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An extension of the probabilistic learning on manifolds (PLoM), recently introduced by the authors, is presented: in addition to the initial dataset given for performing the probabilistic learning, constraints are given, which correspond to statistics of experiments or of physical models. We consider a non-Gaussian random vector whose unknown probability distribution has to satisfy constraints. The method consists in constructing a generator using the PLoM and the classical Kullback-Leibler minimum cross-entropy principle. The resulting optimization problem is reformulated using Lagrange multipliers associated with the constraints. The optimal solution of the Lagrange multipliers is computed using an efficient iterative algorithm. At each iteration, the MCMC algorithm developed for the PLoM is used, consisting in solving an Itô stochastic differential equation that is projected on a diffusion-maps basis. The method and the algorithm are efficient and allow the construction of probabilistic models for high-dimensional problems from small initial datasets and for which an arbitrary number of constraints are specified. The first application is sufficiently simple in order to be easily reproduced. The second one is relative to a stochastic elliptic boundary value problem in high dimension.

Introduction

The consideration of constraints in learning algorithms remains a very important and active research topic. Bayesian updating (see for instance [START_REF] Kaipio | Statistical and Computational Inverse Problems[END_REF][START_REF] Marzouk | Stochastic spectral methods for efficient bayesian solution of inverse problems[END_REF][START_REF] Carlin | Bayesian Methods for Data Analysis[END_REF][START_REF] Stuart | Inverse problems: A Bayesian perspective[END_REF][START_REF] Spantini | Goal-oriented optimal approximations of bayesian linear inverse problems[END_REF]) provides a rational framework for integrating data into predictive models and has been successfully adapted to situations where likelihoods are not readily available either because of expense or because of the nature of available information [START_REF] Marin | Approximate bayesian computational methods[END_REF][START_REF] Marjoram | Markov chain monte carlo without likelihoods[END_REF]. In many instances, however, relevant information is available in the form of sample statistics rather than raw data or samplewise constraints. In these settings, an alternative to the Bayesian framework has evolved over the past decades in the form of constrained maximum entropy [START_REF] Jaynes | Information theory and statistical mechanics[END_REF] and constrained minimum cross-entropy [START_REF] Bhattacharyya | On the measures of divergence between two statistical populations defined by their probability distributions[END_REF][START_REF] Kullback | On information and sufficiency[END_REF][START_REF] Kapur | Entropy Optimization Principles with Applications[END_REF]. This latter, also known as the Kullback-Liebler divergence forms the basis of the method developed in the present paper.

The approach using the Kullback-Leibler divergence has been used extensively over the last three decades for imposing constraints in the framework of learning with statistical models. Many developments and applications have been published such as, for instance, the following interesting papers devoted to the training of neural network classifiers [START_REF] Gish | A probabilistic approach to the understanding and training of neural network classifiers[END_REF], learning topological [START_REF] Shatkay | Learning topological maps with weak local odometric information[END_REF], ensemble learning related to multi-layer networks [START_REF] Barber | Ensemble learning for multi-layer networks[END_REF], constraints on parameters during learning [START_REF] Hollmén | A learning vector quantization algorithm for probabilistic models[END_REF], recognition of human activities [START_REF] Galata | Learning variable-length markov models of behavior[END_REF], text categorization [START_REF] Bigi | Using kullback-leibler distance for text categorization[END_REF], exploration of data analysis [START_REF] Kaski | Principle of learning metrics for exploratory data analysis[END_REF] classification problems with constrained data [START_REF] Lange | Learning with constrained and unlabelled data[END_REF], statistical learning algorithms with linguistic constraints [START_REF] Peperkamp | The acquisition of allophonic rules: Statistical learning with linguistic constraints[END_REF], reinforcement learning in finite Markov Decision Processes [START_REF] Filippi | Optimism in reinforcement learning and kullback-leibler divergence[END_REF], visual recognition [START_REF] Vasconcelos | The kullback-leibler kernel as a framework for discriminant and localized representations for visual recognition[END_REF][START_REF] Zhang | Local gabor binary patterns based on kullback-leibler divergence for partially occluded face recognition[END_REF][START_REF] Koestinger | Large scale metric learning from equivalence constraints[END_REF], optimal sequential allocation [START_REF] Cappé | Kullback-leibler upper confidence bounds for optimal sequential allocation[END_REF], identifiability of parameter learning machines [START_REF] Ran | Determining structural identifiability of parameter learning machines[END_REF], speech enhancement [START_REF] Sun | Speech enhancement under low snr conditions via noise estimation using sparse and low-rank nmf with kullback-leibler divergence[END_REF], the training of generative neural samplers [START_REF] Nowozin | f-gan: Training generative neural samplers using variational divergence minimization[END_REF], pessimistic uncertainty quantification problem [START_REF] Hanasusanto | Ambiguous joint chance constraints under mean and dispersion information[END_REF], inference given summary statistics [START_REF] Najm | Data-free inference of uncertain parameters in chemical models[END_REF][START_REF] Najm | Inference given summary statistics[END_REF], optimization framework concerning distance metric learning [START_REF] Nguyen | Supervised distance metric learning through maximization of the jeffrey divergence[END_REF] unsupervised machine learning techniques to learn latent parameters [START_REF] Wetzel | Unsupervised learning of phase transitions: From principal component analysis to variational autoencoders[END_REF], graph-based semi-supervised learning [START_REF] Fan | Semi-supervised learning through label propagation on geodesics[END_REF], speech enhancement [START_REF] Saleem | Low rank sparse decomposition model based speech enhancement using gammatone filterbank and kullback-leibler divergence[END_REF], and finally, to the broad learning systems [START_REF] Xu | Recurrent broad learning systems for time series prediction[END_REF].

In spite of these developments, little progress has been made for non-Gaussian probabilistic learning under statistical constraints, for the case of small datasets. The present paper is devoted to this framework: learning from a high-dimensional small dataset, without invoking the Gaussian assumption. The first ingredient of the proposed approach is the probabilistic learning on manifolds (PLoM) presented in [START_REF] Soize | Data-driven probability concentration and sampling on manifold[END_REF], for which complementary developments can be found in [START_REF] Soize | Polynomial chaos representation of databases on manifolds[END_REF][START_REF] Ghanem | Probabilistic nonconvex constrained optimization with fixed number of function evaluations[END_REF][START_REF] Soize | Entropy-based closure for probabilistic learning on manifolds[END_REF], and for which applications with validation are presented in [START_REF] Ghanem | Optimal well-placement using probabilistic learning[END_REF][START_REF] Ghanem | Design optimization of a scramjet under uncertainty using probabilistic learning on manifolds[END_REF][START_REF] Soize | Probabilistic learning for modeling and quantifying model-form uncertainties in nonlinear computational mechanics[END_REF]. This PLoM allows for constructing a generated dataset D g M made up of M additional independent realizations {x ℓ ar , ℓ = 1, . . . , M} of a non-Gaussian random vector X, defined on a probability space (Θ, T , P), with values in R n , for which the probability distribution P X (dx) is unknown, using only an initial dataset D N (training set) which is a small dataset, made up of N independent realizations {x j , j = 1, . . . , N} of X with x j = X(θ j ) for θ j ∈ Θ and such that M ≫ N.

In this paper, we present an extension of this PLoM for which, not only the initial dataset D N is given, but in addition, constraints are specified, in the form of statistics synthesized from experimental data, from theoretical considerations, or from numerical simulations. The "physicsconstrained" terminology used in the title will be explained in Section 4. We thus construct a non-Gaussian random vector X c whose probability distribution P X c (dx) must satisfy the specified constraints. The method consists of constructing a generator of P X c (dx) using the PLoM, for which P X c (dx) is closest to P X (dx), while satisfying the constraints. For that, the classical Kullback-Leibler minimum cross-entropy principle is used, which is the second ingredient of the proposed method. Consequently, an optimization problem as is formulated using Lagrange multipliers associated with the constraints. The Lagrange multipliers are evaluated as the solution to a convex optimization problem. An efficient iterative algorithm based on the Newton method is proposed. At each Newton iteration, a MCMC algorithm has to be used for estimating the gradient and the Hessian of the objective function. The PLoM, which is detailed in [START_REF] Soize | Data-driven probability concentration and sampling on manifold[END_REF], is used for the generation of realizations. It consists in solving an Itô stochastic differential equation (ISDE) that is projected on a diffusion-maps basis. This ISDE corresponds to a nonlinear stochastic dissipative Hamiltonian dynamical system. The method and the algorithm presented are efficient and allow high-dimensional problems to be solved from small initial datasets and for which an arbitrary number of constraints are specified.

