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Oscillatory brain activity has functional relevance for perceptual and cognitive processes,

as proven by numerous electrophysiology studies accumulating over the years. However,

only within the past two decades have researchers been able to study the causal

role of such oscillations using transcranial magnetic stimulation (TMS) technology. Two

complementary approaches exist. A majority of research employs rhythmic TMS (rTMS)

to entrain oscillatory activity and investigate its effect on targeted brain functions. On

the other hand, single pulses of TMS (spTMS) that can be delivered with a high

spatio-temporal resolution, can be used to precisely probe the state of the system. In

this mini-review, we concentrate on this second approach. We argue that, with no a

priori hypothesis on the oscillatory frequency of the targeted cortical regions, spTMS

can help establish causal links between spontaneous oscillatory activity and perceptual

and cognitive functions. Notably, this approach helped to demonstrate that the occipital

cortex is periodically involved during specific attentional tasks at the theta (∼5 Hz)

frequency. We propose that this frequency reflects periodic inter-areal communication

for attentional exploration and selection. In the future, clever combination of non-invasive

recording and stimulation with well-controlled psychophysics protocols will allow us to

further our understanding of the role of brain oscillations for human brain functions.
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INTRODUCTION

Since the early ages of neuroimaging, researchers have devoted their energy to understanding
the relation between brain activity and sensory experience. Using invasive recording in animal
models, such as monkeys or mice, they learned a great deal about the behavior of single
neurons, populations of neurons (Buzsáki et al., 2012), and the link between their activity
and behavioral processes. Technological advances allowed neuroscience research to move
toward a better understanding of human brain functions by employing non-invasive, in vivo
recordings. Recording neural brain activity using electro/magneto-encephalography (EEG/MEG) is
particularly productive, allowing one to characterize, with high temporal resolution, the dynamics
of the neural substrates of specific perceptual and cognitive functions.

Numerous researchers support the idea that neural oscillations dynamically modulate
perception and cognition (Thut et al., 2012; VanRullen, 2016). This topic gathers increasing
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interest in the scientific community while compelling evidence
accumulates. A variety of brain functions, such as attention
(e.g., Busch and VanRullen, 2010; Dugué et al., 2015a, 2016;
Landau et al., 2015), perception (e.g., Ergenoglu et al., 2004;
Busch et al., 2009; Romei et al., 2010; Dugué et al., 2011b), and
memory (e.g., Jensen et al., 2002; Bonnefond and Jensen, 2012),
have been correlated to oscillations in specific brain areas and
frequency bands. The question remains, however, as to whether
these oscillations are a mere by-product of brain processing,
or carry functional meaning and constitute the neural substrate
underlying perception and cognition.

To address this question, one can focus on spontaneous
oscillatory activity and its predictive nature for subsequent
processing (VanRullen et al., 2011; VanRullen, 2016, in press).
If neural oscillations have a specific, functional role, then
it is possible to link their spectral properties (frequency,
phase, and amplitude) to perceptual and/or cognitive processes
assessed via behavioral measurements. However, were such a
link established, it would be correlational. Non-invasive brain
stimulation (NIBS) has recently provided a way to move
beyond correlational analyses and establish a causal relation
between neuronal excitability and brain processes (Silvanto and
Muggleton, 2008; Thut and Miniussi, 2009; Thut and Pascual-
Leone, 2010; Thut, 2014) with good spatial and temporal
resolution. This mini-review considers experiments in which
single-pulse Transcranial Magnetic Stimulation (spTMS), a NIBS
methodology with high spatial and temporal resolution, is used
to probe spontaneous oscillations, and establish a causal link
with perceptual and cognitive processes (Miniussi et al., 2013
for other NIBS approach). We compare this approach to the
rhythmic-TMS (rTMS) approach in which brain activity is
entrained at a predefined oscillatory frequency to evaluate its
causal role on subsequent performance, and argue that it can
bring additional information regarding the role of spontaneous,
oscillatory activity on perceptual and cognitive processes.

