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Abstract

An extension of the probabilistic learning on manifolds (PLoM), recently introduced by the au-

thors, is presented: in addition to the initial dataset given for performing the probabilistic learn-

ing, constraints are given, which correspond to statistics of experiments or of physical models.

We consider a non-Gaussian random vector whose unknown probability distribution has to sat-

isfy constraints. The method consists in constructing a generator using the PLoM and the clas-

sical Kullback-Leibler minimum cross-entropy principle. The resulting optimization problem is

reformulated using Lagrange multipliers associated with the constraints. The optimal solution

of the Lagrange multipliers is computed using an efficient iterative algorithm. At each iteration,

the MCMC algorithm developed for the PLoM is used, consisting in solving an Itô stochastic

differential equation that is projected on a diffusion-maps basis. The method and the algorithm

are efficient and allow the construction of probabilistic models for high-dimensional problems

from small initial datasets and for which an arbitrary number of constraints are specified. The

first application is sufficiently simple in order to be easily reproduced. The second one is relative

to a stochastic elliptic boundary value problem in high dimension.

Keywords: probabilistic learning, data driven, statistical constraints, Kullback-Leibler,

uncertainty quantification, machine learning

1. Introduction

The consideration of constraints in learning algorithms remains a very important and active

research topic. Bayesian updating (see for instance [1, 2, 3, 4, 5]) provides a rational frame-

work for integrating data into predictive models and has been successfully adapted to situations

where likelihoods are not readily available either because of expense or because of the nature

of available information [6, 7]. In many instances, however, relevant information is available in

the form of sample statistics rather than raw data or samplewise constraints. In these settings,

an alternative to the Bayesian framework has evolved over the past decades in the form of con-

strained maximum entropy [8] and constrained minimum cross-entropy [9, 10, 11]. This latter,

also known as the Kullback-Liebler divergence forms the basis of the method developed in the

present paper.
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The approach using the Kullback-Leibler divergence has been used extensively over the last

three decades for imposing constraints in the framework of learning with statistical models.

Many developments and applications have been published such as, for instance, the following

interesting papers devoted to the training of neural network classifiers [12], learning topological

[13], ensemble learning related to multi-layer networks [14], constraints on parameters during

learning [15], recognition of human activities [16], text categorization [17], exploration of data

analysis [18] classification problems with constrained data [19], statistical learning algorithms

with linguistic constraints [20], reinforcement learning in finite Markov Decision Processes [21],

visual recognition [22, 23, 24], optimal sequential allocation [25], identifiability of parameter

learning machines [26], speech enhancement [27], the training of generative neural samplers

[28], pessimistic uncertainty quantification problem [29], inference given summary statistics

[30, 31], optimization framework concerning distance metric learning [32] unsupervised ma-

chine learning techniques to learn latent parameters[33], graph-based semi-supervised learning

[34], speech enhancement [35], and finally, to the broad learning systems [36].

In spite of these developments, little progress has been made for non-Gaussian probabilistic

learning under statistical constraints, for the case of small datasets. The present paper is de-

voted to this framework: learning from a high-dimensional small dataset, without invoking the

Gaussian assumption. The first ingredient of the proposed approach is the probabilistic learning

on manifolds (PLoM) presented in [37], for which complementary developments can be found

in [38, 39, 40], and for which applications with validation are presented in [41, 42, 43]. This

PLoM allows for constructing a generated dataset D
g
M made up of M additional independent re-

alizations {xℓar, ℓ = 1, . . . , M} of a non-Gaussian random vector X, defined on a probability space

(Θ,T ,P), with values in Rn, for which the probability distribution PX(dx) is unknown, using

only an initial dataset DN (training set) which is a small dataset, made up of N independent

realizations {x j, j = 1, . . . ,N} of X with x j
= X(θ j) for θ j ∈ Θ and such that M ≫ N.

In this paper, we present an extension of this PLoM for which, not only the initial dataset

DN is given, but in addition, constraints are specified, in the form of statistics synthesized from

experimental data, from theoretical considerations, or from numerical simulations. The “physics-

constrained” terminology used in the title will be explained in Section 4. We thus construct a

non-Gaussian random vector Xc whose probability distribution PXc (dx) must satisfy the speci-

fied constraints. The method consists of constructing a generator of PXc (dx) using the PLoM,

for which PXc(dx) is closest to PX(dx), while satisfying the constraints. For that, the classical

Kullback-Leibler minimum cross-entropy principle is used, which is the second ingredient of the

proposed method. Consequently, an optimization problem as is formulated using Lagrange mul-

tipliers associated with the constraints. The Lagrange multipliers are evaluated as the solution to

a convex optimization problem. An efficient iterative algorithm based on the Newton method is

proposed. At each Newton iteration, a MCMC algorithm has to be used for estimating the gra-

dient and the Hessian of the objective function. The PLoM, which is detailed in [37], is used for

the generation of realizations. It consists in solving an Itô stochastic differential equation (ISDE)

that is projected on a diffusion-maps basis. This ISDE corresponds to a nonlinear stochastic dis-

sipative Hamiltonian dynamical system. The method and the algorithm presented are efficient

and allow high-dimensional problems to be solved from small initial datasets and for which an

arbitrary number of constraints are specified.

The paper is organized as follows. In Section 2, the problem that has to be solved is de-

fined. Section 3 deals with the methodology proposed to take into account the constraints that

correspond to statistics coming from experiments or defined by a physical/computational model.

Examples of constraints are presented in Section 4. Section 5 is devoted to the computational

2



statistical method for generating realizations of Xc using the PLoM and involving the iterative

Newton algorithm that requires the use of the MCMC generator based on the ISDE projected on

a diffusion-maps basis. Finally, two applications are presented. The first one, presented in Sec-

tion 6, is completely specified and can thus be easily reproduced by the reader. The second one,

presented in Section 7, corresponds to a physical system, which is represented by a stochastic

computational model that corresponds to the finite element discretization of a stochastic elliptic

boundary value problem.

Notations

Lower-case letters such as q or η are deterministic real variables.

Boldface lower-case letters such as q or η are deterministic vectors.

Lower-case letters q, w, and x are deterministic vectors.

Upper-case letters such as X or H are real-valued random variables.

Boldface upper-case letters such as X or H are vector-valued random variables.

Upper-case letters Q, U, W, and X are vector-valued random variables.

Lower-case letters between brackets such as [x] or [η] are deterministic matrices.

Boldface upper-case letters between brackets such as [X] or [H] are matrix-valued random vari-

ables.

mc: number of constraints.

n: dimension (n = nq + nw) of vector x, X, and Xc.

nq: dimension of vectors q, Q, and Qc.

nw: dimension of vectors w, W, and Wc.

ν: dimension of H and Hc.

q j, qc,ℓ : realization of Q, Qc.

w j, wc,ℓ : realization of W, Wc.

x j, xc,ℓ : realization of X, Xc.

M : number of points in the generated dataset D
g
M .

N : number of points in initial dataset DN .

DN : initial dataset for X.

D
g
M : generated dataset for Xc.

DN : initial dataset for X.

Q, Qc : random QoI (output).

W, Wc : random system parameter (input).

X, Xc : random vector (Q,W), (Qc,Wc).

[In]: identity matrix in Mn.

Mn,N : set of all the (n × N) real matrices.

Mn: set of all the square (n × n) real matrices.

M+0
n : set of all the positive symmetric (n × n) real matrices.

M+n : set of all the positive-definite symmetric (n × n) real matrices.

R: set of all the real numbers.

Rn: Euclidean vector space on R of dimension n.

[x]k j: entry of matrix [x].

[x]T : transpose of matrix [x].

δkk′ : Kronecker’s symbol such that δkk′ = 0 if k , k′ and = 1 if k = k′.
3



‖x‖: usual Euclidean norm in Rn.

<x, y>: usual Euclidean inner product in Rn.

δkk′ : Kronecker’s symbol.

In this paper, any Euclidean space E (such as Rn) is equipped with its Borel field BE, which

means that (E,BE) is a measurable space on which a probability measure can be defined. The

mathematical expectation is denoted by E.

2. Setting the problem to be solved

A typical problem for the use of the approach proposed in this paper is the following. Let

(w, u) 7→ f(w, u) be any measurable mapping on Rnw × Rnu with values in Rnq representing a

mathematical/computational model. Let W and U be two independent (non-Gaussian) random

variables defined on a probability space (Θ,T ,P) with values in Rnw and Rnu , for which the

probability distributions PW(dw) = pW(w) dw and PU(du) = pU(u) du are defined by the proba-

bility density functions pW and pU with respect to the Lebesgue measures dw and du on Rnw and

Rnu . The role played by W and U are the following. The boundary value problem used for con-

structing the computational model depends on uncertain parameters (epistemic and/or aleatory

uncertainties). These random parameters are, for instance, those used for modeling geometry

uncertainties, uncertain boundary conditions, constitutive equations of random media, uncertain

physical properties, and can also be a finite spatial discretization of random fields (such as the

one used for modeling the elasticity field of a heterogeneous material). Random vector W is

made up of a part of these random parameters, which are used for controlling the system, while

random vector U is made up of the other part of these random parameters, which are not used for

controlling the system. Let Q be the vector of the quantities of interest (QoI) that is a random

variable defined on (Θ,T ,P) with values in Rnq such that

Q = f(W,U) . (1)

Random QoI, Q, represents the vector of all the observations performed in the system and is

expressed as a function of the solution of the computational model. Let us assume that N cal-

culations have been performed with the mathematical/computational model whose solution is

represented by Eq. (1), allowing N independent realizations {q j, j = 1, . . . ,N} of Q to be com-

puted such that

q j
= f(w j, u j) , (2)

in which {w j, j = 1, . . . ,N} and {u j, j = 1, . . . ,N} are N independent realizations of (W,U),

which have been generated using an adapted generator for pW and pU. We then consider the

random variable X with values in Rn, such that

X = (Q,W) , n = nq + nw . (3)

The probabilistic learning will be performed for this random vector X that includes the control

parameter W and the QoI Q, but that does not include random parameter U. The initial dataset

related to random vector X is then made up of the N independent realizations

{x j, j = 1, . . . ,N} , x j
= (q j,w j) ∈ Rn. (4)
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It is assumed that the measurable mapping f is such that the conditional probability distribu-

tion PQ|W(dq|w) admits a conditional probability density function pQ|W(q|w) with respect to the

Lebesgue measure dq on Rnq for PW(dw)-almost all w in Rnw (note that the existence of a pdf

for U, PU(du) = pU(u) du, is necessary but is not sufficient). Under this hypothesis, it can be

deduced that the probability distribution PX(dx) of X admits a density x 7→ pX(x) with respect to

the Lebesgue measure dx on Rn. The proof is the following. Let PQ|W(dq|w) be the conditional

probability distribution of the conditional random variable Q|W given W = w for w ∈ Rnw ,

which is such that Q|w = f(w,U). Since PW(dw) = pW(w) dw, under the above hypothesis (ex-

istence of conditional pdf q 7→ pQ|W(q|w)), the probability distribution of (Q,W) can be written

as PQ,W(dq, dw) = pQ|W(q|w) pW(w) dq dw, which shows that the probability distribution of

(Q,W) admits a pdf with respect to dq dw and consequently, shows that the probability distribu-

tion PX(dx) of X = (Q,W) admits a density pX(x) with respect to the Lebesgue measure dx on

Rn.

The PLoM allows for generating additional realizations {(qℓar,w
ℓ
ar), ℓ = 1, . . . , M} for M ≫ N

without using the computational model, but using only the training dataset which we denote by

DN . These additional realizations allow, for instance, a cost function J(w) = E{J(Q,W)|W = w}
to be evaluated, in which (q,w) 7→ J(q,w) is a given measurable real-valued mapping on

Rnq × Rnw as well as constraints related to a nonconvex optimization problem [39, 41, 42] and

this, without calling the mathematical/computational model.

Sometimes, additional information in the form of statistics may become available, synthesized

from partial measurements, published data, or numerical simulations. The goal is then to gener-

ate additional realizations by taking into account the constraints defined by these statistics. For

instance, statistics can correspond to a specified mean value m
exp
k and standard deviation s

exp
k of

several components Qk of Q (see Section 4). Statistics can also correspond to the mean value of

a given stochastic equation involving Q and W, which models a physical system or a part of it

(see Appendix A).

Remark concerning the scaling of the initial dataset. In practice, the initial dataset can be made

up of heterogeneous numerical values and must be scaled for performing computational statis-

tics. In this remark, it is then assumed that the initial dataset DN is made up of N independent

realizations {x j, j = 1, . . . ,N} of the Rn-valued random variable X. Let xmax
= max j{x j} and

xmin
= min j{x j} be vectors in Rn. Let [αx] be the invertible diagonal (n × n) real matrix such that

[αx]kk = (xmax
k − xmin

k ) if xmax
k − xmin

k , 0, and [αx]kk = 1 if xmax
k − xmin

k = 0. The scaling of random

vector X is the Rn-valued random variable X (that has previously been introduced) such that

X = [αx] X + xmin , X = [αx]−1(X − xmin) , (5)

which shows that the N independent realizations {x j, j = 1, . . . ,N} j of X are such that

x j
= [αx]−1(x j − xmin) . (6)

The scaled initial dataset DN is then defined by

DN = {x j, j = 1, . . . ,N} , (q j,w j) = x j . (7)
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3. Methodology proposed to take into account constraints defined by experiments or by

physical models

To take into account statistical constraints in the algorithm of the PLoM, the proposed method-

ology consists of minimizing the probabilistic distance (or the divergence) between the probabil-

ity distribution PX(dx) = pX(x) dx of the Rn-valued random variable X estimated in the frame-

work of the PLoM and the probability distribution PXc(dx) = pXc (x) dx of the Rn-valued random

variable Xc that, in addition, satisfies the constraints. We thus have to find among all the prob-

ability density functions (pdf) pXc that satisfy the constraints, the one that is closest to the pdf

pX. For that, we propose to use the classical Kullback-Leibler minimum cross-entropy principle

[9, 10, 11], which is written as

pXc = arg min
p̂ ∈Cad,Xc

∫

Rn

p̂(x) log
p̂(x)

pX(x)
dx , (8)

in which the admissible set Cad,Xc is defined by

Cad,Xc = {x 7→ p̂(x) : Rn → R+,

∫

Rn

p̂(x) dx = 1,

∫

Rn

gc(x) p̂(x) dx = βc}. (9)

In Eq. (9), βc is a given vector in Rmc with mc ≥ 1 and x 7→ gc(x) is a measurable mapping from

Rn into Rmc . This means that, in addition to the normalization condition, pdf pXc must be such

that the following constraint is satisfied,

E{gc(Xc)} =
∫

Rn

gc(x) pXc (x) dx = βc . (10)

Remarks

(1) It should be noted that, in the framework of the PLoM, the estimation pX of the pdf of X,

which is performed using the Gaussian kernel-density estimation method and initial dataset DN ,

is such that pX(x) > 0 for all x in Rn.

