−m + 1)Pm
f++1[cos(ϑ0)]

Pm
f+ [cos(ϑ0)]

= (f+−f−) cos(ϑ0) +
(f−−m + 1)Pm

f−+1[cos(ϑ0)]
Pm

f− [cos(ϑ0)]
, (43)



Research Article Vol. 27, No. 22 / 28 October 2019 / Optics Express 32273

where the explicit dependence of f± on αm
n in Eq. (43) has been left off for convenience. For a

given value of |m|, these eigenvalues satisfy

αm
n ≈

{
(n + |m|)π/ϑ0, m even,
(n + |m| − 1/2)π/ϑ0, m odd,

(44)

for large n. The α = 0 solutions are given by

2Vm
d,0(ϑ, φ) =

tanm(ϑ/2)Φm(φ)√
1 + cos(ϑ0) + 2(1−2m)

1+2m 2F1
[
1, 12 + m, 32 + m,− tan2(ϑ0/2)

]
tan1+2m(ϑ0/2)

, (45)

where the denominator is a normalization constant with 2F1(a, b, c, z) being a hypergeometric
function. Figure 5 shows some of these basis elements.

Fig. 5. Plots of 2Vm
n (ϑ, φ) over a spherical cap with ϑ0 = π/3 for several values of n and m.

The plots for m<0 not shown here are identical, except for a rotation by π/(2|m|). These
solutions correspond to the vibrational modes of an unclamped spherical cap (except for the
first two solutions for n = 0). The row n = 0, which is encased in a dashed frame, represents
the solutions with α = 0.

5. Concluding remarks

We were motivated to pursue the ideas reported above by the fact that the fourth moment
of an RDF-spectrum gives intuitive access to a physically significant characteristic length in
investigations of MSF structure on optical surfaces [9,15]. As indicated in Eqs. (12) and more
generally from (27b), these RDF bases allow the determination of the mean square N-th derivative
of a function in terms of a spectral moment of order 2N. For example, mean square slopes can be
determined from the second moment of the spectra associated with the RDF bases presented in
Secs. 2.1 and 3.1. Notice that this is quite different from a slope-orthogonal polynomial basis
(akin to the Q polynomials [17], for example) where the mean-square slope is found by summing
the squares of the spectral coefficients themselves. As pointed out in the Sec. 1, however, those
polynomials are well matched to other aspects of the investigation of the characterization and
modelling of MSF structure. By contrast, it follows from Eqs. (8a) and (27a), that the sum of
squares of the RDF spectral coefficients is the mean square value of the decomposed function
itself, see Eq. (10). In some contexts, it may also be of value to exploit the curious fact that the
RDF bases are also bi-orthogonal in the more general sense of Eq. (55). Such properties are
indicators of strong similarities to Fourier bases and give RDF bases potential value for a variety
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of applications that involve functions defined over finite domains. Indeed, certain subsets of
RDF bases are already used in the study of elastic deformations of finite domains in different
geometries [11–15].

Appendix A. Details of RDF derivation in two dimensions

In this appendix, we show the details of several steps in the derivation of the RDF bases in two
dimensions. This will be done in general curvilinear coordinates (u, v), and can be specialized to
treat both the plane polar and spherical polar coordinates used in Secs. 3 and 4, respectively. We
begin with

L(V,α) =
∬

a

��∇NV(u, v)
��2 dA − α2N

∬
a
V2(u, v) dA, (46)

where dA is the infinitesimal area element of the corresponding metric associated with (u, v).
As in the one-dimensional case, one perturbs V(u, v) by ε(u, v) and requires L to be stationary

(unchanged to first order), hence

L(V + ε,α) = L(V ,α) + 2
[∬

a

(
∇NV

)
·

(
∇Nε

)
dA − α2N

∬
a

Vε dA
]
+ O(ε2), (47)

where the · operation is a scalar product between two scalar quantities or two vector quantities,
depending on whether N is even or odd, respectively. Stationarity then requires the quantity
within the square brackets of Eq. (47) to vanish for any ε. The first step in this process is to
transfer the derivatives from ε over to V in the first integral within the square brackets. That
integral can be written, using the product rule, as∬

a

(
∇NV

)
·

(
∇Nε

)
dA =

∬
a
∇ ·

[(
∇NV

) (
∇N−1ε

)]
dA −

∬
a
∇N+1V · ∇N−1ε dA. (48)