RHYTHMIC NON-INVASIVE BRAIN
STIMULATION

In 1985, Barker and colleagues first demonstrated that non-
invasive magnetic stimulation of the motor cortex can produce
a Motor Evoked Potential (MEP), thus probing neuronal
excitability of the targeted area (Barker et al., 1985). This
was the starting point of an extensive literature on the use
of magnetic pulses to study motor physiology, and, later,
cognition and perception (Wassermann et al., 2008). Amassian
first proposed that spTMS could act as a reversible, virtual
lesion (Amassian et al., 1989), and thus inform the role of given
regions in particular functions. Later on, rTMS was applied off-
line (i.e., before assessment of TMS-induced neural changes) to
specific brain regions in order to increase (with high frequency
stimulation) or decrease (with low frequency stimulation; <1
Hz) spontaneous excitability, and thus alter specific functions
(Pascual-Leone et al., 1998; Kobayashi and Pascual-Leone, 2003).
rTMS also became a candidate treatment of brain disorders
associated with abnormal synchronization of neural ensembles

such as autism, Parkinson, or schizophrenia (Uhlhaas and Singer,
2006). Positive treatment outcomes suggest that synchronizing
(or desynchronizing) neural activity could help to treat some
of these pathologies. For example, entraining oscillatory activity
in the motor cortex would modulate motor functions (Joundi
et al., 2012). rTMS has thus become a promising alternative to
pharmacological or electroconvulsive therapy, especially in cases
of medication-resistant disorders.

More recently, rTMS was used online, i.e., concurrently with
perceptual tasks, to interact with, or induce oscillatory activity
in the stimulated region, for investigating the role of such
oscillation, at particular frequencies, on subsequent performance.
Chanes et al. recently showed that a 4-pulse pattern, at specific
frequencies (30 and 50 Hz), applied over the right frontal eye
field (FEF), enhances performance in a visual detection task.
Interestingly, when a 4-pulse pattern, covering the same time-
window, but with no frequency specificity (random pattern), is
applied over the same region, no such effect is observed (Chanes
et al., 2013). The authors suggest that rhythmic stimulation
patterns are able to synchronize neural activity at particular
frequencies, and infer a link between neural oscillations and
perceptual performance. However, because brain activity was not
recorded during the stimulation, the conclusion is speculative.
The first study to successfully demonstrate the ability of rTMS to
entrain oscillatory activity in visual areas is by Thut et al. (2011).
They applied rTMS over the parietal cortex at the individual
alpha peak frequency (∼10 Hz) while simultaneously recording
brain activity using a TMS-compatible EEG (Thut et al., 2011).
They observed that the stimulation is able to produce, and
progressively enhance, parietal alpha activity, and that this effect
is dependent on the phase of ongoing alpha oscillations prior
to the stimulation. Similarly, studies have shown that rTMS can
entrain beta oscillations in non-visual areas such as prefrontal
cortex (Hanslmayr et al., 2014) and motor cortex (Romei et al.,
2015). These results confirm that rTMS is able to entrain ongoing
neural oscillations, consequently impacting brain functions and
subsequent perceptual performance (Romei et al., 2016 for a
comprehensive review).

This mini-review focuses on visual and motor systems.
However, rTMS has been applied to other systems, e.g., auditory
and somatosensory systems, but to a lesser extent. This can be
due to multiple factors such as: (1) the visual and motor systems
have the advantage, when stimulated, to provide easily observable
outcomes (phosphene and motor response, respectively) that
directly reflect cortical excitability; (2) visual cortex and motor
cortex are large regions that can be easily mapped; (3) stimulation
of the auditory cortex is uncomfortable for the participants (close
to the ear and nerves innervating the face); (4) the rTMS itself
induces somatosensory sensations making it difficult to draw
conclusions when stimulating the sensorimotor area.

The rTMS approach has proven useful to link oscillations in
given brain areas, and at particular frequencies, and cognitive
or perceptual processes. Yet, it occludes information about
the ongoing state of the system and the role of spontaneous
oscillations on brain functions. Additionally, to perform such an
experiment, a priori hypotheses about the stimulation frequency
to apply to the cortical region are necessary. In the next section,
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we argue that TMS in its single-pulse form (spTMS) can be used
to probe the intrinsic state of the system and its role on brain
functions.

TMS TO PROBE INTRINSIC RHYTHMICITY
OF PERCEPTION AND ATTENTION

In the past decade, accumulating evidence has demonstrated
the predictive nature of the spectral components of ongoing
oscillations (i.e., phase and amplitude) on perceptual processes
(VanRullen et al., 2011; VanRullen, 2016, in press). Interestingly,
TMS, and in particular spTMS due to its high temporal and
spatial resolution compared with other stimulation techniques
such as tACS/tDCS (Paus et al., 2001; Miniussi et al., 2013),
can be used to characterize spontaneous activity and its role on
perceptual processes. Here, we review three ways in which spTMS
has been used to do so.