(2) The functional that has to be minimized on Cad,Xc is the Kullback-Leibler divergence (relative

entropy),

D( p̂ ; pX) =

∫

Rn

p̂(x) log
p̂(x)

pX(x)
dx , (11)

that is nonnegative, additive, and non-symmetric (D( p̂ ; pX) , D(pX; p̂)). The symmetric diver-

gence

Ds( p̂ ; pX) =

∫

Rn

( p̂(x) − pX(x)) log
p̂(x)

pX(x)
dx ,

could also be introduced. As explained in [10], the symmetric divergence has exactly the same

mathematical properties as the relative entropy, such as nonnegativeness and additivity prop-

erties. The introduction of the symmetry property could have only an interest if pdf pX was

constructed as an a priori pdf, which is not the case, because pX is constructed using the non-

parametric statistics. In addition, the choice of the relative divergence instead of the symmetric

divergence has allowed for developing simpler and more efficient algorithms for solving the op-

timization problem defined by Eqs. (8) and (9). Consequently, we will pursue the formulation
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defined by Eqs. (8) and (9).

(3) The objective of this paper is therefore to use the PLoM for the random variable Xc with

values in Rn for which its probability distribution PXc (dx) = pXc(x) dx is defined by the pdf pXc

that is unknown but that can possibly be concentrated in the neighborhood of a manifold in Rn.

(i) Data of the problem are only those defined by

(i-1) initial dataset DN = {x j, j = 1, . . . ,N} of independent realizations of the Rn-valued

random variable X for which its probability distribution PX(dx) = pX(x) dx (defined by a density)

is unknown. We consider the small dataset case, which means that N is small.

(i-2) a given vector-valued constraint equation on Rmc (see Eq. (10)),

∫

Rn

gc(x) p̂Xc (x) dx = βc .

(ii) The problem, which has to be solved, consists in constructing M realizations {xc,ℓ, ℓ =

1, . . . , M} of random vector Xc with M ≫ N, for which pdf pXc satisfies the constraint while

being the closest pdf to pX.

4. Example of constraints

Using the previous notations, random vector Xc is written as

Xc
= (Qc,Wc) with values in Rn

= Rnq × Rnw . (12)

In this section, we give two examples of constraints. The first example corresponds to given

statistical constraints defined by experimental second-order moments of Qc. The second one

corresponds to physical constraints defined by the mean value of a stochastic equation that relates

Qc and Wc. For illustrations, two other examples are given in Appendix A.

4.1. Statistical constraints defined by experimental second-order moments of Qc

Let Jmom = {k1, . . . , kκmom
} be κmom ≤ nq integers such that Jmom ⊆ {1, . . . , nq}. For

κ ∈ {1, . . . , κmom}, let us assume that the experimental mean value, m
exp
κ , and the experimen-

tal standard deviation, s
exp
κ , of the component Qc

kκ
of random vector Qc are specified. For in-

stance, these statistics could come from measurements. Note that the measured realizations

that have been used for estimating these experimental quantities are not available. On the

other hand, {(mexp
κ , s

exp
κ ), κ = 1, . . . , κmom} do not correspond to the initial dataset DN . For in-

stance, DN could come from numerical simulations which include modeling errors. The ex-

perimental second-order moment r
exp
κ = E{(Xc

kκ
)2} of random variable Xc

kκ
, can be deduced and

is written as r
exp
κ = (s

exp
κ )2

+ (m
exp
κ )2. In this case, mc = 2 κmom ≤ 2 nq and the mc functions

x 7→ gc(x) = (gc
1(x), . . . , gc

mc
(x)) from Rn into Rmc and vector βc

= (βc
1, . . . , β

c
mc

), which define the

constraints (see Eq. (10)), are such that, for κ = 1, . . . , κmom,

gc
κ(X

c) = Qc
kκ

, βc
κ = mexp

κ , (13)

gc
κ+κmom

(Xc) = (Qc
kκ

)2 , βc
κ+κmom

= rexp
κ . (14)
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4.2. Physical constraints defined by the mean value of a stochastic equation relating Qc and Wc

Let us assume that the initial dataset DN = {x j, j = 1, . . . ,N} corresponds to N experimental

realizations (measurements or numerical simulations obtained by the training a stochastic com-

putational model) of random vector X = (Q,W) whose probability distribution on Rn
= Rnq×Rnw

admits a density with respect to the Lebesgue measure. In this appendix, we consider the case

for which the PLoM is used for generating M additional realizations (using only initial dataset

DN) under the constraints defined by statistical moments (for instance, the mean value) of a

stochastic equation corresponding to a stochastic computational model of a physical system. As

previously, let pXc be the pdf of the random vector Xc
= (Qc,Wc) with values in Rn

= Rnq ×Rnw ,

which has to verify, in statistical mean, the equation fconst(Qc,Wc) = βconst, that is to say

E{fconst(Qc,Wc)} = βconst in which (qc,wc) 7→ fconst(qc,wc) is a given (deterministic) measur-

able mapping defined on Rnq × Rnw with values in Rmc and where βconst is a given vector in Rmc .

This constraint can then be rewritten as Eq. (10) with gc(Xc) = fconst(Qc,Wc) and βc
= βconst.

For instance, function fconst could be written, for mc = nq, as

fconst(Qc,Wc) = Qc − [B] Wc , (15)

in which [B] is a given matrix in Mnq,nw
.

It should be noted that this formulation can be extended to a stochastic equation that would be

written, for instance, as E{fconst(Qc,Wc,U)} = βconst in which U is a random vector independent

of Wc and where fconst(Qc,Wc,U) = Qc − [B(U)] Wc . Clearly, any more complex stochastic

equation can be used.

5. Computational statistical method for generating realizations of Xc using probabilistic

learning on manifolds

In this section, we present a computational method for generating M independent realizations

xc,1, . . . , xc,M of random variable Xc whose pdf pXc is defined by Eqs. (8) and (9). Since it is

assumed that N is small and since the available information is only made up of {x j, j = 1, . . . ,N}
and of the constraint equation E{gc(Xc)} = βc, we propose to use the PLoM that will be developed

in Section 5.8. The main steps of the computational statistical method are as follows:

1. principal component analysis (PCA) of X at order ν ≤ n using the set {x j, j = 1, . . . ,N},
which will introduce the normalized non-Gaussian random vector H with values in Rν,

centered, with covariance matrix [Iν], for which the N independent realizations are {η j, j =

1, . . . ,N}.
2. Gaussian kernel-density estimation of the pdf pH of random vector H.

3. reformulating the optimization problem defined by Eqs. (8) and (9) for the construction of

pdf pHc of Hc in terms of pdf pH of H and of the constraint equation rewritten in terms of

pHc .

4. representation of the solution of the optimization problem with constraints using Lagrange

multipliers (λ0, λ) where λ0 is associated with the normalization constraint.

5. reformulation introducing a random vector Hλ and eliminating λ0.

6. introducing an iterative algorithm for computing the optimal value λsol of the Lagrange

multiplier λ.

7. constructing a nonlinear Itô Stochastic Differential Equation (ISDE) as a generator of ran-

dom variable Hλ.

8



8. computing the additional realizations of Hc using the PLoM and then deducing additional

realizations of Xc.

9. estimating statistics of Xc using the additional realizations.

In the following, each of these steps is expanded into a subsection.

5.1. PCA of random vector X

The purpose of the PCA transformation is to improve the statistical condition of X through

de-correlation and normalization. Dimensional reduction is only accepted if it reproduces the

original data with a given tolerance. Let x̂ ∈ Rn and [ĈX] ∈ M+n be the classical empirical

estimates of the mean vector and the covariance matrix of X,

x̂ =
1

N

N∑

j=1

x j , [ĈX] =
1

N − 1

N∑

j=1

(x j − x̂) (x j − x̂)T . (16)

Let µ1 ≥ µ2 ≥ . . . ≥ µn ≥ 0 be the eigenvalues and let ϕ1, . . . ,ϕn be the orthonormal eigenvectors

of [ĈX] such that [ĈX]ϕα = µα ϕ
α. For ε > 0 fixed, let ν be the integer such that 1 ≤ ν ≤ n,

verifying,

errPCA(ν) = 1 −
∑ν

α=1 µα

tr [ĈX]
≤ ε . (17)

The PCA of X allows for representing X by Xν such that

Xν
= x̂ + [Φ] [µ]1/2 H , E{‖X − Xν‖2} ≤ ε E{‖X‖2} , (18)

in which [Φ] = [ϕ1 . . . ϕν] ∈Mn,ν such that [Φ]T [Φ] = [Iν] and [µ] is the diagonal (ν × ν) matrix

such that [µ]αβ = µαδαβ. The Rν-valued random variable H is obtained by projection,

H = [µ]−1/2 [Φ]T (X − x̂) , (19)

and its N independent realizations {η j, j = 1, . . . ,N} are such that

η j
= [µ]−1/2 [Φ]T (x j − x̂) ∈ Rν . (20)

The empirical estimates of the mean vector and the covariance matrix of H verify the following

conditions,

η̂ =
1

N

N∑

j=1

η j
= 0 , [ĈH] =

1

N − 1

N∑

j=1

(η j − η̂) (η j − η̂)T
= [Iν] . (21)

From a numerical point of view, if N < n, the estimate [ĈX] of covariance matrix of X is not

computed and ν, [µ], and [Φ] are directly computed using a thin SVD of the matrix whose N

columns are (x j − x̂) for j = 1, . . .N.

Hypothesis. Let L2(Θ,Rn) be the space of second-order random variables X defined on (Θ,T ,P)

with values in Rn such that E{‖X‖2} < +∞. Similarly, let L2(Θ,Rν) be the space of all the second-

order random variables H defined on (Θ,T ,P) with values in Rν such that E{‖H‖2} < +∞. It

should be noted that we do not consider the subset Hν of L2(Θ,Rν) made up of all the second-

order Rν-valued random variables H such that E{H} = 0 and [CH] = [Iν], since the constraints
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will incur a shift and scaling that is a priori unknown. For fixed ν ≤ n that verifies Eq. (17),

random vector Xν defined by Eq. (18) spans a subspace Xν of L2(Θ,Rn) when H runs through

L2(Θ,Rν). It is then assumed that random vector Xc, for which pdf pXc is closest to pdf pX under

the constraint E{gc(Xc)} = βc (see Section 3), belongs to Xν. It should be noted that there always

exists ν such that ν ≤ n with errPCA(ν) ≤ ε in order that Xc ∈ Xν, because for ν = n (that is to

say, for ε sufficiently small), we have Xn = L2(Θ,Rn).

5.2. Gaussian kernel-density estimation of the pdf of random vector H

The pdf η 7→ pH(η) on Rν of the Rν-valued random variable H is constructed by the Gaussian

kernel-density estimation method using the N independent realizations {η j, j = 1, . . . ,N} defined

by Eq. (20). We use the modification proposed in [44] of the classical formulation [45], which

can be written, for all η in Rν, as

pH(η) = cν ρ(η) , cν =
1

(
√

2π ŝν)ν
, (22)

ρ(η) =
1

N

N∑

j=1

exp{− 1

2ŝ2
ν

‖ ŝν

sν
η j − η‖2} , (23)

in which sν is the usual multidimensional optimal Silverman bandwidth (taking into account that

the covariance matrix of H is [Iν]), and where ŝν has been introduced in order that the second

equation in Eq. (21) be satisfied,

sν =

{
4

N(2 + ν)

}1/(ν+4)

, ŝν =
sν√

s2
ν + (N − 1)/N

. (24)

With this formulation, Eqs. (21) to (24) yield

E{H} =
∫

Rν

η pH(η) dη =
ŝν

sν
η̂ = 0 , (25)

E{HHT } =
∫

Rν

ηηT pH(η) dη = ŝ2
ν [Iν] +

ŝ2
ν

s2
ν

(N − 1)

N
[ĈH] = [Iν] . (26)

The pdf of H, defined by Eqs. (22) to (24), is rewritten, for all η in Rν, as

pH(η) = cν e−ψ(η) , ψ(η) = − logρ(η) . (27)

5.3. Reformulating the optimization problem as a function of random vector H

The objective is to reformulate the optimization problem defined by Eqs. (8) and (9) to eval-

uate the pdf pH defined by Eq. (20) and (22) to (24). Taking into account Eq. (18) and the

hypothesis introduced in Section 5.1, the Rν-valued random variable Xc,ν can be written as

Xc,ν
= x̂ + [Φ] [µ]1/2 Hc , (28)

in which the Rν-valued random variable Hc is defined by

Hc
= [µ]−1/2 [Φ]T (Xc − x̂) . (29)
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Note that, in general, Hc is not centered and its covariance matrix is not [Iν]. In addition, for ε

sufficiently small verifying Eq. (17), the mean-square error E{‖Xc − Xc,ν‖2} is sufficiently small

(note that such condition always exists since the limiting case corresponds to ν = n). Due to the

introduction of the reduced-order representation Xc,ν of Xc defined by Eq. (28), the stochastic

dimension of Xc,ν is less than or equal to ν, because Hc is a Rν-valued random variable.

Let η 7→ h̃
c
(η) be the measurable mapping from Rν into Rmc such that, for all η in Rν,

h̃
c
(η) = gc(x̂ + [Φ] [µ]1/2 η) . (30)

If it is assumed that the value of ν is such that βc (defined by Eq. (10)) belongs to the range space

h̃
c
(Rν) of mapping h̃

c
, then the constraint defined by Eq. (10) is transported on Hc and writes,

E{h̃c
(Hc)} = βc ,

∫

Rν

h̃
c
(η) pHc(η) dη = βc , (31)

in which the pdf pHc of Hc is closest to pdf pH while satisfying the constraint defined by Eq. (31).

We propose to perform the projection of the Rmc -valued random variable h̃
c
(H) in a Rνc -

valued random variable hc(H) = [Ψ]T h̃
c
(H) with νc ≤ ν in which the matrix [Ψ] ∈ Mmc ,νc

verifies [Ψ]T [Ψ] = [Iνc
]. This projection is carried out in order that the projected constraints

be algebraically independent (see Section 5.4-(iv) and that the components of the random vector

hc(H) be de-correlated and not degenerated. Note that, in addition, with such a projection, the

computation is less costly and more robust for large value of mc. For the second criterion, matrix

[Ψ] and νc are constructed as follows. Let [cov{h̃c
(H)}] be the covariance matrix in M+0

mc
of

the Rmc-valued random variable h̃
c
(H) in which H is the Rν-valued random variable defined by

Eq. (19) for which the N independent realizations are defined by Eq. (20). Let

[cov{h̃c
(H)}]ψα = λc

α ψ
α

be the eigenvalue problem such that

λc
1 ≥ . . . ≥ λc

νc
> 0 = λc

νc+1 = . . . = λ
c
mc
.