The paper is organized as follows. In Section 2, the problem that has to be solved is defined. Section 3 deals with the methodology proposed to take into account the constraints that correspond to statistics coming from experiments or defined by a physical/computational model. Examples of constraints are presented in Section 4. Section 5 is devoted to the computational [I n ]: identity matrix in M n . M n,N : set of all the (n × N) real matrices. M n : set of all the square (n × n) real matrices.

M +0

n : set of all the positive symmetric (n × n) real matrices. M + n : set of all the positive-definite symmetric (n × n) real matrices. R: set of all the real numbers. R n : Euclidean vector space on R of dimension n.

[x] k j : entry of matrix [x].

[x] T : transpose of matrix [x]. δ kk ′ : Kronecker's symbol such that δ kk ′ = 0 if k k ′ and = 1 if k = k ′ . 3

x : usual Euclidean norm in R n . < x, y >: usual Euclidean inner product in R n . δ kk ′ : Kronecker's symbol.

In this paper, any Euclidean space E (such as R n ) is equipped with its Borel field B E , which means that (E, B E ) is a measurable space on which a probability measure can be defined. The mathematical expectation is denoted by E.

Setting the problem to be solved

A typical problem for the use of the approach proposed in this paper is the following. Let (w, u) → f(w, u) be any measurable mapping on R n w × R n u with values in R n q representing a mathematical/computational model. Let W and U be two independent (non-Gaussian) random variables defined on a probability space (Θ, T , P) with values in R n w and R n u , for which the probability distributions P W (dw) = p W (w) dw and P U (du) = p U (u) du are defined by the probability density functions p W and p U with respect to the Lebesgue measures dw and du on R n w and R n u . The role played by W and U are the following. The boundary value problem used for constructing the computational model depends on uncertain parameters (epistemic and/or aleatory uncertainties). These random parameters are, for instance, those used for modeling geometry uncertainties, uncertain boundary conditions, constitutive equations of random media, uncertain physical properties, and can also be a finite spatial discretization of random fields (such as the one used for modeling the elasticity field of a heterogeneous material). Random vector W is made up of a part of these random parameters, which are used for controlling the system, while random vector U is made up of the other part of these random parameters, which are not used for controlling the system. Let Q be the vector of the quantities of interest (QoI) that is a random variable defined on (Θ, T , P) with values in R n q such that Q = f(W, U) .

(

) 1 
Random QoI, Q, represents the vector of all the observations performed in the system and is expressed as a function of the solution of the computational model. Let us assume that N calculations have been performed with the mathematical/computational model whose solution is represented by Eq. ( 1), allowing N independent realizations {q j , j = 1, . . . , N} of Q to be computed such that q j = f(w j , u j ) ,

in which {w j , j = 1, . . . , N} and {u j , j = 1, . . . , N} are N independent realizations of (W, U), which have been generated using an adapted generator for p W and p U . We then consider the random variable X with values in R n , such that

X = (Q, W) , n = n q + n w . (3) 
The probabilistic learning will be performed for this random vector X that includes the control parameter W and the QoI Q, but that does not include random parameter U. The initial dataset related to random vector X is then made up of the N independent realizations

{x j , j = 1, . . . , N} , x j = (q j , w j ) ∈ R n . (4) 
It is assumed that the measurable mapping f is such that the conditional probability distribution P Q|W (dq|w) admits a conditional probability density function p Q|W (q|w) with respect to the Lebesgue measure dq on R n q for P W (dw)-almost all w in R n w (note that the existence of a pdf for U, P U (du) = p U (u) du, is necessary but is not sufficient). Under this hypothesis, it can be deduced that the probability distribution P X (dx) of X admits a density x → p X (x) with respect to the Lebesgue measure dx on R n . The proof is the following. Let P Q|W (dq|w) be the conditional probability distribution of the conditional random variable Q|W given W = w for w ∈ R n w , which is such that Q|w = f(w, U). Since P W (dw) = p W (w) dw, under the above hypothesis (existence of conditional pdf q → p Q|W (q|w)), the probability distribution of (Q, W) can be written as P Q,W (dq, dw) = p Q|W (q|w) p W (w) dq dw, which shows that the probability distribution of (Q, W) admits a pdf with respect to dq dw and consequently, shows that the probability distribution P X (dx) of X = (Q, W) admits a density p X (x) with respect to the Lebesgue measure dx on R n .

The PLoM allows for generating additional realizations {(q ℓ ar , w ℓ ar ), ℓ = 1, . . . , M} for M ≫ N without using the computational model, but using only the training dataset which we denote by D N . These additional realizations allow, for instance, a cost function J(w) = E{J(Q, W)|W = w} to be evaluated, in which (q, w) → J(q, w) is a given measurable real-valued mapping on R n q × R n w as well as constraints related to a nonconvex optimization problem [START_REF] Ghanem | Probabilistic nonconvex constrained optimization with fixed number of function evaluations[END_REF][START_REF] Ghanem | Optimal well-placement using probabilistic learning[END_REF][START_REF] Ghanem | Design optimization of a scramjet under uncertainty using probabilistic learning on manifolds[END_REF] and this, without calling the mathematical/computational model. Sometimes, additional information in the form of statistics may become available, synthesized from partial measurements, published data, or numerical simulations. The goal is then to generate additional realizations by taking into account the constraints defined by these statistics. For instance, statistics can correspond to a specified mean value m exp k and standard deviation s Section 4). Statistics can also correspond to the mean value of a given stochastic equation involving Q and W, which models a physical system or a part of it (see Appendix A).

exp k of several components Q k of Q (see
Remark concerning the scaling of the initial dataset. In practice, the initial dataset can be made up of heterogeneous numerical values and must be scaled for performing computational statistics. In this remark, it is then assumed that the initial dataset D N is made up of N independent realizations {x j , j = 1, . . . , N} of the R n -valued random variable X. Let x max = max j {x j } and

x min = min j {x j } be vectors in R n . Let [α x ] be the invertible diagonal (n × n) real matrix such that [α x ] kk = (x max k -x min k ) if x max k -x min k 0, and [α x ] kk = 1 if x max k -x min k = 0.
The scaling of random vector X is the R n -valued random variable X (that has previously been introduced) such that

X = [α x ] X + x min , X = [α x ] -1 (X -x min ) , (5) 
which shows that the N independent realizations {x j , j = 1, . . . , N} j of X are such that

x j = [α x ] -1 (x j -x min ) . (6) 
The scaled initial dataset D N is then defined by

D N = {x j , j = 1, . . . , N} , (q j , w j ) = x j . (7) 

Methodology proposed to take into account constraints defined by experiments or by physical models

To take into account statistical constraints in the algorithm of the PLoM, the proposed methodology consists of minimizing the probabilistic distance (or the divergence) between the probability distribution P X (dx) = p X (x) dx of the R n -valued random variable X estimated in the framework of the PLoM and the probability distribution P X c (dx) = p X c (x) dx of the R n -valued random variable X c that, in addition, satisfies the constraints. We thus have to find among all the probability density functions (pdf) p X c that satisfy the constraints, the one that is closest to the pdf p X . For that, we propose to use the classical Kullback-Leibler minimum cross-entropy principle [START_REF] Bhattacharyya | On the measures of divergence between two statistical populations defined by their probability distributions[END_REF][START_REF] Kullback | On information and sufficiency[END_REF][START_REF] Kapur | Entropy Optimization Principles with Applications[END_REF], which is written as

p X c = arg min p ∈ C ad,X c R n p(x) log p(x) p X (x) dx , (8) 
in which the admissible set C ad,X c is defined by

C ad,X c = {x → p(x) : R n → R + , R n p(x) dx = 1, R n g c (x) p(x) dx = β c }. (9) 
In Eq. ( 9), β c is a given vector in R m c with m c ≥ 1 and x → g c (x) is a measurable mapping from R n into R m c . This means that, in addition to the normalization condition, pdf p X c must be such that the following constraint is satisfied,

E{g c (X c )} = R n g c (x) p X c (x) dx = β c . (10) 

Remarks

(1) It should be noted that, in the framework of the PLoM, the estimation p X of the pdf of X, which is performed using the Gaussian kernel-density estimation method and initial dataset D N , is such that p X (x) > 0 for all x in R n .