(Note that, depending on the parity of N, either the product within the integrand of the left-hand
side or that in the second term of the right-hand side are a scalar product of two vectors while the
other is a multiplication of two scalars.) We now use Gauss’s theorem to express the first integral
on the right side of Eq. (48) as a boundary term, hence∬

a

(
∇NV

)
·

(
∇Nε

)
dA =

∫
∂a

[(
∇NV

) (
∇N−1ε

)]
· d®S⊥−

∬
a
∇N+1V · ∇N−1ε dA. (49)

At this point, one derivative has been transferred from ε to V , but we are left with a boundary
term that must vanish for any ε. This condition is given by

D̂NV
����
∂a
= 0 (50)

with

D̂j ,

{
(∇2)j/2, j even,
n̂ · ∇(∇2)(j−1)/2, j odd,

(51)

where n̂ a unit vector that is parallel to d®S⊥. Note that Eq. (51) is consistent with Eq. (21) when a
is chosen to be a circular region of radius R and (u, v) = (r, φ), the plane polar coordinates.
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Repeating the process from Eqs. (48) to (49) N times and forcing each boundary term to
vanish, the quantity in the square brackets in Eq. (47) ultimately becomes∬

a

[
(−1)N∇2NV − α2NV

]
ε dA. (52)

By requiring Eq. (52) and the boundary terms to vanish for any ε, we end up with the following
differential system:

∇2NV = (−α2)NV , D̂jV
����
∂a
= 0, for j = N, . . . , 2N − 1. (53)

Equation (53) is a coordinate-free form of Eq. (20) in Sec. 3, which uses plane polar coordinates.
For Sec. 4, the coordinates (ϑ, φ) are used and n̂ · ∇ = ∂ϑ in the definition of D̂j.
Since Eq. (53) is a Sturm-Liouville problem, it has solutions NVm

n (u, v) with eigenvalue αm
n ,

where n and m are integers. These solutions are orthogonal with respect to two inner products:∬
a

NVm
n (u, v) NVm′

n′ (u, v) dA = δnn′δmm′ , (54a)∬
a
∇N [NVm

n (u, v)
]
· ∇N

[
NVm′

n′ (u, v)
]
dA =

(
αm

n
)2N

δnn′δmm′ . (54b)

We note for completeness that the solutions NVm
n (u, v) also satisfy the following more general

orthogonality relation:∬
a
∇N1

[NVm
n (u, v)

]
· ∇N2

[
NVm′

n′ (u, v)
]
dA =

(
αm

n
) (N1+N2) δnn′δmm′ , (55)

valid for any non-negative integer N1 and N2 for which N1 +N2 is an integer multiple of 2N. This
relation includes Eqs. (54) as special cases. The one-dimensional analogue for these relations
arises by replacing ∇ with a simple derivative.
For completeness, we state the gradient and divergence for plane polar coordinates (r, φ) and

the spherical polar coordinates (ϑ, φ). The former is given by

∇g(r, φ) =
(
∂rg,

1
r
∂φg

)
, (56)

∇ · [fr(r, φ), fφ(r, φ)] =
1
r
∂r (rfr) +

1
r
∂φfφ , (57)

and the latter by

∇g(ϑ, φ) =
(
∂ϑg,

1
sin ϑ

∂φg
)
, (58)

∇ · [fϑ(ϑ, φ), fφ(ϑ, φ)] =
1

sin(ϑ)
∂ϑ [sin(ϑ)fϑ] +

1
sin(ϑ)

∂φfφ . (59)

The corresponding area elements are given by dA = rdrdφ and dA = sin(ϑ)dϑdφ, respectively.

Appendix B. Separation of variables

Here, we show that the method of separation of variables may be used to solve the differential
equation in Eq. (53) in the specific case of plane polar coordinates (r, φ); the procedure in
spherical polar coordinates is similar since both coordinate systems have the same azimuthal
coordinate φ.
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It follows from Eqs. (56) and (57) that the differential equation in Eq. (53) is[
1
r
∂r (r∂r) +

1
r2
∂2φ

]N
V(r, φ) = (−α2)NV(r, φ). (60)

By assuming a solution of the form V(r, φ) = R(r)Φm(φ), Eq. (60) can be written as[
1
r
∂r (r∂r) +

1
r2
∂2φ

]N
R(r)Φm(φ) = (−α

2)NR(r)Φm(φ)

⇒

[
1
r
∂r (r∂r) −

m2

r2

]N

R(r) = (−α2)NR(r).
(61)

Equation (61) is an ordinary differential equation for R(r) and its solutions are given by Eq. (23).
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