Consequently, the rank of [cov{h̃c
(H)}] is

rank{[cov{h̃c
(H)}]} = νc ≤ mc . (32)

Let [Ψ] = [ψ1 . . .ψνc ] ∈ Mmc ,νc
be the matrix whose columns are the orthonormal eigenvectors

ψ1, . . . ,ψνc associated with λc
1 ≥ . . . ≥ λc

νc
> 0. Therefore, we have [Ψ]T [Ψ] = [Iνc

]. Conse-

quently, the covariance matrix [cov{hc(H)}] ∈ M+νc
is diagonal and invertible (the components

of random vector hc(H) are de-correlated and not degenerated).

From a numerical point of view, if N < mc, the estimate [ĉov{h̃c
(H)}] of covariance matrix

of h̃
c
(H) is not computed, and νc, λc

1, . . . , λ
c
νc

, [Ψ] are directly computed using a thin SVD of the

matrix whose N columns are (h̃
c
(η j) − h̃

c
) for j = 1, . . .N, where h̃

c
is the estimate of the mean

value of random vector h̃
c
(H), which is performed using the realizations {h̃c

(η j), j = 1, . . . ,N}.
The projection of Eq. (31) is performed using the basis [Ψ] that spans a subspace of Rmc of

dimension νc and is written as,

E{hc(Hc)} = bc , (33)
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in which η 7→ hc(η) is the measurable mapping from Rν into Rνc , with

νc ≤ ν , (34)

such that, for all η in Rν,

hc(η) = [Ψ]T h̃
c
(η) = [Ψ]T gc(x̂ + [Φ] [µ]1/2 η) ∈ Rνc , (35)

and where bc is written as

bc
= [Ψ]T βc ∈ Rνc . (36)

Using again the Kullback-Leibler minimum cross-entropy principle (as done in Section 3) for

random variable Hc, the optimization problem defined by Eqs. (8) and (9) is reformulated as

pHc = arg min
p̂ ∈Cad,Hc

∫

Rν

p̂(η) log
p̂(η)

pH(η)
dη , (37)

in which the admissible set Cad,Hc is defined by

Cad,Hc = {η 7→ p̂(η) : Rν→ R+,

∫

Rν

p̂(η) dη = 1,

∫

Rν

hc(η) p̂(η) dη = bc. (38)

Remark concerning the calculation of the rank νc. The rank νc defined by Eq. (32) is a function

of the tolerance τc > 0 that is used for numerically testing the condition {λc
νc
> 0} ∩ {λc

νc+1 = 0}.
This test is rewritten as follows,

If {λc
νc
> τc λ

c
1} ∩ {λc

νc+1 ≤ τc λ
c
1} then the rank is νc . (39)

In the linear algebra libraries devoted to the computation of the rank of a matrix, τc is generally

chosen as 10−12. It should be noted that the smaller τc the larger νc. Therefore, the value of νc

that is less than or equal to mc will plays an important role on the existence of a unique solution

of the optimization problem defined by Eq. (37) with Eq. (38). This aspect will be discussed in

Section 5.11.

5.4. Existence of a solution and its representation using Lagrange multipliers (λ0, λ)

The optimization problem defined by Eq. (37) with Eq. (38) is solved by introducing La-

grange multipliers as done for the Maximum Entropy Principle (see for instance [46, 11, 8, 47,

48, 49]).

(i) Lagrange multipliers associated with the constraints. A Lagrange multipliers is introduced

for each constraint:

λ0 ∈ R+ for the constraint:
∫
Rν p̂(η) dη = 1,

λ ∈ Cad,λ ⊂ Rνc for the constraint:
∫
Rν hc(η) p̂(η) dη = bc,

in which the admissible set Cad,λ is defined as the open subset of Rνc such that,

Cad,λ = {λ ∈ Rνc ,

∫

Rν

e−ψ(η)−<λ,hc(η)> dη < +∞} , (40)

where ψ is the potential of H defined by Eq. (27). The form of the admissible set Cad,λ follows

from the representation using Lagrange multipliers.

12



(ii) Expression of the Lagrangian. For λ0 ∈ R+ and λ ∈ Cad,λ, the Lagrangian associated with

Eqs. (37) and (38) is written as

Lag( p̂ ; λ0, λ) =

∫

Rν

p̂(η) log
p̂(η)

pH(η)
dη − (λ0 − 1)(

∫

Rν

p̂(η) dη − 1)

− <λ ,
∫

Rν

hc(η) p̂(η) dη − bc> . (41)

(iii) Reformulation of the optimization problem and construction of the solution. If it is assumed

that there exists a unique solution pHc to the optimization problem defined by Eq. (37) with

Eq. (38), then, using simple arguments from the calculus of variations, it can be seen that there

exists (λsol
0 , λsol) ∈ R+ × Cad,λ, such that the functional ( p̂, λ0, λ) 7→ Lag( p̂ ; λ0, λ) is stationary at

pHc for λ0 = λ
sol
0 and λ = λsol, and pHc can be written, for all η in Rν, as

pHc (η) = cν exp{−ψ(η) − λsol
0 − < λsol, hc(η) >} , (42)

in which cν and ψ(η) are defined by Eqs. (22) and (27). In addition, always under the hypothesis

that there exists a unique solution to the optimization problem defined by Eq. (37) with Eq. (38),

and under mild additional hypotheses, it is proven in Appendix B pp. 126-128 of [50] that the

unique solution is given by Eq. (42) in which (λsol
0 , λsol) is the unique solution in R+ × Cad,λ of

the following nonlinear algebraic equations,

∫

Rν

cν exp{−ψ(η) − λ0− < λ, hc(η) >} dη = 1 , (43)

∫

Rν

cν hc(η) exp{−ψ(η) − λ0− < λ, hc(η) >} dη = bc . (44)

(iv) Comments about the existence of a unique solution. The hypothesis of the existence of a

unique solution for the optimization problem defined by Eqs. (37) with (38) does not necessarily

hold for arbitrary combinations of initial dataset DN and constraint equations. As explained in

Section 5.3, a first necessary condition to guarantee the existence of a unique solution of the

optimization problem is that the constraints be algebraically independent, which can be checked

using the following criterion: there exists a bounded subset B of Rνc with
∫

B
dη > 0 such that,

for any nonzero vector v in R1+νc ,

∫

B

<v, ĥ
c
(η)>2 dη > 0 with ĥ

c
(η) = (1 , hc(η)) ∈ R1+νc . (45)

It should ne noted that, in general, this criterion requires a numerical evaluation. If the given

constraints are not consistent with DN , the admissible set Cad,λ may be the empty set. This nec-

essary condition is therefore not sufficient and there is no mathematical criterion that can easily

be implemented, which gives a necessary and sufficient condition to guarantee the existence of a

unique solution as a function of DN , hc, and bc. This problem relative to existence and unique-

ness will be revisited from a numerical point of view in Section 5.11 .

5.5. Reformulation introducing a random vector Hλ and eliminating λ0

In general, only a numerical approximation to the solution of Eqs. (43) and (44) can be

achieved. However, a major difficulty is introduced by the normalization constant cν e−λ0 that
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induces considerable difficulties when ν is large. In addition, integrals in high dimension have to

be computed for calculating the Lagrange multipliers. In this section, a procedure is introduced

to address this difficulty. This is done by first eliminating λ0, followed by introducing a convex

objective function that lends itself to efficient iterative schemes, and finally, by using the PLoM

as a MCMC generator of realizations allowing the integrals to be computed.

5.5.1. Introduction of the Rν-valued random variable Hλ and eliminating λ0

For λ given in Cad,λ, let Hλ be the Rν-valued random variable whose pdf with respect to dη

on Rν is written, for all η ∈ Rν, as

pHλ
(η) = c0(λ) exp{−ψ(η)− < λ, hc(η) >} , (46)

in which the function λ 7→ c0(λ) from Cad,λ ⊂ Rνc into ]0,+∞[ is defined by

c0(λ) = (

∫

Rν

exp{−ψ(η)− < λ, hc(η) >} dη )−1 . (47)

It can be easily verified that c0(λ) = cν exp{−λ0} and consequently, for all η in Rν,

pHc (η) = {pHλ
(η)}

λ=λsol , pH(η) = {pHλ
(η)}λ=0 . (48)

Because c0(λ) is defined as the constant of normalization of pdf pHλ
, the constraint defined by

Eq. (43), which is rewritten as
∫
Rν pHλ

(η) dη = 1 is automatically satisfied for all λ in Cad,λ.

Using Eqs. (46) and (47), it can be seen that the constraint defined by Eq. (44) can be rewritten,

for all λ in Cad,λ, as

E{hc(Hλ)} = bc , (49)

because E{hc(Hλ)} =
∫
Rν hc(η) pHλ

(η) dη. From Section 5.4-(iv), it can then be deduced that

λsol ∈ Cad,λ is the unique solution in λ of Eq. (49).

5.5.2. Construction of an optimization problem with a convex objective function for calculating

λsol

Similarly to the discrete-case approach proposed in [51], let λ 7→ Γ(λ) be the objective func-

tion from the open subset Cad,λ of Rνc into R such that

Γ(λ) =<λ, bc> − log c0(λ) . (50)

It can easily be deduced that the gradient of Γ with respect to λ is written as

∇Γ(λ) = bc − E{hc(Hλ)} , (51)

and that the Hessian matrix, [Γ′′(λ)], of Γ at λ is written as

[Γ′′(λ)] = [cov{hc(Hλ)}] , (52)

in which the covariance matrix [cov{hc(Hλ)}] of random vector hc(Hλ) is such that

[cov{hc(Hλ)}] = E{hc(Hλ) hc(Hλ)
T } − E{hc(Hλ)} E{hc(Hλ)}T . (53)

By construction (see Section 5.3), we have [cov{hc(H)}] = [Ψ]T [cov{h̃c
(H)}] [Ψ]. We will

assume that, for all λ ∈ Cad,λ, the covariance matrix [cov{hc(Hλ)}] is positive definite (this is
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a reasonable hypothesis due to the construction of [Ψ] and due to the hypothesis of algebraical

independence of the constraints (see Eq. (45)). Consequently, λ 7→ Γ(λ) is a strictly convex

function in Cad,λ. Since λsol ∈ Cad,λ is the unique solution of Eq. (49), we have E{hc(H
λsol )} = bc.

Therefore, Eq. (51) yields∇Γ(λsol) = 0. Consequently, λsol is the unique solution of the following

optimization problem,

λsol
= arg min

λ∈Cad,λ⊂Rnuc
Γ(λ) . (54)

Since Γ is convex, this optimization problem would be convex if Cad,λ was convex and then

λsol would be the unique global minimum that could be computed with the efficient algorithms

devoted to convex optimization problems. However, it cannot be proven that Cad,λ is convex for

arbitrary constraints hc.

5.6. Iterative algorithm for computing the Lagrange multipliers λsol

Taking into account the convexity of Γ, we propose to solve the minimization problem defined

by Eq. (54) with a Newton iterative method applied to function λ 7→ ∇Γ(λ) [52, 49] starting from

an initial point λ1 in Cad,λ. This algorithm allows for finding λsol such that ∇Γ(λsol) = 0 and is

written, for ι ≥ 1, as

λι+1
= λι − [Γ′′(λι)]−1∇Γ(λι) , (55)

in which ∇Γ(λι) and [Γ′′(λι)] are given by Eqs. (51) and (52), that is to say,

∇Γ(λι) = bc − E{hc(Hλι)} , [Γ′′(λι)] = [cov{hc(Hλι)}] . (56)

The initial point, which corresponds to ι = 1, is chosen such that

λ1
= −[Γ′′(λ0)]−1∇Γ(λ0) , (57)

with λ0
= 0, and since H0 = H (see Eq. (48)), we have

∇Γ(λ0) = bc − E{hc(H)} , [Γ′′(λ0)] = [cov{hc(H)}] . (58)

Consequently, the necessary condition concerning the initial point in the Newton method is sat-

isfied: λ1 is not close to origin 0 because bc
, E{hc(H)} and we have λ1 ∈ Cad,λ. The right-hand

sides of the two equations in Eq. (58) can be estimated using the empirical estimators of the

mean vector and covariance matrix of hc(H) using the the initial dataset {η j, j = 1, . . . ,N} de-

fined by Eq. (20). At each iteration ι, the convergence of the iteration algorithm is controlled by

calculating the error

err(ι) =
‖bc − E{hc(Hλι)}‖

‖bc‖ =
‖∇Γ(λι‖
‖bc‖ . (59)

During the iteration, for each λι given in Cad,λ ⊂ Rνc , the following mathematical expectations,

E{hc(Hλι)} , E{hc(Hλι) hc(Hλι)
T } , (60)

have to be computed using an MCMC algorithm (see Section 5.7). It should be noted that ad-

missible set Cad,λ cannot, in the general case, explicitly be described. An additional discussion

concerning the convergence of the iteration algorithm in the framework of the existence of a

solution is given in Section 5.11.
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5.7. Nonlinear Itô stochastic differential equation (ISDE) for the generator of random variable

Hλ

For λ fixed in Cad,λ, we have to construct a generator for Hλ in order to compute an estimation

of the quantities listed in Eq. (60). We propose to use the approach presented in [53, 49], which

is based on a nonlinear ISDE associated with a nonlinear stochastic dissipative Hamiltonian dy-

namical system. This choice of MCMC generator will allow for implementing, in Section 5.8,

the probabilistic learning on manifolds proposed in [37] for generating a large number of real-

izations of random variable Hλι and then of Hc (at convergence with respect to ι).