(2) The functional that has to be minimized on C ad,X c is the Kullback-Leibler divergence (relative entropy),

D( p ; p X ) = R n p(x) log p(x) p X (x) dx , (11) 
that is nonnegative, additive, and non-symmetric (D( p ; p X ) D(p X ; p)). The symmetric divergence

D s ( p ; p X ) = R n ( p(x) -p X (x)) log p(x) p X (x) dx ,
could also be introduced. As explained in [START_REF] Kullback | On information and sufficiency[END_REF], the symmetric divergence has exactly the same mathematical properties as the relative entropy, such as nonnegativeness and additivity properties. The introduction of the symmetry property could have only an interest if pdf p X was constructed as an a priori pdf, which is not the case, because p X is constructed using the nonparametric statistics. In addition, the choice of the relative divergence instead of the symmetric divergence has allowed for developing simpler and more efficient algorithms for solving the optimization problem defined by Eqs. ( 8) and [START_REF] Bhattacharyya | On the measures of divergence between two statistical populations defined by their probability distributions[END_REF]. Consequently, we will pursue the formulation defined by Eqs. ( 8) and ( 9).

(3) The objective of this paper is therefore to use the PLoM for the random variable X c with values in R n for which its probability distribution P X c (dx) = p X c (x) dx is defined by the pdf p X c that is unknown but that can possibly be concentrated in the neighborhood of a manifold in R n .

(i) Data of the problem are only those defined by (i-1) initial dataset D N = {x j , j = 1, . . . , N} of independent realizations of the R n -valued random variable X for which its probability distribution P X (dx) = p X (x) dx (defined by a density) is unknown. We consider the small dataset case, which means that N is small.

(i-2) a given vector-valued constraint equation on R m c (see Eq. ( 10)),

R n g c (x) p X c (x) dx = β c .
(ii) The problem, which has to be solved, consists in constructing M realizations {x c,ℓ , ℓ = 1, . . . , M} of random vector X c with M ≫ N, for which pdf p X c satisfies the constraint while being the closest pdf to p X .

Example of constraints

Using the previous notations, random vector X c is written as

X c = (Q c , W c ) with values in R n = R n q × R n w . (12) 
In this section, we give two examples of constraints. The first example corresponds to given statistical constraints defined by experimental second-order moments of Q c . The second one corresponds to physical constraints defined by the mean value of a stochastic equation that relates Q c and W c . For illustrations, two other examples are given in Appendix A.

Statistical constraints defined by experimental second-order moments of Q c

Let J mom = {k 1 , . . . , k κ mom } be κ mom ≤ n q integers such that J mom ⊆ {1, . . . , n q }. For κ ∈ {1, . . . , κ mom }, let us assume that the experimental mean value, m exp κ , and the experimental standard deviation, s exp κ , of the component Q c k κ of random vector Q c are specified. For instance, these statistics could come from measurements. Note that the measured realizations that have been used for estimating these experimental quantities are not available. On the other hand, {(m exp κ , s exp κ ), κ = 1, . . . , κ mom } do not correspond to the initial dataset D N . For instance, D N could come from numerical simulations which include modeling errors. The experimental second-order moment r exp κ = E{(X c k κ ) 2 } of random variable X c k κ , can be deduced and is written as

r exp κ = (s exp κ ) 2 + (m exp κ ) 2 . In this case, m c = 2 κ mom ≤ 2 n q and the m c functions x → g c (x) = (g c 1 (x), . . . , g c m c (x)) from R n into R m c and vector β c = (β c 1 , . . . , β c m c
), which define the constraints (see Eq. ( 10)), are such that, for κ = 1, . . . , κ mom ,

g c κ (X c ) = Q c k κ , β c κ = m exp κ , (13) 
g c κ+κ mom (X c ) = (Q c k κ ) 2 , β c κ+κ mom = r exp κ . (14) 
4.2. Physical constraints defined by the mean value of a stochastic equation relating Q c and W c Let us assume that the initial dataset D N = {x j , j = 1, . . . , N} corresponds to N experimental realizations (measurements or numerical simulations obtained by the training a stochastic computational model) of random vector X = (Q, W) whose probability distribution on R n = R n q ×R n w admits a density with respect to the Lebesgue measure. In this appendix, we consider the case for which the PLoM is used for generating M additional realizations (using only initial dataset D N ) under the constraints defined by statistical moments (for instance, the mean value) of a stochastic equation corresponding to a stochastic computational model of a physical system. As previously, let p X c be the pdf of the random vector

X c = (Q c , W c ) with values in R n = R n q × R n w , which has to verify, in statistical mean, the equation f const (Q c , W c ) = β const , that is to say E{f const (Q c , W c )} = β const in which (q c , w c ) → f const (q c , w c
) is a given (deterministic) measurable mapping defined on R n q × R n w with values in R m c and where β const is a given vector in R m c . This constraint can then be rewritten as Eq. ( 10) with g c (X c ) = f const (Q c , W c ) and β c = β const . For instance, function f const could be written, for m c = n q , as

f const (Q c , W c ) = Q c -[B] W c , (15) 
in which [B] is a given matrix in M n q ,n w .

It should be noted that this formulation can be extended to a stochastic equation that would be written, for instance, as E{f const (Q c , W c , U)} = β const in which U is a random vector independent of W c and where

f const (Q c , W c , U) = Q c -[B(U)] W c .
Clearly, any more complex stochastic equation can be used.

Computational statistical method for generating realizations of X c using probabilistic learning on manifolds

In this section, we present a computational method for generating M independent realizations x c,1 , . . . , x c,M of random variable X c whose pdf p X c is defined by Eqs. [START_REF] Jaynes | Information theory and statistical mechanics[END_REF] and [START_REF] Bhattacharyya | On the measures of divergence between two statistical populations defined by their probability distributions[END_REF]. Since it is assumed that N is small and since the available information is only made up of {x j , j = 1, . . . , N} and of the constraint equation E{g c (X c )} = β c , we propose to use the PLoM that will be developed in Section 5.8. The main steps of the computational statistical method are as follows:

1. principal component analysis (PCA) of X at order ν ≤ n using the set {x j , j = 1, . . . , N}, which will introduce the normalized non-Gaussian random vector H with values in R ν , centered, with covariance matrix [I ν ], for which the N independent realizations are {η j , j = 1, . . . , N}. 2. Gaussian kernel-density estimation of the pdf p H of random vector H. 3. reformulating the optimization problem defined by Eqs. ( 8) and ( 9) for the construction of pdf p H c of H c in terms of pdf p H of H and of the constraint equation rewritten in terms of p H c . 4. representation of the solution of the optimization problem with constraints using Lagrange multipliers (λ 0 , λ) where λ 0 is associated with the normalization constraint. 5. reformulation introducing a random vector H λ and eliminating λ 0 . 6. introducing an iterative algorithm for computing the optimal value λ sol of the Lagrange multiplier λ. 7. constructing a nonlinear Itô Stochastic Differential Equation (ISDE) as a generator of random variable H λ .

8. computing the additional realizations of H c using the PLoM and then deducing additional realizations of X c . 9. estimating statistics of X c using the additional realizations.

In the following, each of these steps is expanded into a subsection.