First, spTMS helped characterize the natural frequency of
spontaneous oscillations. Applied over three distinct cortical
areas while recording EEG activity and in the absence of
perceptual task, spTMS consistently evokes alpha oscillations (8–
12 Hz) in occipital cortex, low beta (13–20 Hz) in parietal cortex
and high beta (21–50Hz) in frontal cortex, even when these areas
are not stimulated directly by sensory information (Rosanova
et al., 2009). This result suggests that TMS can be used to probe
spontaneous oscillations, i.e., the pulse triggers the system to
resonate at its natural, intrinsic frequency.

Secondly, spTMS has been used to probe spontaneous
neuronal excitability. Specifically, several research groups,
including ours, have observed that pre-TMS, alpha oscillations
affect the outcome of the stimulation. In a TMS-EEG study,
spTMS was applied over the primary motor cortex to induce
a motor evoked potential (MEP; Sauseng et al., 2009; van
Elswijk et al., 2010). Researchers observed that MEP generation
is facilitated by low alpha amplitude prior to the stimulation.
spTMS has also been administered to the parieto-occipital pole
to induce phosphene perception (illusory flash retinotopically
located). Studies have shown that phosphene perception is
dependent on both the amplitude (Romei et al., 2008) and phase
(Dugué et al., 2011b; Romei et al., 2012) of pre-stimulation alpha
oscillations. In a nutshell, both alpha amplitude and phase are
good indicators of cortical excitability. Together, these results
suggest that ongoing alpha oscillations play a causal role in
cerebral processes, and can be successfully probed using spTMS.

Thirdly, spTMS applied at multiple delays during a behavioral
task was used to characterize the temporal dynamics of
stimulated cortical areas in specific cognitive processes. Using
a phosphene mapping procedure (Dugué et al., 2011a), TMS
was administered over the occipital pole to interact with the
retinotopic area relative to the visual stimulus presentation
(Figure 1A) while observers performed an attentional search task
(Dugué et al., 2015a). The results displays a periodic pattern
of interference at ∼6 Hz (theta) in the behavioral performance
(Figure 1B), independently associated with a periodicity in
the EEG signal at the same frequency. Applying TMS at
various intervals after search onset, this study demonstrates that

attentional search is modulated periodically by brain oscillations.
More recently, following a similar procedure (Figure 1A; Dugué
et al., 2016), TMS was used to probe theta phase-reset induced
by attentional reorienting to task relevant stimuli (Figure 1C).
By stimulating at various delays while observers performed a
2-AFC orientation discrimination task, this study demonstrates
that reorientation of voluntary attention periodically involves
occipital areas at 5 Hz (theta).

Applying spTMS at various intervals in order to investigate
the temporal dynamics of given processes comes at the cost of
temporal resolution. Indeed, such studies require the sampling of
multiple delays during the perceptual task, but given experiment
constraints, it is challenging to sample more than a dozen of
time points. Consequently, these studies can only characterize
low frequency bands, typically below ∼20 Hz. It can be argued
that a brief visual stimulus can be similarly used to characterize
the periodicity of cognitive processes, but without the concern
of temporal resolution. Yet, spTMS provides a powerful, non-
invasive tool allowing direct readout of neuronal excitability, in
a focal cortical region and at precise points in time (e.g., Romei
et al., 2010; Dugué et al., 2011b).

Contrary to the use of rTMS to entrain neuronal oscillations
to investigate their causal role on cognitive processes, spTMS
can be used as a probing mechanism of intrinsic rhythmic
processes. This method allows researchers to reveal periodicity
with no a priori hypothesis on the specific frequency of the
targeted system. The last section describes an observation we
made while reviewing the spTMS literature, and speculations
about the underlying process.

A TENTATIVE MODEL OF THE ROLE OF
ALPHA AND THETA OSCILLATIONS IN
SENSORY SAMPLING AND INTER-AREAL
COMMUNICATION

So far we have argued that spTMS can be used as a
complementary approach to rTMS to temporally probe the
state of the brain. We also showed that when stimulating over
retinotopic visual areas, one can specifically interact with a given
part of the visual environment and compare the behavioral effects
with specific, retinotopic controls (Figure 1A). We describe
here how such an approach revealed a possible link between
inter-areal communication and rhythmic attentional exploration,
and propose a tentative model of the role of alpha and theta
oscillations in such process.