5.7.1. Introduction of the potential function associated with pdf pHλ

For λ fixed in Cad,λ, Eq. (46) is rewritten, for all η in Rν, as

pHλ
(η) = c0(λ) ρλ(η) , (61)

in which function η 7→ ρλ(η) from Rν into R+ is defined by

ρλ(η) = exp{−Vλ(η)} , Vλ(η) = ψ(η)+ < λ, hc(η) > . (62)

5.7.2. Nonlinear ISDE for random vector Hλ

Following [37], we have to consider the nonlinear stochastic dissipative Hamiltonian dynam-

ical system whose potential is Vλ defined by Eq. (62), which is represented by the nonlinear

ISDE expressed, for t > 0, as

d[Uλ(t)] = [Vλ(t)] dt , (63)

d[Vλ(t)] = [Lλ([Uλ(t)])] dt − 1

2
f0[Vλ(t)] dt +

√
f0 d[Wwien

λ (t)] , (64)

with the initial condition at t = 0,

[Uλ(0)] = [ηinit] , [Vλ(0)] = [vinit] a.s. , (65)

in which {([Uλ(t)], [Vλ(t)]), t ∈ R+} is a stochastic process with values in Mν,N ×Mν,N , which

is made up of the independent stochastic processes {(Uℓ
λ(t),V

ℓ
λ(t)), t ∈ R+} such that [Uλ(t)] =

[U1
λ(t) . . .U

N
λ (t)] and [Vλ(t)] = [V1

λ(t) . . .V
N
λ (t)], and where:

(i) f0 > 0 is a free parameter allowing the dissipation to be controlled in the stochastic dy-

namical system. This parameter is chosen such that f0 < 4. The value, 4, corresponds to

the critical damping rate of the linearized ISDE associated with Eqs. (63) and (64).

(ii) {[Wwien
λ (t)], t ∈ R+} is the stochastic process, defined on (Θ,T ,P), indexed by R+, with

values in Mν,N , for which the columns of [Wwien
λ (t)] are N independent copies of the

Rν-valued normalized Wiener process whose matrix-valued autocorrelation function is

min(t, t′) [Iν]. The dependence on λ is such that, if λ and λ′ are two distinct values in

Cad,λ, then the two stochastic processes {[Wwien
λ (t)], t ∈ R+} and {[Wwien

λ′ (t)], t ∈ R+} are

independent.

(iii) [u] 7→ [Lλ([u])] is a nonlinear mapping from Mν,N into Mν,N , expressed in the following

form as negative of the gradient of the potentialVλ

[Lλ([u])]αℓ = −
∂

∂uℓα
Vλ(u

ℓ) , α = 1, . . . , ν , ℓ = 1, . . . ,N , (66)
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in which [u] = [u1 . . .uN] ∈ Mν,N with uℓ = (uℓ1, . . . u
ℓ
ν) ∈ Rν. For ℓ fixed in {1, . . . ,N},

the Hamiltonian of the associated conservative homogeneous dynamical system related to

stochastic process {(Uℓ(t),Vℓ(t)), t ∈ R+} is thus written as Hλ(u
ℓ, vℓ) = 1

2
‖vℓ‖2 +Vλ(u

ℓ).

(iv) [ηinit] and [vinit] are given matrices in Mν,N that will be defined in Section 5.7.5 as a function

of iteration ι of the algorithm given in Section 5.6.

5.7.3. Existence and uniqueness of a stationary solution associated with the invariant measure

Using Theorems 4 to 7 in Pages 211 to 216 of [54], it can be proven, that for λ ∈ Cad,λ, Eqs. (63)

to (65) admits the unique invariant measure,

⊗N
ℓ=1 {pHλ

(uℓ) pG(vℓ) duℓ dvℓ} , (67)

in which pHλ
is defined by Eqs. (61) and (62), and where the pdf pG is written as pG(vℓ) =

(2π)−ν/2 exp{−1/2‖vℓ‖2}. In addition, these Theorems allow for proving that Eqs. (63) to (65)

has a unique solution {([Uλ(t)], [Vλ(t)]), t ∈ R+}, which is a second-order diffusion stochastic

process that is asymptotic for t → +∞ to the stationary stochastic process {([Ust
λ (tst)], [V

st
λ (tst)]),

tst ∈ R+} for the right-shift semi-group on R+. For all fixed tst, the joint probability distribution

of the random matrices [Ust
λ (tst)] and [Vst

λ (tst)] is the invariant measure defined by Eq. (67). The

probability distribution of random matrix [Ust
λ (tst)] is

⊗N
ℓ=1 pHλ

(uℓ) duℓ , (68)

that is to say, is the probability distribution p[Hλ]([u]) d[u] with d[u] = ⊗N
ℓ=1duℓ of the random

matrix [Hλ] with values in Mν,N . The columns H1
λ, . . . ,H

N
λ of [Hλ] are N independent copies of

random vector Hλ with values in Rν whose pdf is pHλ
defined by Eqs. (61) and (62). It can then

be deduced that for any fixed tst,

[Hλ] = [Ust
λ (tst)] = lim

t→+∞
[Uλ(t)] . (69)

Equation (69) means that, for f0 > 0, there exists tmin
λ > 0, such that {[Uλ(t)], t > tmin

λ } is

a stationary stochastic process that is a copy of stochastic process {[Ust
λ (tst)], tst ∈ R+}. As

previously explained, f0 allows for controlling the transient response generated by the initial

conditions for quickly reaching the stationary regime. Finally, we introduce the Gaussian random

matrices [Vλ] with values in Mν,N such that

[Vλ] = [Vst
λ (tst)] = lim

t→+∞
[Vλ(t)] . (70)

5.7.4. Expression of the mapping [Lλ]

In this subsection a general expression for the mapping [Lλ] is developed. In addition, spe-

cializations to particular common examples are derived.

Using Eqs. (62) and (66), it can be proven that, for α = 1, . . . , ν, for ℓ = 1, . . . ,N, and for

[u] = [u1 . . .uN] in Mν,N , we have

[Lλ([u])]αℓ=

{
1

ρ(uℓ)
∇uℓρ(uℓ)−[µ]1/2[Φ]T [Dxgc(x̂+[Φ][µ]1/2uℓ)][Ψ]λ

}

α

, (71)

in which ρ is defined by Eq. (23), where the gradient of ρ is such that

∇uℓρ(uℓ) =
1

ŝ2
ν

1

N

N∑

j=1

(
ŝν

sν
η j − uℓ) exp{− 1

2ŝ2
ν

‖ ŝν

sν
η j − uℓ‖2} , (72)
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and where [Dxgc(x)] ∈ Mn,mc
is the derivative at point x ∈ Rn of the mapping x 7→ gc(x) =

(g1(x), . . . , gmc
(x)) from Rn into Rmc such that

[Dxgc(x)]ki =
∂gc

i (x)

∂xk

, k = 1, . . . , n , i = 1, . . .mc .

(1) Case of the example presented in Section 4.1. Let us consider the example presented in

Section 4.1. We haveJmom = {k1, . . . , kκmom
}, κmom ≤ nq, and mc = 2κmom ≤ 2nq. Therefore,

βc
= (m

exp

k1
, . . . ,m

exp

kκmom
, r

exp

k1
, . . . , r

exp

kκmom
) ∈ Rmc , (73)

and, for k = 1, . . . , n and v = [Ψ] λ in Rmc , we have

{[Dxgc(x)] v}k =
κmom∑

κ=1

δkkκ(vκ + 2 xkκvκ+κmom
) .

Let us consider the block expression of [Φ] ∈ Mn,ν such that [Φ]T
= [[Φq]T [Φw]T ] in which

[Φq] ∈Mnq,ν. For κ = 1, . . . , κmom, we define qkκ(u
ℓ) such that

qkκ(u
ℓ) = q̂

kκ
+ {[Φq][µ]1/2uℓ}kκ . (74)

Consequently, for α = 1, . . . , ν, for ℓ = 1, . . . ,N, and for v = [Ψ] λ, Eq. (71) yields

[Lλ([u])]αℓ =

{
1

ρ(uℓ)
∇uℓρ(uℓ)

}

α

+ [Lc,1
λ ([u])]αℓ . (75)

[Lc,1
λ ([u])]αℓ = −

κmom∑

κ=1

µ1/2
α [Φq]kκα(vκ + 2 qkκ(u

ℓ)vκ+κmom
) . (76)

For facilitating the numerical implementation and enhancing computational efficiency, the right-

hand side of Eq. (76) can be rewritten in a matrix form as follows. Let q̃ = (q̃
1
, . . . , q̃

κmom
) be

the vector in Rκmom and let [Φ̃q] be the matrix in Mκmom ,ν such that, for κ = 1, . . . , κmom and for all

α = 1, . . . , ν, we have

q̃
κ
= q̂

kκ
, [Φ̃q]κα = [Φq]kκ α . (77)

Let q̃(uℓ) = (q̃1(uℓ), . . . , q̃κmom
(uℓ)) be the vector in Rκmom such that q̃κ(u

ℓ) = qkκ(u
ℓ), which can

be written as

q̃(uℓ) = q̃ + [Φ̃q] [µ]1/2uℓ . (78)

Let [q̃(uℓ)] be the diagonal matrix in Mκmom
such that [q̃(uℓ)]κκ′ = δκκ′ q̃κ(u

ℓ) in which q̃κ(u
ℓ) is

component κ of vector q̃(uℓ) defined by Eq. (78). Let us consider the block writing of [Ψ] ∈
Mmc ,νc

such that [Ψ]T
= [[Ψm]T [Ψr]T ] in which [Ψm] and [Ψr] are matrices that belong to

Mκmom ,νc
. Using the above notations, Eq. (76) can be rewritten as

[L
c,1
λ ([u])]αℓ =

{
−[µ]1/2[Φ̃q]T

(
[Ψm] + 2 [q̃(uℓ)] [Ψr]

)
λ
}
α
. (79)
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(2) Case of the example presented in Section 4.2. Let us now consider Eq. (15) of the example

presented in Section 4.2 with mc = nq. We then have gc(x) = q − [B] w with x = (q,w) ∈
Rn
= Rnq × Rnw , which can be rewritten as gc(x) = [Gc] x with [Gc] = [ [Inq

] | − [B] ] ∈ Mnq ,n

with n = nq + nw. Consequently, we have [Dxgc(x)] = [Gc]T ∈ Mn,nq
and for α = 1, . . . , ν, for

ℓ = 1, . . . ,N, and for v = [Ψ] λ, Eq. (71) yields

[Lλ([u])]αℓ =

{
1

ρ(uℓ)
∇uℓρ(uℓ)

}

α

+ [L
c,2
λ ([u])]αℓ . (80)

[Lc,2
λ ([u])]αℓ =

{
−[µ]1/2[Φ]T [Gc]T [Ψ] λ

}
α
. (81)

It should be noted that [L
c,2
λ ([u])] depends only on λ and is independent of [u].

(3) Case of the example presented in Appendix A.1. Finally, we consider the example presented

in Appendix A.1 for which Jmom = {k1, . . . , kκmom
}, κmom ≤ nq, and mc = 2 κmom + nq ≤ 3 nq.

Therefore,

βc
= (m

exp
k1
, . . . ,m

exp
kκmom

, r
exp
k1
, . . . , r

exp
kκmom

, βconst
1 , . . . , βconst

nq
) ∈ Rmc , (82)

and using Eqs. (75), (76), (80), and (81), we have, for α = 1, . . . , ν, for ℓ = 1, . . . ,N, and for

λ ∈ Rνc ,

[Lλ([u])]αℓ =

{
1

ρ(uℓ)
∇uℓρ(uℓ)

}

α

+ [Lc
λ([u])]αℓ , (83)

[Lc
λ([u])] = [L

c,1
λ ([u])] + [L

c,2
λ ([u])] . (84)

5.7.5. Expression of the initial conditions for the MCMC algorithm

In Eq. (65), the initial conditions [ηinit] and [vinit] are constructed in Mν,N as a function of

iteration ι of the algorithm presented in Section 5.6 in order to calculate the sequence {λι}ι≥2

from the initial value λ1 as follows:

• λ1 is computed (see Eq. (55)) by λ1
= −[Γ′′(λ0)]−1∇Γ(λ0) with λ0

= 0, using Eq. (58) as

explained in Section 5.6.

• λ2 is calculated using Eq. (55), in which [Γ′′(λ1)] and ∇Γ(λ1) are computed with Eqs. (51)

and (52) in which E{hc(Hλ1 )} and [cov{hc(Hλ1 )] are estimated with the MCMC algorithm

for which the initial conditions at t = 0 are chosen as [ηinit] = [ηinit,1] and [vinit] = [vinit,1]

with

[ηinit,1] = [η1 . . .ηN] ∈Mν,N , (85)

and where the N columns of [vinit,1] are N independent realizations of a Gaussian, centered,

Rν-valued random variable for which its covariance matrix is [Iν]. The MCMC generator

(see Section 5.8) allows for generating nMC realizations [η1
λ1 ], . . . , [η

nMC

λ1 ] of random matrix

[Hλ1 ] and [v1
λ1 ], . . . , [v

nMC

λ1 ] of random matrix [Vλ1 ] (see Eqs. (69) and (70)).

• Knowing λι at iteration ι ≥ 1, the vector λι+1 is calculated using Eq. (55) in which [Γ′′(λι)]
and ∇Γ(λι) are computed with Eqs. (51) and (52)) using the MCMC algorithm for which

the initial conditions at t = 0 are chosen as [ηinit] = [ηinit,ι] and [vinit] = [vinit,ι] with

[ηinit,ι] = [η
nMC

λι−1 ] , [vinit,ι] = [v
nMC

λι−1 ] . (86)
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5.8. Computing the additional realizations of Hλi using the probabilistic learning on manifolds

For given λ = λι in Rνc in which λι comes from the iteration algorithm detailed in Sec-

tion 5.6, and for given initial conditions [ηinit,ι] and [vinit,ι] defined by Eq. (86), nMC realizations

[η1
λι ], . . . , [η

nMC
λι ] of random matrix [Hλι] and [v1

λι], . . . , [v
nMC
λι ] of random matrix [Vλι] have to be

computed using the MCMC generator defined by Eqs. (63) to (65) in which λ = λι. However,

as it has previously been explained, N is assumed to be small and consequently, the probabilistic

learning on manifolds presented in [37] is used. This algorithm consists in projecting the non-

linear ISDE defined by Eqs. (63) to (65) on the diffusion-maps basis. This approach allows for

preserving the concentration of the invariant measure pHλι
(η) dη and to avoid the scattering of

the realizations computed with the MCMC generator. In order to simplify the reading of this

paper, we briefly summarized the algorithm that is proposed in [37] in adapting the notations to

the problem under consideration.