PCA of random vector X

The purpose of the PCA transformation is to improve the statistical condition of X through de-correlation and normalization. Dimensional reduction is only accepted if it reproduces the original data with a given tolerance. Let x ∈ R n and [ C X ] ∈ M + n be the classical empirical estimates of the mean vector and the covariance matrix of X,

x = 1 N N j=1 x j , [ C X ] = 1 N -1 N j=1 (x j -x) (x j -x) T . ( 16 
)
Let µ 1 ≥ µ 2 ≥ . . . ≥ µ n ≥ 0 be the eigenvalues and let ϕ 1 , . . . , ϕ n be the orthonormal eigenvectors of [

C X ] such that [ C X ] ϕ α = µ α ϕ α . For ε > 0 fixed, let ν be the integer such that 1 ≤ ν ≤ n, verifying, err PCA (ν) = 1 - ν α=1 µ α tr [ C X ] ≤ ε . (17) 
The PCA of X allows for representing X by X ν such that

X ν = x + [Φ] [µ] 1/2 H , E{ X -X ν 2 } ≤ ε E{ X 2 } , (18) 
in which

[Φ] = [ϕ 1 . . . ϕ ν ] ∈ M n,ν such that [Φ] T [Φ] = [I ν ] and [µ] is the diagonal (ν × ν) matrix such that [µ] αβ = µ α δ αβ . The R ν -valued random variable H is obtained by projection, H = [µ] -1/2 [Φ] T (X -x) , (19) 
and its N independent realizations {η j , j = 1, . . . , N} are such that

η j = [µ] -1/2 [Φ] T (x j -x) ∈ R ν . (20) 
The empirical estimates of the mean vector and the covariance matrix of H verify the following conditions,

η = 1 N N j=1 η j = 0 , [ C H ] = 1 N -1 N j=1 (η j -η) (η j -η) T = [I ν ] . (21) 
From a numerical point of view, if N < n, the estimate [ C X ] of covariance matrix of X is not computed and ν, [µ], and [Φ] are directly computed using a thin SVD of the matrix whose N columns are (x jx) for j = 1, . . . N.

Hypothesis. Let L 2 (Θ, R n ) be the space of second-order random variables X defined on (Θ, T , P) with values in R n such that E{ X 2 } < +∞. Similarly, let L 2 (Θ, R ν ) be the space of all the secondorder random variables H defined on (Θ, T , P) with values in R ν such that E{ H 2 } < +∞. It should be noted that we do not consider the subset H ν of L 2 (Θ, R ν ) made up of all the secondorder R ν -valued random variables H such that E{H} = 0 and [C H ] = [I ν ], since the constraints will incur a shift and scaling that is a priori unknown. For fixed ν ≤ n that verifies Eq. ( 17), random vector X ν defined by Eq. ( 18) spans a subspace X ν of L 2 (Θ, R n ) when H runs through L 2 (Θ, R ν ). It is then assumed that random vector X c , for which pdf p X c is closest to pdf p X under the constraint E{g c (X c )} = β c (see Section 3), belongs to X ν . It should be noted that there always exists ν such that ν ≤ n with err PCA (ν) ≤ ε in order that X c ∈ X ν , because for ν = n (that is to say, for ε sufficiently small), we have

X n = L 2 (Θ, R n ).

Gaussian kernel-density estimation of the pdf of random vector H

The pdf η → p H (η) on R ν of the R ν -valued random variable H is constructed by the Gaussian kernel-density estimation method using the N independent realizations {η j , j = 1, . . . , N} defined by Eq. [START_REF] Peperkamp | The acquisition of allophonic rules: Statistical learning with linguistic constraints[END_REF]. We use the modification proposed in [START_REF] Soize | Polynomial chaos expansion of a multimodal random vector[END_REF] of the classical formulation [START_REF] Bowman | Applied Smoothing Techniques for Data Analysis[END_REF], which can be written, for all η in R ν , as

p H (η) = c ν ρ(η) , c ν = 1 ( √ 2π s ν ) ν , (22) 
ρ(η) = 1 N N j=1 exp{- 1 2 s 2 ν s ν s ν η j -η 2 } , (23) 
in which s ν is the usual multidimensional optimal Silverman bandwidth (taking into account that the covariance matrix of H is [I ν ]), and where s ν has been introduced in order that the second equation in Eq. ( 21) be satisfied,

s ν = 4 N(2 + ν) 1/(ν+4) , s ν = s ν s 2 ν + (N -1)/N . ( 24 
)
With this formulation, Eqs. ( 21) to [START_REF] Koestinger | Large scale metric learning from equivalence constraints[END_REF] yield

E{H} = R ν η p H (η) dη = s ν s ν η = 0 , ( 25 
)
E{HH T } = R ν ηη T p H (η) dη = s 2 ν [I ν ] + s 2 ν s 2 ν (N -1) N [ C H ] = [I ν ] . (26) 
The pdf of H, defined by Eqs. [START_REF] Vasconcelos | The kullback-leibler kernel as a framework for discriminant and localized representations for visual recognition[END_REF] to [START_REF] Koestinger | Large scale metric learning from equivalence constraints[END_REF], is rewritten, for all η in R ν , as

p H (η) = c ν e -ψ(η) , ψ(η) = -log ρ(η) . ( 27 
)

Reformulating the optimization problem as a function of random vector H

The objective is to reformulate the optimization problem defined by Eqs. ( 8) and ( 9) to evaluate the pdf p H defined by Eq. ( 20) and ( 22) to [START_REF] Koestinger | Large scale metric learning from equivalence constraints[END_REF]. Taking into account Eq. ( 18) and the hypothesis introduced in Section 5.1, the R ν -valued random variable X c,ν can be written as

X c,ν = x + [Φ] [µ] 1/2 H c , (28) 
in which the R ν -valued random variable H c is defined by

H c = [µ] -1/2 [Φ] T (X c -x) . (29) 
Note that, in general, H c is not centered and its covariance matrix is not [I ν ]. In addition, for ε sufficiently small verifying Eq. ( 17), the mean-square error E{ X c -X c,ν 2 } is sufficiently small (note that such condition always exists since the limiting case corresponds to ν = n). Due to the introduction of the reduced-order representation X c,ν of X c defined by Eq. ( 28), the stochastic dimension of X c,ν is less than or equal to ν, because

H c is a R ν -valued random variable. Let η → h c (η) be the measurable mapping from R ν into R m c such that, for all η in R ν , h c (η) = g c ( x + [Φ] [µ] 1/2 η) . ( 30 
)
If it is assumed that the value of ν is such that β c (defined by Eq. ( 10)) belongs to the range space

h c (R ν ) of mapping h c
, then the constraint defined by Eq. ( 10) is transported on H c and writes,

E{ h c (H c )} = β c , R ν h c (η) p H c (η) dη = β c , (31) 
in which the pdf p H c of H c is closest to pdf p H while satisfying the constraint defined by Eq. ( 31).

We propose to perform the projection of the R m c -valued random variable

h c (H) in a R ν c - valued random variable h c (H) = [Ψ] T h c (H) with ν c ≤ ν in which the matrix [Ψ] ∈ M m c ,ν c verifies [Ψ] T [Ψ] = [I ν c ].
This projection is carried out in order that the projected constraints be algebraically independent (see Section 5.4-(iv) and that the components of the random vector h c (H) be de-correlated and not degenerated. Note that, in addition, with such a projection, the computation is less costly and more robust for large value of m c . For the second criterion, matrix [Ψ] and ν c are constructed as follows. Let [cov{ h c (H)}] be the covariance matrix in M +0 m c of the R m c -valued random variable h c (H) in which H is the R ν -valued random variable defined by Eq. [START_REF] Lange | Learning with constrained and unlabelled data[END_REF] for which the N independent realizations are defined by Eq. [START_REF] Peperkamp | The acquisition of allophonic rules: Statistical learning with linguistic constraints[END_REF]. Let

[cov{ h c (H)}] ψ α = λ c α ψ α
be the eigenvalue problem such that

λ c 1 ≥ . . . ≥ λ c ν c > 0 = λ c ν c +1 = . . . = λ c m c . Consequently, the rank of [cov{ h c (H)}] is rank{[cov{ h c (H)}]} = ν c ≤ m c . (32) 
Let

[Ψ] = [ψ 1 . . . ψ ν c ] ∈ M m c
,ν c be the matrix whose columns are the orthonormal eigenvectors

ψ 1 , . . . , ψ ν c associated with λ c 1 ≥ . . . ≥ λ c ν c > 0. Therefore, we have [Ψ] T [Ψ] = [I ν c ]. Conse- quently, the covariance matrix [cov{h c (H)}] ∈ M +
ν c is diagonal and invertible (the components of random vector h c (H) are de-correlated and not degenerated).