Recently, in a comprehensive review of the oscillation
literature, VanRullen reported that two types of perceptual
rhythms can coexist in the visual domain: an alpha rhythm
(∼10 Hz) that would be associated with sensory processes, and
a theta rhythm (∼7 Hz) that would be associated with attentional
sampling (VanRullen, 2016, in press). spTMS studies reported
in the previous section offer to extend this observation. Used as
a probe of spontaneous neuronal excitability in the early visual
cortex, spTMS reveals that occipital alpha oscillations (i.e., the
natural frequency of this area) can predict the outcome of given
perceptual processes. Critically, when attentional exploration
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FIGURE 1 | Single-pulse TMS applied to specific retinotopic regions. (A) Phosphene mapping procedure, first developed by Dugué et al. (2011a). Seven pulses

of TMS are applied over the occipital pole (left or right V1/V2) to induce the perception of a phosphene (illusory flash; either on the right or the left visual field).

Observers are tasked to draw the phosphene on the screen using the computer mouse. The phosphene region, so called “stimulated region,” is then used to present

visual stimuli, whereas the symmetric, “non-stimulated” region is used as specific, retinotopic control. This approach has been applied to obtain the results

represented in (B,C). (B) In Dugué et al. (2015a), observers performed a difficult search task in which they had to look for a T among L distractor letters. Stimuli

(always four in the search array) were either presented in the stimulated or the non-stimulated region (green curve). A pulse of TMS was consistently applied ∼300 ms,

a delay known to interfere with this specific search (Dugué et al., 2011a), after the onset of the search array (fixed pulse) while another pulse was applied at various

delays around the first one. Positive values in the hit rate difference between non-stimulated and stimulated trials represent an impairment of search performance by

TMS, while negative values correspond to performance facilitation. As confirmed by complementary analyses, the hit rate fluctuations as a function of TMS delay is

periodic at 5.7 Hz (theta). The purple curve corresponds to the difference of the pink and red curves from panel C, and is also periodic at 5Hz (theta). (C) In Dugué

et al. (2016), observers performed a 2-AFC orientation discrimination task in which voluntary attention was manipulated using valid (in blue) or invalid (in red) cueing.

Performance was measured as per d’max (d’ at asymptotic performance). Two Gabor patch stimuli were presented simultaneously on the screen. Dark color plots

represent trials in which the target (Gabor patch for which the observers had to report the orientation) was in the stimulated region, while light color plots correspond

to trials in which the distractor was stimulated. In each trial, a double pulse of TMS (25 ms interval) was applied at various delays after the stimuli display onset. As

confirmed by complementary analyses, performance in the invalid condition (during which the observers have to reorient their attention to the opposite stimulus

location) fluctuates periodically at 5 Hz (theta; see purple curve in panel B). Additionally, this modulation is shifted in phase between the invalid-target stimulated and

invalid-distractor stimulated conditions.

is involved, the rhythmicity observed is, instead, at the theta
frequency. In Dugué et al. (2015a) observers had to monitor the
visual environment in a difficult search task in order to find a
target among similar looking distractors. In Dugué et al. (2016),
voluntary attention was manipulated using a central visual cue to
either a valid (same location as the target) or invalid (opposite
location) stimulus location. In invalid trials, observers had to
spatially reorient their attention to the opposite target location.
In both experiments, the stimulation of the occipital cortex
(V1/V2) induced periodic fluctuations of performance, even at
late delays after the onset of the visual stimuli. This suggests that
feedback connections between high-level control regions (e.g.,
FEF) and the occipital cortex were involved to allow attentional
exploration and selection. This inter-areal communication has
been hypothesized through hierarchical frameworks in which
low-level areas, presumably the early visual cortex, decompose
the visual input into distinct features, while high-level region(s)
perform attentional selection. Interactions between the former
and the latter would then control attentional exploration (e.g.,

Treisman, 1998; Itti and Koch, 2001; Deco et al., 2002; Juan and
Walsh, 2003; Saalmann et al., 2007; Dugué et al., 2011a, 2015a,
2016).

Interestingly, theta periodicity has been observed in various
studies in which attentional exploration is taking place,
potentially involving such feedback connections (VanRullen
et al., 2007; Busch and VanRullen, 2010; Landau and Fries,
2012; Fiebelkorn et al., 2013; VanRullen, 2013; Song et al.,
2014; Dugué et al., 2015b; Huang et al., 2015; Landau et al.,
2015; Dugué et al., in press). More recently, van Diepen et al.
(2016) used a three-alternative forced choice task to manipulate
spatial attention. They observed alpha-lateralization (higher
alpha amplitude in the ipsilateral region to the cued location)
when the target was paired with a low-similarity distractor,
but increased theta amplitude when target and distractor were
highly similar. These results motivate us to speculate further that
alpha and theta oscillations can coexist after display onset, but
that theta oscillations dominate when attentional exploration is
needed to perform the task at hand.
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FIGURE 2 | Tentative model of rhythmic attentional exploration. The