5.8.1. Construction of the diffusion-maps basis

The diffusion-maps basis is independent of λι, only depends on the initial dataset {η1, . . . , ηN },
and is represented by the matrix

[g] = [g1 . . .gm] ∈MN,m with 1 < m ≤ N . (87)

For m = N, it is an algebraic basis of vector space RN . This basis is constructed using the

diffusion maps proposed in [55]. Let [K] be the symmetric (N × N) real matrix such that

[K] j j′ = exp(− 1
4 εdiff
‖η j − η j′‖2) that depends on a real smoothing parameter εdiff > 0. Let

[P] be the transition matrix in MN of a Markov chain such that [P] = [b]−1 [K] in which [b]

is the positive-definite diagonal real matrix such that [b]i j = δi j

∑N
j′=1[K] j j′ . For m fixed in

{1, . . . ,N}, let g1, . . . , gm be the right eigenvectors in RN of matrix [P] such that [P] gα = Λα gα

in which the eigenvalues are sorted such that 1 = Λ1 > Λ2 > . . . > Λm. It can easily be

proven that the eigenvalues are positive and the largest is Λ1 for which all the components of the

corresponding eigenvector g1 are equal. Considering the normalization [g]T [b] [g] = [Im], the

right-eigenvalue problem of the nonsymmetric matrix [P] can then be done solving the eigen-

value problem [b]−1/2 [K] [b]−1/2 ξα = Λα ξ
α related to a positive-definite symmetric real ma-

trix with the orthonormalization < ξα, ξβ >= δαβ. Therefore, gα can be deduced from ξα by

gα = [b]−1/2 ξα.

The construction introduces two hyperparameters: the dimension m ≤ N and the smoothing

parameter εdiff > 0. An algorithm is proposed in [40] for estimating their values. Most of the

time, m and εdiff can be chosen as follows. Let εdiff 7→ m̂(εdiff) be the function from ]0 ,+∞[ into

the set N = {0, 1, 2, . . .} of all the integers such that

m̂(εdiff) = arg min
α |α≥3

{
Λα(εdiff)

Λ2(εdiff)
< 0.1

}
. (88)

If function m̂ is a decreasing function of εdiff in the broad sense (if not, see [40]), then the optimal

value ε
opt
diff of εdiff can be chosen as the smallest value of the integer m̂(ε

opt
diff) such that

{m̂(ε
opt
diff)< m̂(εdiff) ,∀εdiff ∈ ]0, ε

opt
diff[ } ∩ {m̂(ε

opt
diff) = m̂(εdiff) ,∀εdiff ∈ ]ε

opt
diff , 1.5 ε

opt
diff[ } . (89)

The corresponding optimal value mopt of m is then given by mopt
= m̂(ε

opt
diff). Random vector H is

centered, but due to the constraints, Xc can be not centered. Consequently, vector g1 associated

with Λ1 has to be kept in the basis.
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5.8.2. Reduced-order representation of random matrix [Hλι ]

The diffusion-maps basis represented by matrix [g] ∈ MN,m spans a subspace of RN that

characterizes the local geometry structure of dataset {η j, j = 1, . . . ,N}. The reduced-order rep-

resentation is obtained by projecting each column of the MN,ν-valued random matrix [Hλι]
T on

the subspace of RN , spanned by {g1, . . . , gm}. Let [Zλι] be the random matrix with values in Mν,m

such that

[Hλι ] = [Zλι] [g]T . (90)

Since the matrix [g]T [g] ∈ M+m is invertible, the least-square approximation of [Zλι] can be

written as

[Zλι] = [Hλι] [a] , (91)

in which the matrix [a] is defined by

[a] = [g] ([g]T [g])−1 ∈MN,m . (92)

It should be noted that the least-square approximation defined by Eq. (91) is only used for calcu-

lating the initial conditions for the reduced-order nonlinear ISDE.

5.8.3. Generation of realizations of random matrix [Hλι]

The objective is to compute nMC independent realizations [η1
λι], . . . , [η

nMC
λι

] of random matrix

[Hλι] in which nMC is assumed to be independent of λι. The reduced-order nonlinear ISDE is

constructed as the projection of the nonlinear ISDE defined by Eqs. (63) to (65) on the diffusion-

maps basis represented by matrix [g] ∈ MN,m. We therefore define the Mν,m × Mν,m- valued

stochastic process {([Zλι(t)], [Yλι(t)]), t ≥ 0} such that, for all t ≥ 0,

[Uλι(t)] = [Zλι(t)] [g]T , [Vλι(t)] = [Yλι(t)] [g]T . (93)

The projection of Eqs. (63) to (65) yields

d[Zλι(t)] = [Yλι(t)] dt , (94)

d[Yλι(t)] = [Lλι([Zλι(t)])] dt − 1

2
f0[Yλι(t)] dt +

√
f0 d[Wwien

λι (t)] , (95)

with the projected initial conditions (see Eqs. (86) and (91)) at t = 0,

[Zλι(0)] = [η
nMC

λι−1 ] [a] , [Yλι(0)] = [v
nMC

λι−1 ] [a] , a.s. , (96)

in which the random matrix [Lλι([Zλι(t)])] with values in Mν,m is written as

[Lλι([Zλι(t)])] = [Lλι ([Zλι(t)] [g]T )] [a] , (97)

[Wwien
λι (t)] = [Wwien

λι (t)] [a] . (98)

Using the results presented in Section 5.7.3, it can be deduced that random matrix [Zλι] =

limt→+∞[Zλι(t)] in probability distribution. We can then compute nMC independent realiza-

tions [z1
λι], . . . , [z

nMC
λι ] of random matrix [Zλι], using the stationary regime of stochastic process

{[Zλι(t)], t > 0} that is the solution of Eqs. (94) to (98). The realizations of [Hλι] are then

obtained using Eq. (90),

[ηℓλι] = [zℓλι] [g]T ∈Mν,N , ℓ = 1, . . . , nMC . (99)

The Störmer-Verlet algorithm is used for solving the reduced-order nonlinear ISDE defined by

Eqs. (94) to (98) as proposed in [44, 37]. This algorithm is summarized in Appendix B.
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5.8.4. Deducing the realization of random vector Hλι

Let be M = nMC × N. Once the realizations {[ηℓλι], ℓ = 1, . . . , nMC} of the Mν,N-valued random

variable [Hλι] have been computed using Eq. (99), the M ≫ N realizations {ηℓ′λι , ℓ′ = 1, . . . , M} of

the Rν-valued random variable Hλι are deduced by reshaping the matrices {[ηℓλι], ℓ = 1, . . . , nMC}.

5.9. Computing the additional realizations of random vector Xc

As soon as the error function defined by Eq. (59) is less that a given small tolerance (that is

to say, considering the iteration number ι such that err(ι) ≤ tol), the iteration algorithm detailed

in Section 5.6 is converged and the solution λsol defined by Eq. (54) is such that λsol ≃ λι. The

realizations {ηℓ′λι , ℓ′ = 1, . . . , M} of the random vector Hc constructed in Section 5.8.4, which

correspond to the last iteration λι, are rewritten as {ηc,ℓ′ , ℓ′ = 1, . . . , M} (that is to say, ηc,ℓ′
= ηℓ

′

λι
).

Using Eq. (28), the M realizations {xc,ℓ′ , ℓ′ = 1, . . . , M} of random vector Xc are such that

xc,ℓ′
= x̂ + [Φ] [µ]1/2 ηc,ℓ′ , ℓ′ = 1, . . . , M . (100)

5.10. Convergence analysis of the probabilistic learning with respect dimension N of initial

dataset

Let us assumed that ε, which has been introduced in Eq. (18), is fixed independently of the

value of N. Except for the case for which ε is chosen very small, in general, ν = ν(N) de-

pends on N for N belonging to the ordered subset JN = {Nmin, ...,Nmax} ⊂ N of integers, with

0 < Nmin < Nmax. The value of Nmax corresponds to the maximum value that is available for

constructing the initial dataset DNmax . Consequently, the random variable Xc,ν(N) depends on

N ∈ JN and will simply be denoted as Xc,N . A question related to the proposed probabilis-

tic learning on manifolds is the convergence of the probability distribution PXc,N when N goes

through the ordered set JN . This means that, for a given tolerance, when N goes from Nmin to

Nmax, the probability distribution PXc,N must converge. If it is not the case, this means that the

learning is not convergent and then Nmax has to be increased. Therefore, additional calculations

have to be carried out with the computational models for constituting a new bigger training set.

(i) Since the mean-square convergence implies the convergence in probability distribution, we

can study the convergence of the learning in analyzing the function

N 7→ convL2 ,Xc(N) = E{‖Xc,N‖2} . (101)

In fact, the limit is unknown and a Cauchy sequence could be studied (Hilbert space L2(Θ,Rn) is

a complete vector space). In practice, since setJN is not sufficiently big for using such a Cauchy

criterion, we can check that N 7→ convL2,Xc (N) is flat on {N f , . . . ,Nmax} for Nmax < N f < Nmax.

(ii) Because the contribution of Qc,N and Wc,N , such that Xc,N
= (Qc,N ,Wc,N), can be very

different in the value of convL2 ,Xc(N), the definition of convL2 ,Xc(N) given by Eq. (101) can be

replaced by the following one,

N 7→ convL2 ,Xc (N) =
1√
2

{
E{‖Qc,N‖2}

E{‖QNmax‖2}
+

E{‖Wc,N‖2}
E{‖WNmax‖2}

}
. (102)

(iii) Sometimes, for a given JN , the criteria defined by Eqs. (101) or (102) is not sufficiently

sensitive when N goes through JN . In such a case, and if the constraints are only applied to the
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quantities of interest, indicators of the convergence of the learning can be analyzed by studying,

for a given subset of components k, the graphs of the functions

N 7→ mQc
k
(N) , N 7→ sQc

k
(N) , N 7→ {q 7→ pQc

k
(q; N)} , (103)

of the mean value, the standard deviation, and the pdf of Qc
k, which are estimated by using the M

additional realizations generated with the PLoM.

5.11. Remarks concerning the convergence of the iteration algorithm in the framework of the

existence of a solution

If there exists a unique solution (see the comments formulated in Section 5.4-(iv)), then, for

all ι ≥ 1, [Γ′′(λι)] is a positive-definite matrix and reciprocally. Let us assume that this hypothesis

holds. Since the initial point is correctly chosen as explained in Section 5.6, then the iteration al-

gorithm defined by Eq. (55) is convergent and it is not necessary to introduce an under-relaxation

of the type λι+1
= λι − βrelax [Γ′′(λι)]−1∇Γ(λι) with βrelax ∈]0, 1[. If for a given iteration number ι,

the rank of positive matrix [Γ′′(λι)] becomes less than νc, then solution λsol cannot be constructed

in Cad,λ, which means that there is no solution. This difficulty is related to the value of νc and

cannot be compensated using an under-relaxation. The introduction of an under-relaxation does

not modify the fact that there will exist ι′ > ι (before reaching the convergence) such that the rank

of [Γ′′(λι
′
)] is less than νc (all the numerical experiments that have been done have confirmed this

analysis). In fact, the existence of a solution is related to the number νc of projected constraint

equations defined by Eq. (33), which is the projection by [Ψ] ∈Mmc ,νc
of the constraint equations

defined by the Eq. (10). If τc is too small, then νc is too big compared to the stochastic dimension

νs that have been introduced in Section 5.4-(iv). This means that the number νc of projected con-

straint equations is too large with respect to the number νs of ”stochastic degrees of freedom” and

consequently, the projected constraint equations defined by Eq. (33) cannot be exactly satisfied.

An effective method to solve such a non-convergence problem is to slightly increase the value

τc, which makes it possible to obtain a slightly smaller rank νc and thus to reduce the number of

projected constraint equations (all the numerical experiments that have been conducted validate

this analysis).

Assumptions for the applicability of the proposed method. The proposed method is general.

The given constraints for performing the probabilistic learning on manifolds are not limited to

second-order moments but can be expressed as the mathematical expectation of any measurable

mapping of the control parameters and the quantities of interest. For example, marginal proba-

bility densities can be imposed as shown in Appendix A. There is obviously a domain of validity,

which is not due to the method proposed itself, but which is due to the coherence of the given

constraints with respect to the initial dataset (that is used for the probabilistic learning). If the

introduced constraints are not consistent with the initial dataset, then the optimization problem

will have no solution. The existence of this solution is therefore conditioned by hypotheses that

are discussed above and in Section 5.4-(iv).

6. Application (AP1)

In this section, an application is presented and is used for performing the validation of the

methodology and the algorithms presented. All the random variables are defined on probability

space (Θ,T ,P). This application that will be referenced as (AP1) is sufficiently simple in order
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to be easily reproducible by the reader and will also allow for presenting a detailed analysis for

several aspects of the proposed method.

6.1. Stochastic model

The stochastic model used for generating the initial dataset DN = {x j
= (q j,w j), j = 1, . . . ,N}

(see the Remark at the end of Section 2), related to random variable X = (Q,W) in which

Q = (Q1, . . . ,Qnq
) and W = (W1, . . . ,Wnw

), is written as

Q = [B(U)] (W + V bAP1) , (104)

in which U, V , and W are independent random variables. The maximum value of N is 300

and nw = 20. We have nq = 200. The deterministic vector bAP1 in Rnw is written as bAP1 =

0.2 u + 0.9 in which all the components of u belong to ]0, 1[ (generated with the Matlab script:

rng(’default’); u = rand(nw, 1)). The real-valued random variable V = 0.2U + 0.9 in whichU
is a uniform random variable on [0, 1]. The random vector U = (U1, . . . ,Unu

) with nu = 6 is

written, for α = 1, . . . , nu, as Uα = 2 uαUα + 1 − uα in which U1, . . . ,Unu
are nu independent

uniform random variables on [0, 1] and where, uα = 0.2(α − 1)/(nu − 1). The entries [B(U)]k j

of the (nq × nw) random matrix are defined by [B(U)]k j =
∑nu

α=1 ωα(Uα) φαk (Uα) φαj+nq/2
(Uα) in

which φαk (Uα) = sin{α kπ/(nq+1)} is independent of Uα (deterministic) and ωα(Uα) = 1/(αUα)2.

The random vector W is written as W =
∑3

β=1

√
̟β φ

β
w
Aβ, in which ̟β = 1/β2 and φβ

w
=

(φ
β
w,1, . . . , φ

β
w,nw

) with φ
β
w, j = sin{βπ j/(1 + nw)}. The non-Gaussian centered random vector A =

(A1,A2,A3) is written as A =
∑27

γ=1 aγ ψ
α

(γ)

1
(Ξ1)ψ

α
(γ)

2
(Ξ2) in which Ξ1 and Ξ2 are independent

normalized Gaussian random variables. The indices α
(γ)
1 and α

(γ)
2 are such that 0 < α

(γ)
1 +α

(γ)
2 ≤ 6,

and ψ
α

(γ)

1
(Ξ1) and ψ

α
(γ)

2
(Ξ2) are the polynomial chaos in Gaussian variables. The matrix [a] =

[a1 . . . a27] is such that [a] [a]T
= [I3] and is generated using the Matlab script: rng(’default’);

M1 = randn(27,27); [M2,∼] = eig(M1*(M1)′); M2(: , 4:27) = []; [a] = (M2)′.