From a numerical point of view, if

N < m c , the estimate [ cov{ h c (H)}] of covariance matrix of h c (H) is not computed, and ν c , λ c 1 , . . . , λ c ν c , [Ψ] are directly computed using a thin SVD of the matrix whose N columns are ( h c (η j ) -h c ) for j = 1, . . . N, where h c
is the estimate of the mean value of random vector h c (H), which is performed using the realizations { h c (η j ), j = 1, . . . , N}. The projection of Eq. ( 31) is performed using the basis [Ψ] that spans a subspace of R m c of dimension ν c and is written as,

E{h c (H c )} = b c , (33) 
in which η → h c (η) is the measurable mapping from R ν into R ν c , with

ν c ≤ ν , (34) 
such that, for all η in R ν ,

h c (η) = [Ψ] T h c (η) = [Ψ] T g c ( x + [Φ] [µ] 1/2 η) ∈ R ν c , (35) 
and where b c is written as

b c = [Ψ] T β c ∈ R ν c . ( 36 
)
Using again the Kullback-Leibler minimum cross-entropy principle (as done in Section 3) for random variable H c , the optimization problem defined by Eqs. ( 8) and ( 9) is reformulated as

p H c = arg min p ∈ C ad,H c R ν p(η) log p(η) p H (η) dη , (37) 
in which the admissible set C ad,H c is defined by

C ad,H c = {η → p(η) : R ν → R + , R ν p(η) dη = 1, R ν h c (η) p(η) dη = b c . ( 38 
)
Remark concerning the calculation of the rank ν c . The rank ν c defined by Eq. ( 32) is a function of the tolerance τ c > 0 that is used for numerically testing the condition

{λ c ν c > 0} ∩ {λ c ν c +1 = 0}. This test is rewritten as follows, If {λ c ν c > τ c λ c 1 } ∩ {λ c ν c +1 ≤ τ c λ c 1 } then the rank is ν c . ( 39 
)
In the linear algebra libraries devoted to the computation of the rank of a matrix, τ c is generally chosen as 10 -12 . It should be noted that the smaller τ c the larger ν c . Therefore, the value of ν c that is less than or equal to m c will plays an important role on the existence of a unique solution of the optimization problem defined by Eq. ( 37) with Eq. [START_REF] Soize | Polynomial chaos representation of databases on manifolds[END_REF]. This aspect will be discussed in Section 5.11.

Existence of a solution and its representation using Lagrange multipliers (λ 0 , λ)

The optimization problem defined by Eq. ( 37) with Eq. ( 38) is solved by introducing Lagrange multipliers as done for the Maximum Entropy Principle (see for instance [START_REF] Shannon | A mathematical theory of communication[END_REF][START_REF] Kapur | Entropy Optimization Principles with Applications[END_REF][START_REF] Jaynes | Information theory and statistical mechanics[END_REF][START_REF] Jaynes | Information theory and statistical mechanics[END_REF][START_REF] Cover | Elements of Information Theory[END_REF][START_REF] Soize | Uncertainty Quantification[END_REF]).

(i) Lagrange multipliers associated with the constraints. A Lagrange multipliers is introduced for each constraint:

λ 0 ∈ R + for the constraint: R ν p(η) dη = 1, λ ∈ C ad,λ ⊂ R ν c for the constraint: R ν h c (η) p(η) dη = b c , in which the admissible set C ad,λ is defined as the open subset of R ν c such that, C ad,λ = {λ ∈ R ν c , R ν e -ψ(η)-<λ,h c (η)> dη < +∞} , ( 40 
)
where ψ is the potential of H defined by Eq. ( 27). The form of the admissible set C ad,λ follows from the representation using Lagrange multipliers.

(ii) Expression of the Lagrangian. For λ 0 ∈ R + and λ ∈ C ad,λ , the Lagrangian associated with Eqs. ( 37) and ( 38) is written as

Lag( p ; λ 0 , λ) = R ν p(η) log p(η) p H (η) dη -(λ 0 -1)( R ν p(η) dη -1) -< λ , R ν h c (η) p(η) dη -b c > . ( 41 
)
(iii) Reformulation of the optimization problem and construction of the solution. If it is assumed that there exists a unique solution p H c to the optimization problem defined by Eq. ( 37) with Eq. ( 38), then, using simple arguments from the calculus of variations, it can be seen that there exists (λ sol 0 , λ sol ) ∈ R + × C ad,λ , such that the functional ( p, λ 0 , λ) → Lag( p ; λ 0 , λ) is stationary at p H c for λ 0 = λ sol 0 and λ = λ sol , and p H c can be written, for all η in R ν , as

p H c (η) = c ν exp{-ψ(η) -λ sol 0 -< λ sol , h c (η) >} , (42) 
in which c ν and ψ(η) are defined by Eqs. ( 22) and ( 27). In addition, always under the hypothesis that there exists a unique solution to the optimization problem defined by Eq. ( 37) with Eq. ( 38), and under mild additional hypotheses, it is proven in Appendix B pp. 126-128 of [START_REF] Guilleminot | On the statistical dependence for the components of random elasticity tensors exhibiting material symmetry properties[END_REF] that the unique solution is given by Eq. ( 42) in which (λ sol 0 , λ sol ) is the unique solution in R + × C ad,λ of the following nonlinear algebraic equations,

R ν c ν exp{-ψ(η) -λ 0 -< λ, h c (η) >} dη = 1 , (43) 
R ν c ν h c (η) exp{-ψ(η) -λ 0 -< λ, h c (η) >} dη = b c . ( 44 
)
(iv) Comments about the existence of a unique solution. The hypothesis of the existence of a unique solution for the optimization problem defined by Eqs. [START_REF] Soize | Data-driven probability concentration and sampling on manifold[END_REF] with [START_REF] Soize | Polynomial chaos representation of databases on manifolds[END_REF] does not necessarily hold for arbitrary combinations of initial dataset D N and constraint equations. As explained in Section 5.3, a first necessary condition to guarantee the existence of a unique solution of the optimization problem is that the constraints be algebraically independent, which can be checked using the following criterion: there exists a bounded subset B of R ν c with B dη > 0 such that, for any nonzero vector

v in R 1+ν c , B < v, h c (η) > 2 dη > 0 with h c (η) = (1 , h c (η)) ∈ R 1+ν c . (45) 
It should ne noted that, in general, this criterion requires a numerical evaluation. If the given constraints are not consistent with D N , the admissible set C ad,λ may be the empty set. This necessary condition is therefore not sufficient and there is no mathematical criterion that can easily be implemented, which gives a necessary and sufficient condition to guarantee the existence of a unique solution as a function of D N , h c , and b c . This problem relative to existence and uniqueness will be revisited from a numerical point of view in Section 5.11 .

Reformulation introducing a random vector H λ and eliminating λ 0

In general, only a numerical approximation to the solution of Eqs. ( 43) and ( 44) can be achieved. However, a major difficulty is introduced by the normalization constant c ν e -λ 0 that induces considerable difficulties when ν is large. In addition, integrals in high dimension have to be computed for calculating the Lagrange multipliers. In this section, a procedure is introduced to address this difficulty. This is done by first eliminating λ 0 , followed by introducing a convex objective function that lends itself to efficient iterative schemes, and finally, by using the PLoM as a MCMC generator of realizations allowing the integrals to be computed.

Introduction of the R ν -valued random variable H λ and eliminating λ 0

For λ given in C ad,λ , let H λ be the R ν -valued random variable whose pdf with respect to dη on R ν is written, for all η ∈ R ν , as

p H λ (η) = c 0 (λ) exp{-ψ(η)-< λ, h c (η) >} , (46) 
in which the function

λ → c 0 (λ) from C ad,λ ⊂ R ν c into ]0, +∞[ is defined by c 0 (λ) = ( R ν exp{-ψ(η)-< λ, h c (η) >} dη ) -1 . ( 47 
)
It can be easily verified that c 0 (λ) = c ν exp{-λ 0 } and consequently, for all η in R ν ,

p H c (η) = {p H λ (η)} λ=λ sol , p H (η) = {p H λ (η)} λ=0 . (48) 
Because c 0 (λ) is defined as the constant of normalization of pdf p H λ , the constraint defined by Eq. ( 43), which is rewritten as R ν p H λ (η) dη = 1 is automatically satisfied for all λ in C ad,λ . Using Eqs. ( 46) and ( 47), it can be seen that the constraint defined by Eq. ( 44) can be rewritten, for all λ in C ad,λ , as

E{h c (H λ )} = b c , (49) 
because E{h c (H λ )} = R ν h c (η) p H λ (η) dη. From Section 5.4-(iv), it can then be deduced that λ sol ∈ C ad,λ is the unique solution in λ of Eq. (49).