early visual cortex naturally oscillates at the alpha frequency (∼10 Hz). At the

onset of a visual display involving attentional exploration, early visual cortex

sends a first, feed-forward wave of activation to higher-order regions. Among

these regions, at least one is involved in producing an attentional rhythm. This

region will send periodic feedback to early visual cortex along with attentional

exploration; i.e., at each cycle of the attentional rhythm, the selection of a

(potentially) different stimulus (or group of stimuli) will allow the exploration of

the visual scene by attention. The attentional rhythm, most likely at the theta

frequency (∼5 Hz), will impose a periodicity to the perceptual threshold at the

same frequency. The natural alpha frequency (whose phase may be partially

reset by stimulus onset) would thus coexist with the theta attentional rhythm,

and either be recordable concurrently or be masked depending on task

relevance. Note that, depending on task demands and the participant’s

strategy, the attentional rhythm in higher-order regions may already be active

before display onset (in an anticipatory manner) and potentially influence early

visual regions by periodic feedback.

Yet, it is only through the stimulation of the occipital cortex
that a link between the oscillatory modulation of performance
and inter-areal communication can be proposed. TMS allows
revealing specific moments at which the targeted cortical area
is critical for information processing. Here, these moments
correspond to the specific timings at which the occipital
cortex receives feedback from higher-order, attentional areas.
Alternatively, it can readily be argued that the effect described
above could be observed with a feedforward-only model, i.e.,
late effects of spTMS over the occipital cortex do not prove
the presence of feedback. It is possible that the time-points of
TMS vulnerability correspond to time-points of higher-order
readout of information coming from early visual regions, e.g.,
through phase coupling between (occipital) alpha and (higher-
order) theta oscillations. However, there is good evidence that
attention acts via feedback to sensory areas. First, these feedback
connections have been described in various models of attention
(e.g., Tsotsos et al., 1995; Spratling and Johnson, 2004; Hamker
and Zirnsak, 2006; Reynolds and Heeger, 2009; Miconi and
VanRullen, 2016), and proposed to modulate the processing
of sensory information by early visual areas (e.g., Chelazzi
et al., 1993; Motter, 1994; Luck et al., 1997; Mehta et al., 2000;
Schroeder et al., 2001; Treue, 2001; Kastner and Pinsk, 2004;
Saalmann et al., 2007; Bressler et al., 2008). Second, if there
is indeed feedback during attentional exploration, and if these
feedback are periodic in the theta frequency range, they would

then periodically reset the signal in the receiving areas, i.e. alpha
oscillations in the early visual regions, and thus induce theta
oscillations in these regions as well. Finally, in Dugué et al.
(2015a), occipital EEG activity is measured during a visual search
task and an increase in the power and the phase-locking of theta
oscillations, and not alpha oscillations, is observed. Considered
together, these aforementioned studies motivate our choice to
speculate about feedback attentional signals, and propose this
tentative model of inter-areal communication and attentional
exploration.

In summary, spTMS applied at various delays over the
occipital pole can reveal rhythmicity in the communication
between low and high-level areas necessary for attentional
exploration and selection. We hypothesize that such periodicity,
most likely at the theta frequency, is measurable when inter-areal
communication is needed, i.e., during an attentional exploration
task, and comes in addition to the natural frequency (occipital
alpha; Figure 2). The corollary to this proposal is that theta
rhythmicity would also be revealed in high-level, control regions
involved in sending feedback to occipital areas permitting
attentional selection. This hypothesis could be tested by applying
spTMS at multiple time intervals over a high-level control region
(e.g., FEF) and measuring behavioral consequences during a task
involving attentional exploration and selection.

SUMMARY AND FUTURE DIRECTIONS

TMS is increasingly used in the scientific community since it
offers a unique way to establish causal relations between brain
functions and cerebral activity non-invasively in humans. rTMS
can be used to entrain brain activity at specific frequencies
to investigate the role of the entrained oscillation for given
perceptual and cognitive processes. spTMS is based on the
opposite principle. Instead of entraining targeted oscillations,
it can agnostically probe the intrinsic state of the brain. This
is useful when one has no a priori hypothesis regarding the
frequency of the oscillation of interest. spTMS is, however,
uncommon in the oscillation literature given the necessary
trade-off between temporal resolution and the amount of
trials necessary for statistical analyses. In the future, one will
need to find the sweet spot for well-controlled psychophysics
designs and appropriate non-invasive stimulation and recording
techniques.
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