6.2. Simulated experiments

Simulated experiments are not required for the proposed methodology. Only some statistics

corresponding to the constraints must be specified. Nevertheless, in order to generate coherent

statistics for the constraints (but also for validating the methodology), we introduce an exper-

imental dataset that is generated with an ”experimental model”. This experimental dataset is

used for estimating the statistics that correspond to the constraints. We insist on the fact that

for applying the method proposed, the experimental dataset is not used and consequently, is not

required.

The experimental dataset D
exp
nr

is generated with nr = 200 independent experimental realiza-

tions {qexp,r, r = 1, . . .nr} ofQexp
= (Q

exp
1 , . . . ,Q

exp
nq

), which are used for estimating the right-hand

side member of Eq. (10). The simulated experiments correspond to model uncertainties induced

by modeling errors and are constructed using significant perturbations of the stochastic model.

The experimental stochastic model is then written as

Qexp
= [B(Uexp)] (Wexp

+ Vexp bAP1) , (105)

in which Uexp, Vexp, and Wexp are independent random variables that are also independent of U,

V , and W. The real-valued random variable Vexp
= 0.2Uexp

+ 0.9 in which Uexp is a uniform

random variable on [0, 1] independent of U. The random vector Uexp
= (U

exp
1 , . . . ,U

exp
nu ) is
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written, for α = 1, . . . , nu, as U
exp
α = 2 u

exp
α Uexp

α + 1 − u
exp
α in which Uexp

1 , . . . ,Uexp
nu

are nu

independent uniform random variables on [0, 1] and where, u
exp
α = 0.3(α− 1)/(nu − 1). Note that

the coefficient is 0.3 and not 0.2 as in the stochastic model. The mapping u 7→ [B(u)] is the same

as the one of the stochastic model. The random vector Wexp is written as

Wexp
= ζMEAN × 1nw

+ ζSTD × W̃exp , (106)

in which 1nw
∈ Rnw is the vector whose components are equal to 1 and where W̃exp is an inde-

pendent copy of the stochastic model of W. The parameter ζMEAN controls the mean value of

Wexp while ζSTD controls the amplitude of its covariance matrix. Many values of (ζMEAN, ζSTD)

have been considered in the subset [−0.2,+0.7] × [0, 1.4] for analyzing the robustness of the al-

gorithm. In order to limit the number of figures, we will limit the presentation of the results to

the value ζMEAN = 0.4 and ζSTD = 1.4.

6.3. Scaling

Using the block writing X = (Q,W), the scaling of the Rnq -valued random variable Q and

the scaling of the Rnw -valued random variable W are written, using Eq. (5), as

Q = [αq] Q + qmin , Q = [αq]−1(Q − qmin) , (107)

W = [αw] W + wmin , W = [αw]−1(W − wmin) , (108)

in which xmin
= (qmin,wmin) and where [αq] and [αw] correspond to the block writing of [αx].

The scaling of Eq. (104) is then written as

Q = [B(U)] (W + V bAP1 + cAP1) + dAP1 , (109)

in which [B(U)] = [αq]−1 [B(U)] [αw], bAP1 = [αw]−1 bAP1, cAP1 = [αw]−1 wmin, and dAP1 =

−[αq]−1 qmin. The scaling of Qexp is such that Qexp
= [αq]−1(Qexp − qmin), which shows that the

nr independent experimental realizations {qexp,r, r = 1, . . .nr} of Qexp are such that

qexp,r
= [αq]−1(qexp,r − qmin) . (110)

6.4. Constraints

The constraints are those that are defined in Section 4, that is to say by Eqs. (13) and (14)

in which κmom = nq and where the experimental moments {(mexp
κ , s

exp
κ ), κ = 1, . . . , κmom} are

estimated using the nr independent experimental realizations {qexp,r, r = 1, . . .nr} defined by

Eq. (110). Consequently, the number of constraints is mc = 2 nq = 400.

6.5. Values of the parameters of the algorithms

In this paragraph, all the values of the parameters are related to N = 300. The PCA of X

(see Section 5.1) is performed with ε = 10−6 in Eq. (17) and yields ν = 9. The values of the

two parameters of the Gaussian kernel-density estimation defined by Eq. (24) are sν = 0.5966

and ŝν = 0.5129. Concerning the construction of the diffusion-maps basis, the use of Eqs. (88)

and (89) yields ε
opt
diff = 48 and the optimal value of m is mopt

= 12. The graph α 7→ Λα of

the eigenvalues of the transition matrix defined in Section 5.8.1, which corresponds to these

optimal values, is shown in Fig. 1-(a). For solving the reduced-order nonlinear ISDE defined in

Section 5.8.3, the parameters related to the algorithm are those introduced in Appendix B, have
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been estimated using the procedure that is detailed in Section 4.7.2 in [37], and are the following:

f0 = 1.5, nMC = 50, ℓ0 = 10, M0 = 10, ∆t = 0.16115, and then, M = 15 000. The projection of

the constraints introduced in Section 5.3 has been performed with τc = 0.001 that yields νc = 3

(see Eq. (39)). Figure 1-(b) displays the graph of the error function ι 7→ err(ι) that is defined

by Eq. (59), which shows the convergence of the iteration algorithm for computing the Lagrange

multiplier λsol. It can be seen that the convergence is fast, the error decreases exponentially as a

function of the iteration number ι.
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Figure 1: Application AP1. Figure (a): graph α 7→ Λα of the eigenvalues of the transition matrix defined in Section 5.8.1.

Figure (b): graph of the error function ι 7→ err(ι) defined by Eq. (59) showing the convergence of the iteration algorithm

for computing the Lagrange multiplier λsol. The vertical axis is in log.

6.6. Convergence of the learning with respect to the value of N

For this application, the use of the criterion defined by Eq. (101) or by Eq. (102) for an-

alyzing the convergence of the learning with respect to dimension N of the initial dataset is

not sufficiently informative. For N ∈ [125, 300], convL2 ,Xc (N) fluctuates between 9.86 and

9.92. Consequently, for this application, the convergence of the learning is analyzed by us-

ing Section 5.10-(iii), that is to say by studying the sequence in N of graphs of the functions

{k 7→ sQc
k
(N)}N and {q 7→ pQc

110
(q; N)}N for N ∈ {125, 150, 250, 300}. These quantities are related

to the unscaled vector-valued random variable Qc with values in Rnq for which nq = 200. For

fixed N, sQc
k
(N) is the standard deviation of component Qc

k and q 7→ pQc
110

(q; N) is the pdf of

Qc
110 (only component 110 that corresponds to the maximum of response has been selected for

limiting the number of figures). Figure 2-(a) shows the graphs of standard-deviation functions

k 7→ sQc
k
(N) for which a zoom in k has been carried out in order to better separate the curves for

viewing the convergence in N. Figure 2-(b) shows the graphs of pdf-functions q 7→ pQc
110

(q; N)

for the same values of N. The convergence of the learning is particularly clear for the standard-

deviation functions. For N = 250 and N = 300 the two curves are practically overlapping.

6.7. Results obtained and validation of the method for N = 300 and M = 15 000

For k = 1, . . . , 200, let Qk be the component k of the random unscaled QoI Q (the scaled one

is Q) associated with the initial dataset DN , let Q
exp
k be the component k of the random unscaled

experimental QoI Qexp (the scaled one is Qexp), and let Qc
k be the component k of the random

unscaled QoI Qc that verifies the constraints (the scaled one is Qc). The quality assessment
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Figure 2: Convergence of the probabilistic learning for application AP1 with M = 15 000 and for N in

{125, 150, 250, 300}. Figure (a): graphs of the standard-deviation function k 7→ sQc
k
(N) for k = 92, . . . , 125. Figure

(b): graphs of probability density function q 7→ pQc
110

(q; N).

consists in comparing Qc with the random vector Qc,model that is transformed from Wc using the

stochastic computational model, that is to say, Qc,model
= [B(U)] (Wc

+ V bAP1). For that the pdf

of component Qc
k can be compared to the pdf of component Q

c,model

k .

(i) For k = 1, . . . , 200, Fig. 3-(a) displays the graphs of the mean functions k 7→ mQk
, k 7→ mQ

exp

k
,

k 7→ mQc
k
, and k 7→ mQ

c,model
k

. Figure 3-(b) shows the graphs of the standard-deviation functions

k 7→ sQk
, k 7→ sQexp

k
, k 7→ sQc

k
, and k 7→ sQc,model

k
. In each one of these two figures, it can be seen that

the two curves k 7→ mQ
exp

k
and k 7→ mQc

k
are indistinguishable and that the two curves k 7→ sQexp

k

and k 7→ sQc
k
, what validates the method proposed: the constraints on the mean and the standard

deviation are well taken into account. Concerning the quality assessment, it can also be seen that

the two curves k 7→ mQc
k

and k 7→ mQ
c,model
k

are overlapping and also that the two curves k 7→ sQc
k

and k 7→ sQc,model
k

are also overlapping, demonstrating the capability of the method at least for the

second-order moments of the QoI.

(ii) To complete the analysis and the validation, we present the results obtained for the probability

density functions. In order to limit the number of figures, we have selected, as previously, com-

ponent 110 for Q. Figure 4 displays the graphs of the probability density functions q 7→ pQ110
(q),

q 7→ pQ
exp

110
(q), q 7→ pQc

110
(q), and q 7→ pQ

c,model
110

(q). The constraints that are imposed concern

only the second-order moments of Q. Consequently, there is no reason for that the pdf of Qc
110

coincides with the pdf of Q
exp

110. Nevertheless, it can be seen that the probabilistic learning on

manifolds under these constraints yields a pdf that is not so bad. Note also that, in practice and in

the framework of this application, the pdf of Q
exp

110 cannot be estimated because the nr realizations

of Qexp are not available. Nevertheless, it can be seen that the quality assessment is good enough

because pdf q 7→ pQ
c,model
110

(q) is very close to pdf q 7→ pQc
110

(q).
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Figure 3: Application AP1 with M = 15 000, for N = 300, for nr = 200, and for k = 1, . . . , 200. Figure (a): graphs of

the mean functions k 7→ mQk
(black dashed line), k 7→ m

Q
exp

k
(red line), k 7→ mQc

k
(blue line), and k 7→ m

Q
c,model
k

(blue

dashed line). Figure (b): graphs of the standard-deviation functions k 7→ sQk
(black dashed line), k 7→ s

Q
exp

k
(red line),

k 7→ sQc
k

(blue line), and k 7→ s
Q

c,model
k

(blue dashed line). In each figure, the red line, the blue line, and the blue dashed

line are overlapping.
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Figure 4: Application AP1: For M = 15 000, for N = 300, for nr = 200, graphs of the probability density functions

q7 → pQ110
(q) (black dashed line), q 7→ p

Q
exp

110
(q) (red line), q 7→ pQc

110
(q) (blue line), and q 7→ p

Q
c,model
110

(q) (blue dashed

line, almost overlapping with the blue line).

7. Application (AP2): Probabilistic learning of the random elasticity field for a heteroge-

neous anisotropic medium

In this section, we present an application in high dimension related to the learning of the

random elasticity field for a heterogeneous anisotropic medium. This application is described

in details in order that it can be reproduced. The Rnw -valued random system parameter, W,

corresponds to the spatial discretization of the tensor-valued random elasticity field for which

nw = 420 000. The Rnq -valued random quantity of interest, Q, has dimension nq = 1 683 corre-

sponding to observed components of the displacement field at 561 points located on the bound-

ary of the domain occupied by the heterogeneous material, and mc = 3 366 constraints defined

in Section 4 are introduced. All the random variables are defined on probability space (Θ,T ,P).
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7.1. Construction of the initial dataset

(i) Stochastic model defined by a stochastic boundary value problem. The stochastic model is

used for generating the initial dataset and is based on the stochastic boundary value problem

defined hereinafter. The medium occupies the domain Ω =]0, 1.0[× ]0, 0.2[× ]0, 0.1[ m3 with

generic point ζ = (ζ1, ζ2, ζ3). The boundary ∂Ω of Ω is written as ∂Ω = Γ0 ∪ Γ ∪ Γobs ∪ Γc in

which

Γ0 = {ζ1 = 1.0 , 0 ≤ ζ2 ≤ 0.2 , 0 ≤ ζ3 ≤ 0.1} ,
Γ = {ζ1 = 0.0 , 0 ≤ ζ2 ≤ 0.2 , 0 ≤ ζ3 ≤ 0.1} ,
Γobs = {0 ≤ ζ1 ≤ 1.0 , 0 ≤ ζ2 ≤ 0.2 , ζ3 = 0.1}} ,

and where Γc = ∂Ωmeso\{Γ0 ∪ Γ ∪ Γobs}. The outward unit normal to ∂Ω is denoted by n(ζ).

The heterogeneous complex material is modeled by a heterogeneous and anisotropic elastic ran-

dom medium for which the elastic properties are defined by the fourth-order tensor-valued non-

Gaussian random field {C = {Ci jkh(ζ)}i jkh, ζ ∈ Ω}, which is rewritten, for i, j, k, and h in {1, 2, 3},
as

Ci jkh(ζ) = [K(ζ)]IJ with I = (i, j) and J = (k, h) , (111)

in which indices I and J belong to {1, . . . , 6} and where the matrix-valued non-Gaussian random

elasticity field {[K(ζ)], ζ ∈ Ω} will be defined after. The R3-valued displacement field Ξ =

(Ξ1,Ξ2,Ξ3) is defined in Ω. A Dirichlet condition Ξ = 0 is given on Γ0 while a Neumann

condition is given on Γ ∪ Γobs ∪ Γc. The Neumann condition is zero on Γobs ∪ Γc while on Γ, a

given random surface force field GΓ is applied (note that there is no surface force field applied to

Γobs, which is the part of the boundary for which field Ξ is observed). The stochastic boundary

value problem is written as

−div Σ = 0 in Ω , (112)

Ξ = 0 on Γ0 , (113)

Σn = GΓ on Γ , (114)

Σn = 0 on Γobs ∪ Γc . (115)

The stress tensor Σ = {Σi j}i j is related to the strain tensor E(Ξ) = {Ekh(Ξ)}kh by the constitutive

equation,

Σi j(ζ) = Ci jkh(ζ) Ekh(Ξ(ζ)) (116)

in which the strain tensor is such that Ekh(Ξ) = (∂Ξk/∂ζh + ∂Ξh/∂ζk)/2.