Construction of an optimization problem with a convex objective function for calculating

λ sol Similarly to the discrete-case approach proposed in [START_REF] Agmon | An algorithm for finding the distribution of maximal entropy[END_REF], let λ → Γ(λ) be the objective function from the open subset C ad,λ of R ν c into R such that

Γ(λ) =< λ, b c > -log c 0 (λ) . (50) 
It can easily be deduced that the gradient of Γ with respect to λ is written as

∇Γ(λ) = b c -E{h c (H λ )} , (51) 
and that the Hessian matrix, [Γ ′′ (λ)], of Γ at λ is written as

[Γ ′′ (λ)] = [cov{h c (H λ )}] , (52) 
in which the covariance matrix

[cov{h c (H λ )}] of random vector h c (H λ ) is such that [cov{h c (H λ )}] = E{h c (H λ ) h c (H λ ) T } -E{h c (H λ )} E{h c (H λ )} T . ( 53 
)
By construction (see Section 5.3), we have

[cov{h c (H)}] = [Ψ] T [cov{ h c (H)}] [Ψ]
. We will assume that, for all λ ∈ C ad,λ , the covariance matrix [cov{h c (H λ )}] is positive definite (this is a reasonable hypothesis due to the construction of [Ψ] and due to the hypothesis of algebraical independence of the constraints (see Eq. ( 45)). Consequently, λ → Γ(λ) is a strictly convex function in C ad,λ . Since λ sol ∈ C ad,λ is the unique solution of Eq. ( 49), we have E{h c (H λ sol )} = b c . Therefore, Eq. ( 51) yields ∇Γ(λ sol ) = 0. Consequently, λ sol is the unique solution of the following optimization problem,

λ sol = arg min λ∈C ad,λ ⊂R n uc Γ(λ) . ( 54 
)
Since Γ is convex, this optimization problem would be convex if C ad,λ was convex and then λ sol would be the unique global minimum that could be computed with the efficient algorithms devoted to convex optimization problems. However, it cannot be proven that C ad,λ is convex for arbitrary constraints h c .

Iterative algorithm for computing the Lagrange multipliers λ sol

Taking into account the convexity of Γ, we propose to solve the minimization problem defined by Eq. ( 54) with a Newton iterative method applied to function λ → ∇Γ(λ) [START_REF] Batou | Calculation of lagrange multipliers in the construction of maximum entropy distributions in high stochastic dimension[END_REF][START_REF] Soize | Uncertainty Quantification[END_REF] starting from an initial point λ 1 in C ad,λ . This algorithm allows for finding λ sol such that ∇Γ(λ sol ) = 0 and is written, for ι ≥ 1, as

λ ι+1 = λ ι -[Γ ′′ (λ ι )] -1 ∇Γ(λ ι ) , (55) 
in which ∇Γ(λ ι ) and [Γ ′′ (λ ι )] are given by Eqs. ( 51) and [START_REF] Batou | Calculation of lagrange multipliers in the construction of maximum entropy distributions in high stochastic dimension[END_REF], that is to say,

∇Γ(λ ι ) = b c -E{h c (H λ ι )} , [Γ ′′ (λ ι )] = [cov{h c (H λ ι )}] . (56) 
The initial point, which corresponds to ι = 1, is chosen such that

λ 1 = -[Γ ′′ (λ 0 )] -1 ∇Γ(λ 0 ) , (57) 
with λ 0 = 0, and since H 0 = H (see Eq. ( 48)), we have

∇Γ(λ 0 ) = b c -E{h c (H)} , [Γ ′′ (λ 0 )] = [cov{h c (H)}] . (58) 
Consequently, the necessary condition concerning the initial point in the Newton method is satisfied: λ 1 is not close to origin 0 because b c E{h c (H)} and we have λ 1 ∈ C ad,λ . The right-hand sides of the two equations in Eq. ( 58) can be estimated using the empirical estimators of the mean vector and covariance matrix of h c (H) using the the initial dataset {η j , j = 1, . . . , N} defined by Eq. [START_REF] Peperkamp | The acquisition of allophonic rules: Statistical learning with linguistic constraints[END_REF]. At each iteration ι, the convergence of the iteration algorithm is controlled by calculating the error

err(ι) = b c -E{h c (H λ ι )} b c = ∇Γ(λ ι b c . ( 59 
)
During the iteration, for each λ ι given in C ad,λ ⊂ R ν c , the following mathematical expectations,

E{h c (H λ ι )} , E{h c (H λ ι ) h c (H λ ι ) T } , (60) 
have to be computed using an MCMC algorithm (see Section 5.7). It should be noted that admissible set C ad,λ cannot, in the general case, explicitly be described. An additional discussion concerning the convergence of the iteration algorithm in the framework of the existence of a solution is given in Section 5.11.

Nonlinear Itô stochastic differential equation (ISDE) for the generator of random variable

H λ For λ fixed in C ad,λ , we have to construct a generator for H λ in order to compute an estimation of the quantities listed in Eq. ( 60). We propose to use the approach presented in [START_REF] Soize | Construction of probability distributions in high dimension using the maximum entropy principle. applications to stochastic processes, random fields and random matrices[END_REF][START_REF] Soize | Uncertainty Quantification[END_REF], which is based on a nonlinear ISDE associated with a nonlinear stochastic dissipative Hamiltonian dynamical system. This choice of MCMC generator will allow for implementing, in Section 5.8, the probabilistic learning on manifolds proposed in [START_REF] Soize | Data-driven probability concentration and sampling on manifold[END_REF] for generating a large number of realizations of random variable H λ ι and then of H c (at convergence with respect to ι).

Introduction of the potential function associated with pdf p H λ

For λ fixed in C ad,λ , Eq. ( 46) is rewritten, for all η in R ν , as

p H λ (η) = c 0 (λ) ρ λ (η) , (61) 
in which function η → ρ λ (η) from R ν into R + is defined by ρ λ (η) = exp{-V λ (η)} , V λ (η) = ψ(η)+ < λ, h c (η) > . (62)

Nonlinear ISDE for random vector H λ

Following [START_REF] Soize | Data-driven probability concentration and sampling on manifold[END_REF], we have to consider the nonlinear stochastic dissipative Hamiltonian dynamical system whose potential is V λ defined by Eq. ( 62), which is represented by the nonlinear ISDE expressed, for t > 0, as

d[U λ (t)] = [V λ (t)] dt , (63) 
d[V λ (t)] = [L λ ([U λ (t)])] dt - 1 2 f 0 [V λ (t)] dt + f 0 d[W wien λ (t)] , (64) 
with the initial condition at t = 0,

[U λ (0)] = [η init ] , [V λ (0)] = [v init ] a.s. , (65) 
in which {([U λ (t)], [V λ (t)]), t ∈ R + } is a stochastic process with values in M ν,N × M ν,N , which is made up of the independent stochastic processes {(U ℓ λ (t), V ℓ λ (t)), t ∈ R + } such that [U λ (t)] = [U 1 λ (t) . . . U N λ (t)] and [V λ (t)] = [V 1 λ (t) . . . V N λ (t)],
and where: (i) f 0 > 0 is a free parameter allowing the dissipation to be controlled in the stochastic dynamical system. This parameter is chosen such that f 0 < 4. The value, 4, corresponds to the critical damping rate of the linearized ISDE associated with Eqs. ( 63) and ( 64). (ii) {[W wien λ (t)], t ∈ R + } is the stochastic process, defined on (Θ, T , P), indexed by R + , with values in M ν,N , for which the columns of [W wien λ (t)] are N independent copies of the R ν -valued normalized Wiener process whose matrix-valued autocorrelation function is min(t, t ′ ) [I ν ]. The dependence on λ is such that, if λ and λ ′ are two distinct values in C ad,λ , then the two stochastic processes

{[W wien λ (t)], t ∈ R + } and {[W wien λ ′ (t)], t ∈ R + } are independent. (iii) [u] → [L λ ([u])] is a nonlinear mapping from M ν,N into M ν,N , expressed in the following form as negative of the gradient of the potential V λ [L λ ([u])] αℓ = - ∂ ∂u ℓ α V λ (u ℓ ) , α = 1, . . . , ν , ℓ = 1, . . . , N , (66) 
in which

[u] = [u 1 . . . u N ] ∈ M ν,N with u ℓ = (u ℓ 1 , . . . u ℓ ν ) ∈ R ν .
For ℓ fixed in {1, . . . , N}, the Hamiltonian of the associated conservative homogeneous dynamical system related to stochastic process

{(U ℓ (t), V ℓ (t)), t ∈ R + } is thus written as H λ (u ℓ , v ℓ ) = 1 2 v ℓ 2 + V λ (u ℓ ). (iv) [η init
] and [v init ] are given matrices in M ν,N that will be defined in Section 5.7.5 as a function of iteration ι of the algorithm given in Section 5.6.