(ii) Stochastic model of the applied forces. The surface force field applied on Γ induces the

superposition (1) of a mean tension in the ζ1-axis induced by a surface force field applied in the

−ζ1-axis direction with a constant amplitude gζ1 , (2) of a mean bending around ζ3-axis induced

by a surface force field applied in the −ζ2-axis direction with a constant amplitude gζ2 , and (3) of

a mean bending around ζ2-axis induced by a surface force field applied in the −ζ3-axis direction

with a constant amplitude gζ3 . Consequently, the R3-valued random surface force field {GΓ(ζ) =

(GΓ1(ζ),GΓ2(ζ),GΓ3(ζ)), ζ ∈ Γ} applied on surface Γ is defined as follows. For all ζ = (ζ1, ζ2, ζ3) in

Γ,

GΓ1(ζ) = −gζ1 cos(U1) , (117)

GΓ2(ζ) = −gζ1 sin(U1) − gζ2 cos(U2) − gζ3 sinU3 , (118)
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GΓ3(ζ) = −gζ2 sin(U2) − gζ3 cosU3 , (119)

where U = (U1,U2,U3) is a R3-valued random variable such that

Uk = α0 (2Uk − 1) , α0 = 2παd
0/360 , αd

0 = 1o , (120)

in which U1,U2,U3 are three independent uniform random variables on [0, 1], which are also

independent of random field C. It can then be deduced that U is independent of random field C.

The amplitudes are such that gζ1 = 15 000 N/m2, gζ2 = 130 N/m2, and gζ3 = 50 N/m2.

(iii) Stochastic model of the random elasticity field. The non-Gaussian fourth-order tensor-

valued random field {C(ζ), ζ ∈ Ω} is assumed to be of second order and statistically homoge-

neous. Its mean function is thus independent of ζ and is an elasticity tensor denoted by C, which

is defined using its representation [K] ∈ M+6 (see Eq. (111)) such that Ci jkh = [K]IJ . Elastic-

ity tensor C is associated with a homogeneous isotropic elastic material whose Young modulus

is 1010 N/m2 and Poisson coefficient 0.15 (note that the fluctuations are those of a heteroge-

neous anisotropic elastic material). The non-Gaussian M+6 -valued random field {[K(ζ)] , ζ ∈ Ω}
is constructed using the stochastic model [56, 49] of random elasticity fields for heterogeneous

anisotropic elastic media that are isotropic in statistical mean and exhibit anisotropic statisti-

cal fluctuations, for which the parameterization consists of spatial-correlation lengths and of a

positive-definite lower bound. The random field {[K(ζ)], ζ ∈ Ω} is written as,

[K(ζ)] = [Cℓ] + [ C ]1/2 [G0(ζ)] [ C ]1/2 , ∀ζ ∈ Ω . (121)

The lower-bound matrix is defined by [Cℓ] = εℓ(1 + εℓ)
−1 [K] ∈M+6 in which εℓ is chosen equal

to 10−6. Consequently, [ C ] = [ K ] − [Cℓ] = (1 + εℓ)
−1 [K] belongs to M+6 . Note that [ C ]1/2 is

the square root of matrix [ C ] in M+n . The non-Gaussian random field {[G0(ζ)], ζ ∈ R3}, which

is indexed by R3 with values in M+6 , is homogeneous in R3 and is a second-order random field

such that, for all ζ in R3,

E{[G0(ζ)]} = [I6] , [G0(ζ)] > 0 a.s. (122)

It can then be deduced that, for all ζ in Ω,

E{[K(ζ)]} = [ K ] ∈M+6 , [K(ζ)] − [Cℓ] > 0 a.s. (123)

Random field {[G0(ζ)], ζ ∈ R3} depends on three spatial correlation lengths, L1, L2, and L3, and

on a dispersion parameter, δG0
. Its construction and its generator are summarized in Appendix C.

With such a stochastic model of the elasticity field, it is proven in [56] that the stochastic

boundary value problem defined by Eqs. (112) to (116) admits a unique second-order solution.

(iv) Finite element approximation of the stochastic boundary value problem and construction of

random vectors Q and W. Domain Ω =]0, 1.0[× ]0, 0.2[× ]0, 0.1[ is meshed with 50×10×5 =

2 500 finite elements using 8-nodes finite elements. There are 3 366 nodes and 10 098 dofs

(degrees of freedom). The displacements are locked at all the 66 nodes belonging to surface Γ0

and therefore, there are 198 zero Dirichlet conditions. The Rnq -valued random variable Q of the

QoIs are constituted of the three dofs of the 561 observed nodes on surface Γobs; we then have

nq = 1 683 = 3×561. There are 8 integration points in each finite element. Consequently, there
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are Ni = 20 000 integration points ζ1, . . . , ζNi . The Rnw -valued random variableW is generated as

follows. Let us consider the set {[L(ζ1)], . . . , [L(ζNi )]} of the random values at the Ni integration

points of the random field {[L(ζ)], ζ ∈ R3} with values in the set of all the upper triangular

(6×6) matrices with positive-valued diagonal entries. The random matrix [L(ζ)] is the factor in

the Cholesky factorization [G0(ζ)] = [L(ζ)]T [L(ζ)] given by Eq. (C.1) (from Appendix C) of

random matrix [G0(ζ)] used in Eq. (121). The components of random vector W are constituted,

for i = 1, . . .Ni and for 1 ≤ j ≤ k ≤ 6, of the family of random variables log{[L(ζ i)] j j} and

[L(ζ i)] jk for j < k. Since there are 21 entries in the upper triangular random matrix [L(ζ i)], we

have nw = 420 000 = 20 000×21.

(v) Generation of the initial dataset. The finite element discretization of the stochastic boundary

value problem allows for constructing Q as a function of W and U that is formally written as

Q = f(W,U) , (124)

in which (w, u) 7→ f(w, u) is a measurable mapping on Rnw ×R3 with values in Rnq . Note that the

deterministic mapping f cannot explicitly be described because this mapping is associated with

the solution of the finite element approximation of the stochastic boundary value problem. The

initial dataset DN = {x j
= (q j,w j), j = 1, . . . ,N}, relative to the random variable X = (Q,W), is

then constructed by using the Monte Carlo simulation method for solving the discretized stochas-

tic equation, in which q j
= f(w j, u j) where {w j, j = 1, . . . ,N} and {u j, j = 1, . . . ,N} are N inde-

pendent realizations of random vectors W and U (note that u j is also an independent realization

of w j). The generation is carried out with N = 200, L1 = L2 = L3 = 0.2, and δG0
= 0.25. For il-

lustration, Fig. 5 displays the 2D plot in the plane ζ3 = 0.0958 m of one realization of the random

fields (ζ1, ζ2) 7→ log{[L(ζ1, ζ2, 0.0958)] j j} for j = 1, 2, 4, and (ζ1, ζ2) 7→ [L((ζ1, ζ2, 0.0958))]12.

Figure 5: Application AP2: 2D plot in the plane ζ3 = 0.0958 m of one realization of the random field (ζ1, ζ2) 7→
log{[L(ζ1 , ζ2, 0.0958)] j j} for j = 1 (a), j = 2 (b), j = 4 (c), and of the random field (ζ1, ζ2) 7→ [L((ζ1 , ζ2, 0.0958))]12 (d).

7.2. Generation of the experimental dataset

As explained in Section 6 devoted to Application (AP1), simulated experiments are not re-

quired for the proposed methodology. Only some statistics that correspond to the constraints

must be specified. Nevertheless, similarly to Application (AP1), in order to generate coherent

statistics for the constraints, we introduce an experimental dataset generated as a perturbation of

the stochastic boundary value problem (as previously, we insist on the fact that for applying the

method proposed, the experimental dataset is not used and consequently, is not required). The
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experimental dataset D
exp
nr

is generated with nr = 1 000 independent experimental realizations

{qexp,r, r = 1, . . .nr} of Qexp
= (Q

exp
1 , . . . ,Q

exp
nq ) such that

Qexp
= f(Wexp,Uexp) , (125)

in which the deterministic mapping f is the same as the one used in Eq. (124). The R3-valued

random variable Uexp is an independent copy of the R3-valued random variable U introduced

in Section 7.1-(ii). The random vector Wexp is constructed as an independent copy of random

vector W defines in in Section 7.1-(iv) for which the spatial correlation lengths are L
exp
1 = L

exp
2 =

L
exp
3 = 0.16 and the dispersion parameter is δ

exp
G0
= 0.45.

7.3. Scaling

Using the block notation X = (Q,W), the scaling of the Rnq -valued random variable Q and

the scaling of the Rnw -valued random variable W is carried out as explained in Section 6.3 and

is obtained by using Eqs. (107) and (108) whose values of the parameterized transformation are

those of the present application (AP2). The scaling of Eq. (124) is then written as

Q = f(W,U) , (126)

in which f(W,U) = [αq]−1 (f([αw]W + wmin,U) − qmin). The scaling of Qexp is such that Qexp
=

[αq]−1(Qexp − qmin), which shows that the nr independent experimental realizations {qexp,r, r =

1, . . .nr} of Qexp are such that

qexp,r
= [αq]−1(qexp,r − qmin) . (127)

7.4. Constraints

The constraints are those that are defined by Eqs. (13) and (14) in which κmom = nq and where

the experimental moments {(mexp
κ , s

exp
κ ), κ = 1, . . . , κmom} are estimated using the nr independent

experimental realizations {qexp,r, r = 1, . . .nr} defined by Eq. (127). Consequently, the number

of constraints is mc = 3 366.

7.5. Values of the parameters of the algorithms

All the values of the parameters given in this paragraph are related to N = 200.

(i) The PCA of X (see Section 5.1) is performed with ε = 10−3 in Eq. (17) and yields ν = 193.

The graph of the error function ν 7→ errPCA(ν) for ν ∈ [1, 193], defined by Eq. (17), is shown in

Fig. 6 (a).

(ii) The parameters of the Gaussian kernel-density estimation defined by Eq. (24) are sν = 0.9544

and ŝν = 0.6913.

(iii) For the diffusion-maps basis, the use of Eqs. (88) and (89) yields ε
opt
diff = 800 and the optimal

value of m is mopt
= 195. The graph α 7→ Λα of the eigenvalues of the transition matrix defined

in Section 5.8.1, which corresponds to these optimal values, is shown in Fig. 6 (b).

(iv) For solving the reduced-order nonlinear ISDE defined in Section 5.8.3, the parameters related

to the algorithm are those introduced in Appendix B, have been estimated using the procedure

that is detailed in Section 4.7.2 in [37], and are the following: f0 = 1.5, nMC = 250, ℓ0 = 10,

M0 = 10, ∆t = 0.217192, and then, M = 50 000.

(v) The projection of the constraints introduced in Section 5.3 has been performed with τc =

0.004 that yields νc = 14 (see Eq. (39)). Figure 7 (a) displays the graph of the error function
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ι 7→ err(ι) that is defined by Eq. (59), which shows the convergence of the iteration algorithm

for computing the Lagrange multiplier λsol. It can be seen that the convergence is fast, the error

decreases exponentially as a function of the iteration number ι. Figure 7 (b) shows the graph of

the components k 7→ λsol
k , for k ∈ [1, νc] with νc = 14, of the optimal solution λsol

= (λsol
1 , . . . , λ

sol
νc

)

of the Lagrange multipliers λ computed by Eq. (54).
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Figure 6: Application AP2. Figure (a): graph of PCA-error function ν 7→ errPCA(ν) for ν ∈ [1, 193], defined by

Eq. (17). Figure (b): graph α 7→ Λα of the eigenvalues of the transition matrix defined in Section 5.8.1 (the vertical axis

is in log).
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Figure 7: Application AP2. Figure (a): graph of the error function ι 7→ err(ι) defined by Eq. (59) showing the conver-

gence of the iteration algorithm for computing the Lagrange multiplier λsol (the vertical axis is in log). Figure (b): graph

of the components k 7→ λsol
k , for k ∈ [1, νc] with νc = 14, of the optimal solution λsol

= (λsol
1 , . . . , λsol

νc
) of the Lagrange

multipliers λ computed by Eq. (54).

7.6. Convergence of the learning with respect to the value of N

Similarly to Application (AP1), the use of the criterion defined by Eq. (101) or by Eq. (102)

for analyzing the convergence with respect to N (convergence of the learning with respect to

dimension of the initial dataset) is not sufficiently informative for this application. In addition,

taking into account the high dimensions nw = 420 000 and nq = 1 683, it is neither easy nor

efficient to perform the analysis as carried out for Application (AP1). In this condition, we
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Figure 8: Application AP2: For component k = 2 (Figs. (a) and (b)), k = 31 (Figs. (c) and (d), and k = 33 (Figs. (e)

and (f)), the left figures plot the graphs of the mean functions N 7→ mQk
(N) (black thin line), N 7→ m

Q
exp

k
(red horizontal

line), N 7→ mQc
k
(N) (blue thick line), and N 7→ m

Q
c,model
k

(N) (blue dashed line); the right figures plot the graphs of the

standard deviation of functions N 7→ sQk
(N) (black dashed line), N 7→ sQ

exp

k
(red line), N 7→ sQc

k
(N) (blue line), and

N 7→ s
Q

c,model
k

(N) (blue dashed line).

therefore propose to analyze the convergence of the mean value and the standard deviation of

unscaled displacements Qk of three selected nodes, for which the displacements are maximum

for the mean responses: Q2 corresponding to the ζ2−displacement of the node of coordinates

(0, 0, 0.1), Q31 corresponding to the ζ1−displacement of the node of coordinates (0, 0.2, 0.1), and

Q33 corresponding to the ζ3−displacement of node of coordinates (0, 0.2, 0.1). The computation

has been carried out with M = 50 000, nr = 1 000, and for ten values of integer N such that

15 ≤ N ≤ 200.

For k ∈ {2, 31, 33}, Figure 8 allows for analyzing the convergence with respect to N of the

mean value m(N) and of the standard deviation s(N) of the following random variables: Qk
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Table 1: Applications (AP2): For N = 200 and M = 50 000, and for k = 2, 31, 33, values of the mean mQk
, m

Q
exp

k
, mQc

k
,

m
Q

c,model
k

, and values of the standard deviations sQk
, s

Q
exp

k
, sQc

k
, s

Q
c,model
k

.

Millimeter (10−3 m) Component 2 Component 31 Component 33

mQk
−4.01 −6.82 −6.98

mQc
k

−4.53 −7.69 −7.84

mQ
c,model
k

−4.65 −7.79 −8.21

mQ
exp

k
−4.75 −7.95 −7.95

sQk
5.78 1.04 1.52

sQc
k

7.38 1.23 3.18

sQc,model
k

6.47 1.17 3.74

sQexp

k
7.12 1.50 3.59

(estimated with the N points of the initial dataset), Qc
k (estimated with the M additional real-

izations of the generated dataset computed with the probabilistic learning on manifolds under

the mc = 2 366 constraints), Q
exp
k (corresponding to the experimental dataset), and finally, for

the quality assessment, Qc,model

k that results from the transformation of Wc using the stochastic

computational model, that is to say, Qc,model
= f(Wc,U). It can be seen that the effects of the con-

straints are significant: the thin lines (without constraints) are different from the thick lines (with

constraints). The convergence with respect to N is good enough even for the quality assessment:

the thick lines (with constraints) are close to the dashed lines (QoI computed with the stochastic

model using Wc learned with the constraints).

7.7. Results obtained for N = 200 and M = 50 000

Similarly to Section 7.6, we consider, for k = 2, 31, 33,Qk defined by the initial dataset, Q
exp
k

associated with the experiments, Qc
k constructed using the constraints, and Q

c,model

k transformed

from Wc using the stochastic computational model.

(i) For N = 200 and M = 50 000, for components k = 2, 31, 33, Table 1 gives the mean values

mQk
, mQ

exp

k
, mQc

k
, mQ

c,model
k

and the standard deviations sQk
, sQexp

k
, sQc

k
, sQc,model

k
. This table allows

comparisons to be carried out. As already pointed out in Section 7.6, it can be seen that the

constraints play an important role because the values relative to Qk (without the constraints) are

very different from the corresponding values relative to Qc
k (with the constraints). The predic-

tions obtained under the constraints are good enough when comparing the values of Qc
k (with the

constraints) with the corresponding target values for Q
exp
k . Finally, the quality assessment is good

taking into account the high dimension of the problem and the constraints that are applied, which

are only relative to a subset of all the dofs and related to second-order moments. This quality can

be analyzed by comparing the values relative to Qc
k (with the constraints) with the values relative

to Q
c,model

k .

(ii) To complete the analysis and validation, we present the results obtained for the probability

density functions for components k = 2 (Fig. 9-a), k = 31 (Fig. 9-b), and k = 33 (Fig. 9-c). These

figures display the graphs of the probability density functions of Qk, Q
exp

k , Qc
k, and Q

c,model

k . The
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results are very good and even a little unexpected since only the mean and the standard deviation

are imposed for a subset of dofs of the stochastic computational model. The pdf of Qc
k is close to

the pdf of Qc,model

k , which is itself close to the pdf of Q
exp

k (this experimental pdf is not used in the

methodology, is not required, and is not available in the framework of the method proposed).
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Figure 9: Application AP2: For M = 50 000 and N = 200, the three figures show, for components k = 2 (a), k = 31 (b),

and k = 33 (c), the pdf of Qk (black thin line), Q
exp

k (red line), Qc
k (blue thick line), and Q

c,model

k (blue dashed line).

(iii) In order to illustrate how the constraints qualitatively impact the concentration of the proba-

bility measure of random vectorX = (Q,W), Fig. 10-left shows the 50 000 additional realizations

computed with the probabilistic learning on manifolds for random vector (W21 000,W121 000,Q33)

(without the constraints) and (W21 000,W121 000,Q
c
33) (with the constraints), while Fig. 10-right

shows the results for (W121 000,W321 000,Q33) (without the constraints) and (W121 000,W321 000,Q
c
33)

(with the constraints). It should be noted that the two submanifolds that are considered are not

deterministic due to the presence of the random vector U and to the other components of W,

which are not used in the chosen representation. The relatively large dispersion that seems to be

obtained is only an appearance that is related to the choice of the scale that has been taken for

Q33. On the other hand, according to Table 1, Qc
33 is more scattered than Q33 due to the imposed

constraints, so the concentration is less for Qc
33 than for Q33, which is normal.
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Figure 10: Application AP2. Left figure: 50 000 realizations of (W21 000,W121 000,Q33) (red symbols) and of

(W21 000 ,W121 000 ,Q
c
33) (blue symbols). Right figure: 50 000 realizations of (W121 000 ,W321 000 ,Q33) (red symbols)

and of (W121 000,W321 000,Q
c
33) (blue symbols).

8. Conclusion

In this paper, we have presented a methodology that extends the probabilistic leaning on

manifolds from a small dataset to the case for which constraints are imposed, during the learning

process, to a subset of quantities of interest. These constraints are, for instance, experimental

second-order statistical moments (mean and standard deviation) that are given. The method has

the capability to consider more general constraints than the second-order statistical moments.

The proposed method allows for analyzing non-Gaussian cases in high dimension related to

functional inputs and outputs. The iteration algorithm presented is very robust and seems to be

exponentially convergent with respect to the number of iterations. Two applications have been

presented, which allow for analyzing the behavior of the method and for validating it.
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Appendix A. Examples of constraints

In this Appendix, two examples of constraints are given in addition to the those given in

Section 4.

Appendix A.1. Learning from a training dataset under constraints defined by experimental second-

order moments given for components of Qc and by the mean value of a physical

constaint

This example corresponds to the concatenation of the two examples presented in Section 4.1

and in 4.2. Consequently, using the notations introduced in these two examples, mc = 2 κmom+nq,

function x 7→ gc(x) = (gc
1(x), . . . , gc

mc
(x)) from Rn into Rmc , and vector βc

= (βc
1, . . . , β

c
mc

) ∈
Rmc , which define the constraints (see Eq. (10)), are such that, for κ = 1, . . . , κmom and for

k = 1, . . . , nq,

gc
κ(X

c) = Qc
kκ

, βc
κ = mexp

κ , (A.1)
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gc
κ+κmom

(Xc) = (Qc
kκ

)2 , βc
κ+κmom

= rexp
κ , (A.2)

gc
k+2 κmom

(Xc) = Qc
k − ([B] Wc)k , βc

k+2 κmom
= βconst

k . (A.3)

Appendix A.2. Probability density functions given for components of Qc

Let Jpdf = {k1, . . . , kκpdf
} be κpdf ≤ nq integers such that Jpdf ⊆ {1, . . . , nq}. For κ ∈

{1, . . . , κpdf}, let q 7→ p
exp
κ (q) be the given experimental pdf assigned to component Qc

kκ
of random

vector Qc, which is assumed to be defined by its values {pexp
κ (qκi), i = 1, . . . ,mκ} that are given

in mκ points qκ1, . . . , qκmκ
in R. We then have to take into account the mc =

∑κpdf

κ=1 mκ constraints

that could be written, for κ = 1, . . . , κpdf, as

pXc
kκ

(qκi) = pexp
κ (qκi) , i = 1, . . . ,mκ . (A.4)

Since pXc
kκ

(qκi) = E{δ0(Qc
kκ
− qκi}, the Dirac δ0 can be regularized and Eq. (A.4) is replaced by

the following approximation,

E{g̃c
κi(X

c)} = β̃c
κi , i = 1, . . . ,mκ , (A.5)

with

g̃c
κi(X

c) =
1√

2π εκ
exp{− 1

2ε2
κ

(Qc
kκ
− qκi)

2} , β̃c
κi = pexp

κ (qκi) , (A.6)

in which an estimation of the hyperparameter εκ is detailed below. Consequently, function gc

and vector βc is obtained by gathering g̃c
κi and β̃c

κi for all the κ in {1, . . . , κpdf} and for all i in

{1, . . . ,mκ},

gc(Xc) = {g̃c
κi(X

c)}κi , βc
= {β̃c

κi}κi , mc =

κpdf∑

κ=1

mκ . (A.7)

In Eq. (A.6), the hyperparameter εκ can be estimated as follows. Since pQc
kκ

(qκi) = p
exp
κ (qκi) is the

value of the closest pdf to pQkκ
, εκ can be estimated using the Gaussian kernel-density estimation

method of pQkκ
(qκi) constructed with the initial dataset DN = {(q j,w j), j = 1, . . . ,N} in which

the component kκ of q j is q
j
kκ

. We then have,

pQkκ
(qκi) =

1

N

N∑

j=1

1√
2π ssσ̂κ

exp{− 1

2s2
sσ̂

2
κ

(q
j

kκ
− qκi)

2} , (A.8)

in which ss = (4/(3N))1/5 is the Sylverman bandwidth and where σ̂κ is the estimate of the

standard deviation of Qkκ performed with DN . For N sufficiently large, the right-hand side of

Eq. (A.8) is

E{ 1√
2π ssσ̂κ

exp{− 1

2s2
sσ̂

2
κ

(Qc
kκ
− qκi)

2} ,

that compares to Eqs. (A.5) and (A.6) yields εκ = ssσ̂κ.
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Appendix B. Störmer-Verlet algorithm for solving the reduced-order nonlinear ISDE de-

fined by Eqs. (94) to (98)

The number M of realizations is reparameterized as

M = nMC × N , (B.1)

in which nMC is the integer that has been introduced in Section 5.7.5. The reduced-order ISDE

defined by Eqs. (94) to (98) is solved for t ∈ [0, tmax] with tmax = (ℓ0+nMC×M0)∆t in which ∆t is

the sampling step, where ℓ0 is chosen in order that the solution of Eqs. (94) to (96) has reached

the stationary regime, and where M0 allows for controlling the number of sampling steps between

two consecutive realizations for obtaining a quasi-independence of the computed realizations For

ℓ = 0, 1, . . . , nMC×M0, we consider the sampling points tℓ = ℓ∆t and the following notations:

[Zℓ] = [Zλι(tℓ)], [Yℓ] = [Yλι(tℓ)], and [Wwien
ℓ ] = [Wwien

λι (tℓ)]. The Störmer-Verlet scheme is

used for solving the reduced-order ISDE, which is written, for ℓ = 0, 1, . . . , nMC×M0, as

[Zℓ+ 1
2
] = [Zℓ] +

∆t

2
[Y ℓ] ,

[Y ℓ+1] =
1 − β
1 + β

[Yℓ] +
∆t

1 + β
[Lℓ+ 1

2
] +

√
f0

1 + β
[∆Wwien

ℓ+1 ] ,

[Zℓ+1] = [Zℓ+ 1
2
] +
∆t

2
[Y ℓ+1] ,

with the initial condition defined by Eq. (96), where β = f0 ∆t /4, and where [Lℓ+ 1
2
] is the Mν,m-

valued random variable such that

[Lℓ+ 1
2
] = [Lλι([Zℓ+ 1

2
])] = [Lλι([Zℓ+ 1

2
] [g]T )] [a] .

In the above equation, [∆Wwien
ℓ+1 ] = [∆Wwien

ℓ+1 ] [a] is a random variable with values in Mν,m, in

which the increment [∆Wwien
ℓ+1 ] = [Wwien

λι (tℓ+1)] − [Wwien
λι (tℓ)]. The increments are statistically

independent. For all α = 1, . . . , ν and for all j = 1, . . . ,N, the real-valued random variables

{[∆Wwien
ℓ+1 ]α j}α j are independent, Gaussian, second-order, and centered random variables such

that

E{[∆Wwien
ℓ+1 ]α j[∆Wwien

ℓ+1 ]α′ j′} = ∆t δαα′ δ j j′ .

Appendix C. Construction of the non-Gaussian random field [G0] and its generator of

realizations

In this Appendix, we summarize the construction of the non-Gaussian random field [G0] and

its generator of realizations (whose details can be found in [56, 49]). This construction starts

with the introduction of a Gaussian random field.

Appendix C.1. Gaussian random field U allowing the stochastic germ of random field [G0] to

be constructed

Let {U(ζ), ζ ∈ R3} be the real-valued second-order, centered, homogeneous, Gaussian, and

normalized random field, defined on probability space (Θ,T ,P), indexed by R3. For all ζ in R3,

we then have,

E{U(ζ)} = 0 , E{U(ζ)2} = 1 .
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The random field U is then completely and uniquely defined by the its autocorrelation function

χ = (χ1, χ2, χ3) 7→ RU(χ) = E{U(ζ + χ) U(ζ)} ,

from R3 into R, such that RU(0) = 1. The spatial-correlation lengths of U, denoted as L1, L2, L3,

are such that

Lk =

∫
+∞

0

|RU(χk)| dχk , k = 1, 2, 3 ,

in which χ1
= (χ1, 0, 0), χ2

= (0, χ2, 0), and χ3
= (0, 0, χ3). The autocorrelation function is

written as

RU(χ) = ρ1(χ1) × ρ2(χ2) × ρ3(χ3) ,

ρk(χk) = {4L2
k/(π

2χ2
k)} sin2 (πχk/(2Lk)) , k = 1, 2, 3 .

Random field U is mean-square continuous on R3 and its power spectral density function defined

on R3 has a compact support that is written as,

[−π/L1 , π/L1] × [−π/L2 , π/L2] × [−π/L3 , π/L3] .

Such a model allows for sampling random field U as a function of the spatial-correlation lengths

by using the Shannon theorem and has only 3 real parameters. The details concerning the genera-

tion of realizations of random field U can be found in [56]. One possible method is based on the

usual numerical simulation of homogeneous Gaussian vector-valued random field constructed

with the stochastic integral representation of homogeneous stochastic fields (see [57]).

Appendix C.2. Defining the random field [G0] and its generator of realizations

Let δG0
be such that 0 < δG0

<
√

7/11. For 1 ≤ j ≤ k ≤ 6, let {U jk(ζ), ζ ∈ R3} jk be 21

independent copies of Gaussian random field {U(ζ), ζ ∈ R3} that is defined in Appendix C.1.

The non-Gaussian random field {[G0(ζ)], ζ ∈ R3} is then constructed as follows:

− For all ζ fixed in R3, the random matrix [G0(ζ)] is written as

[G0(ζ)] = [L(ζ)]T [L(ζ)] , (C.1)

in which [L(ζ)] is an upper (6 × 6) real triangular random matrix.

− For 1 ≤ j ≤ k ≤ 6, the random fields {[L(ζ)] jk, ζ ∈ R3} are independent.

− For j < k, the real-valued random field {[L(ζ)] jk, ζ ∈ R3} is defined by [L(ζ)] jk =

σ6 U jk(ζ) in which σ6 is such that σ6 = δG0
/
√

6 + 1.

− For j = k, the positive-valued random field {[L(ζ)] j j, ζ ∈ R3} is defined by [L(ζ)] j j =

σ6

√
2 h(U j j(ζ), a j) in which a j = (6 + 1)/(2δ2

G0
)+(1 − j)/2. Function u 7→ h(α, u) is such

that Γα = h(α,U) is a gamma random variable with parameter α (U being a normalized

Gaussian random variable).
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