Existence and uniqueness of a stationary solution associated with the invariant measure

Using Theorems 4 to 7 in Pages 211 to 216 of [START_REF] Soize | The Fokker-Planck Equation for Stochastic Dynamical Systems and its Explicit Steady State Solutions[END_REF], it can be proven, that for λ ∈ C ad,λ , Eqs. ( 63) to (65) admits the unique invariant measure,

⊗ N ℓ=1 {p H λ (u ℓ ) p G (v ℓ ) du ℓ dv ℓ } , (67) 
in which p H λ is defined by Eqs. ( 61) and ( 62), and where the pdf p G is written as 

p G (v ℓ ) = (2π) -ν/2 exp{-1/2 v ℓ 2 }.
(t st )] is ⊗ N ℓ=1 p H λ (u ℓ ) du ℓ , (68) 
that is to say, is the probability distribution

p [H λ ] ([u]) d[u] with d[u] = ⊗ N ℓ=1 du ℓ of the random matrix [H λ ] with values in M ν,N . The columns H 1 λ , . . . , H N λ of [H λ ]
are N independent copies of random vector H λ with values in R ν whose pdf is p H λ defined by Eqs. ( 61) and (62). It can then be deduced that for any fixed t st ,

[H λ ] = [U st λ (t st )] = lim t→+∞ [U λ (t)] . (69) 
Equation (69) means that, for f 0 > 0, there exists t min λ > 0, such that {[U λ (t)], t > t min λ } is a stationary stochastic process that is a copy of stochastic process {[U st λ (t st )], t st ∈ R + }. As previously explained, f 0 allows for controlling the transient response generated by the initial conditions for quickly reaching the stationary regime. Finally, we introduce the Gaussian random matrices [V λ ] with values in M ν,N such that

[V λ ] = [V st λ (t st )] = lim t→+∞ [V λ (t)] . (70) 

Expression of the mapping [L λ ]

In this subsection a general expression for the mapping [L λ ] is developed. In addition, specializations to particular common examples are derived.

Using Eqs. ( 62) and (66), it can be proven that, for α = 1, . . . , ν, for ℓ = 1, . . . , N, and for

[u] = [u 1 . . . u N ] in M ν,N , we have [L λ ([u])] αℓ = 1 ρ(u ℓ ) ∇ u ℓ ρ(u ℓ )-[µ] 1/2 [Φ] T [D x g c ( x+[Φ][µ] 1/2 u ℓ )][Ψ]λ α , (71) 
in which ρ is defined by Eq. ( 23), where the gradient of ρ is such that

∇ u ℓ ρ(u ℓ ) = 1 s 2 ν 1 N N j=1 ( s ν s ν η j -u ℓ ) exp{- 1 2 s 2 ν s ν s ν η j -u ℓ 2 } , (72) 
and where [D

x g c (x)] ∈ M n,m c is the derivative at point x ∈ R n of the mapping x → g c (x) = (g 1 (x), . . . , g m c (x)) from R n into R m c such that [D x g c (x)] ki = ∂g c i (x) ∂x k , k = 1, . . . , n , i = 1, . . . m c .
(1) Case of the example presented in Section 4.1. Let us consider the example presented in Section 4.1. We have J mom = {k 1 , . . . , k κ mom }, κ mom ≤ n q , and m c = 2κ mom ≤ 2n q . Therefore,

β c = (m exp k 1 , . . . , m exp k κmom , r exp k 1 , . . . , r exp k κmom ) ∈ R m c , (73) 
and, for k = 1, . . . , n and v = [Ψ] λ in R m c , we have

{[D x g c (x)] v} k = κ mom κ=1 δ kk κ (v κ + 2 x k κ v κ+κ mom ) .

Let us consider the block expression of

[Φ] ∈ M n,ν such that [Φ] T = [[Φ q ] T [Φ w ] T ] in which [Φ q ] ∈ M n q ,ν . For κ = 1, . . . , κ mom , we define q k κ (u ℓ ) such that q k κ (u ℓ ) = q k κ + {[Φ q ][µ] 1/2 u ℓ } k κ . (74) 
Consequently, for α = 1, . . . , ν, for ℓ = 1, . . . , N, and for v = [Ψ] λ, Eq. ( 71) yields

[L λ ([u])] αℓ = 1 ρ(u ℓ ) ∇ u ℓ ρ(u ℓ ) α + [L c,1 λ ([u])] αℓ . ( 75 
) [L c,1 λ ([u])] αℓ = - κ mom κ=1 µ 1/2 α [Φ q ] k κ α (v κ + 2 q k κ (u ℓ )v κ+κ mom ) . ( 76 
)
For facilitating the numerical implementation and enhancing computational efficiency, the righthand side of Eq. ( 76) can be rewritten in a matrix form as follows. Let q = ( q 1 , . . . , q κ mom ) be the vector in R κ mom and let [ Φ q ] be the matrix in M κ mom ,ν such that, for κ = 1, . . . , κ mom and for all α = 1, . . . , ν, we have

q κ = q k κ , [ Φ q ] κα = [Φ q ] k κ α . (77) 
Let q(u ℓ ) = ( q 1 (u ℓ ), . . . , q κ mom (u ℓ )) be the vector in R κ mom such that q κ (u ℓ ) = q k κ (u ℓ ), which can be written as

q(u ℓ ) = q + [ Φ q ] [µ] 1/2 u ℓ . (78) 
Let [ q(u ℓ )] be the diagonal matrix in M κ mom such that [ q(u ℓ )] κκ ′ = δ κκ ′ q κ (u ℓ ) in which q κ (u ℓ ) is component κ of vector q(u ℓ ) defined by Eq. ( 78). Let us consider the block writing of

[Ψ] ∈ M m c ,ν c such that [Ψ] T = [[Ψ m ] T [Ψ r ] T ] in which [Ψ m
] and [Ψ r ] are matrices that belong to M κ mom ,ν c . Using the above notations, Eq. ( 76) can be rewritten as

[L c,1 λ ([u])] αℓ = -[µ] 1/2 [ Φ q ] T [Ψ m ] + 2 [ q(u ℓ )] [Ψ r ] λ α . ( 79 
)
(2) Case of the example presented in Section 4.2. Let us now consider Eq. ( 15) of the example presented in Section 4.2 with m c = n q . We then have g c (x) = q -[B] w with x = (q, w) ∈ R n = R n q × R n w , which can be rewritten as

g c (x) = [G c ] x with [G c ] = [ [I n q ] | -[B] ] ∈ M n q ,n with n = n q + n w . Consequently, we have [D x g c (x)] = [G c
] T ∈ M n,n q and for α = 1, . . . , ν, for ℓ = 1, . . . , N, and for v = [Ψ] λ, Eq. ( 71) yields

[L λ ([u])] αℓ = 1 ρ(u ℓ ) ∇ u ℓ ρ(u ℓ ) α + [L c,2 λ ([u])] αℓ . ( 80 
) [L c,2 λ ([u])] αℓ = -[µ] 1/2 [Φ] T [G c ] T [Ψ] λ α . (81) 
It should be noted that [L c,2 λ ([u])] depends only on λ and is independent of [u].

(3) Case of the example presented in Appendix A.1. Finally, we consider the example presented in Appendix A.1 for which J mom = {k 1 , . . . , k κ mom }, κ mom ≤ n q , and m c = 2 κ mom + n q ≤ 3 n q . Therefore,

β c = (m exp k 1 , . . . , m exp k κmom , r exp k 1 , . . . , r exp k κmom , β const 1 , . . . , β const n q ) ∈ R m c , (82) 
and using Eqs. ( 75), ( 76), (80), and (81), we have, for α = 1, . . . , ν, for ℓ = 1, . . . , N, and for

λ ∈ R ν c , [L λ ([u])] αℓ = 1 ρ(u ℓ ) ∇ u ℓ ρ(u ℓ ) α + [L c λ ([u])] αℓ , (83) 
[L c λ ([u])] = [L c,1 λ ([u])] + [L c,2 λ ([u])] . (84) 

Expression of the initial conditions for the MCMC algorithm

In Eq. ( 65), the initial conditions [η init ] and [v init ] are constructed in M ν,N as a function of iteration ι of the algorithm presented in Section 5.6 in order to calculate the sequence {λ ι } ι≥2 from the initial value λ 1 as follows:

• λ 1 is computed (see Eq. ( 55)) by λ 1 = -[Γ ′′ (λ 0 )] -1 ∇Γ(λ 0 ) with λ 0 = 0, using Eq. (58) as explained in Section 5.6.

• λ 2 is calculated using Eq. ( 55), in which [Γ ′′ (λ 1 )] and ∇Γ(λ 1 ) are computed with Eqs. ( 51) and [START_REF] Batou | Calculation of lagrange multipliers in the construction of maximum entropy distributions in high stochastic dimension[END_REF] in which E{h c (H λ 1 )} and [cov{h c (H λ 1 )] are estimated with the MCMC algorithm for which the initial conditions at t = 0 are chosen as

[η init ] = [η init,1 ] and [v init ] = [v init,1 ] with [η init,1 ] = [η 1 . . . η N ] ∈ M ν,N , (85) 
and where the N columns of [v init,1 ] are N independent realizations of a Gaussian, centered, R ν -valued random variable for which its covariance matrix is [I ν ]. The MCMC generator (see Section 5.8) allows for generating 69) and ( 70)).

n MC realizations [η 1 λ 1 ], . . . , [η n MC λ 1 ] of random matrix [H λ 1 ] and [v 1 λ 1 ], . . . , [v n MC λ 1 ] of random matrix [V λ 1 ] (see Eqs. (
• Knowing λ ι at iteration ι ≥ 1, the vector λ ι+1 is calculated using Eq. ( 55) in which [Γ ′′ (λ ι )] and ∇Γ(λ ι ) are computed with Eqs. ( 51) and ( 52)) using the MCMC algorithm for which the initial conditions at t = 0 are chosen as

[η init ] = [η init,ι ] and [v init ] = [v init,ι ] with [η init,ι ] = [η n MC λ ι-1 ] , [v init,ι ] = [v n MC λ ι-1 ] . (86) 
5.8. Computing the additional realizations of H λ i using the probabilistic learning on manifolds For given λ = λ ι in R ν c in which λ ι comes from the iteration algorithm detailed in Section 5.6, and for given initial conditions [η init,ι ] and [v init,ι ] defined by Eq. ( 86), n MC realizations [η 1 λ ι ], . . . , [η

n MC λ ι ] of random matrix [H λ ι ] and [v 1 λ ι ], . . . , [v n MC
λ ι ] of random matrix [V λ ι ] have to be computed using the MCMC generator defined by Eqs. (63) to (65) in which λ = λ ι . However, as it has previously been explained, N is assumed to be small and consequently, the probabilistic learning on manifolds presented in [START_REF] Soize | Data-driven probability concentration and sampling on manifold[END_REF] is used. This algorithm consists in projecting the nonlinear ISDE defined by Eqs. ( 63) to (65) on the diffusion-maps basis. This approach allows for preserving the concentration of the invariant measure p H λ ι (η) dη and to avoid the scattering of the realizations computed with the MCMC generator. In order to simplify the reading of this paper, we briefly summarized the algorithm that is proposed in [START_REF] Soize | Data-driven probability concentration and sampling on manifold[END_REF] in adapting the notations to the problem under consideration.

Construction of the diffusion-maps basis

The diffusion-maps basis is independent of λ ι , only depends on the initial dataset {η 1 , . . . , η N }, and is represented by the matrix

[g] = [g 1 . . . g m ] ∈ M N,m with 1 < m ≤ N . ( 87 
)
For m = N, it is an algebraic basis of vector space R N . This basis is constructed using the diffusion maps proposed in [START_REF] Coifman | Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps[END_REF]. Let [K] be the symmetric (N × N) real matrix such that

[K] j j ′ = exp(-1 4 ε diff η j -η j ′ 2
) that depends on a real smoothing parameter ε diff > 0. Let [P] be the transition matrix in M N of a Markov chain such that

[P] = [b] -1 [K] in which [b] is the positive-definite diagonal real matrix such that [b] i j = δ i j N j ′ =1 [K] j j ′ .
For m fixed in {1, . . . , N}, let g 1 , . . . , g m be the right eigenvectors in R N of matrix [P] such that [P] g α = Λ α g α in which the eigenvalues are sorted such that 1 = Λ 1 > Λ 2 > . . . > Λ m . It can easily be proven that the eigenvalues are positive and the largest is Λ 1 for which all the components of the corresponding eigenvector g 1 are equal. Considering the normalization [g] T [b] [g] = [I m ], the right-eigenvalue problem of the nonsymmetric matrix [P] can then be done solving the eigenvalue problem [b] -1/2 [K] [b] -1/2 ξ α = Λ α ξ α related to a positive-definite symmetric real matrix with the orthonormalization < ξ α , ξ β >= δ αβ . Therefore, g α can be deduced from ξ α by g

α = [b] -1/2 ξ α .
The construction introduces two hyperparameters: the dimension m ≤ N and the smoothing parameter ε diff > 0. An algorithm is proposed in [START_REF] Soize | Entropy-based closure for probabilistic learning on manifolds[END_REF] for estimating their values. Most of the time, m and ε diff can be chosen as follows. Let ε diff → m(ε diff ) be the function from ]0 , +∞[ into the set N = {0, 1, 2, . . .} of all the integers such that

m(ε diff ) = arg min α | α≥3 Λ α (ε diff ) Λ 2 (ε diff ) < 0.1 . ( 88 
)
If function m is a decreasing function of ε diff in the broad sense (if not, see [START_REF] Soize | Entropy-based closure for probabilistic learning on manifolds[END_REF]), then the optimal value ε opt diff of ε diff can be chosen as the smallest value of the integer m(ε

opt diff ) such that { m(ε opt diff ) < m(ε diff ) , ∀ε diff ∈ ]0, ε opt diff [ } ∩ { m(ε opt diff ) = m(ε diff ) , ∀ε diff ∈ ]ε opt diff , 1.5 ε opt diff [ } . ( 89 
)
The corresponding optimal value m opt of m is then given by m opt = m(ε opt diff ). Random vector H is centered, but due to the constraints, X c can be not centered. Consequently, vector g 1 associated with Λ 1 has to be kept in the basis.

Reduced-order representation of random matrix [H λ ι ]

The diffusion-maps basis represented by matrix [g] ∈ M N,m spans a subspace of R N that characterizes the local geometry structure of dataset {η j , j = 1, . . . , N}. The reduced-order representation is obtained by projecting each column of the M N,ν -valued random matrix [H λ ι ] T on the subspace of R N , spanned by {g 1 , . . . , g m }. Let [Z λ ι ] be the random matrix with values in M ν,m such that

[H λ ι ] = [Z λ ι ] [g] T . ( 90 
) Since the matrix [g] T [g] ∈ M + m is invertible, the least-square approximation of [Z λ ι ] can be written as [Z λ ι ] = [H λ ι ] [a] , (91) 
in which the matrix [a] is defined by

[a] = [g] ([g] T [g]) -1 ∈ M N,m . (92) 
It should be noted that the least-square approximation defined by Eq. ( 91) is only used for calculating the initial conditions for the reduced-order nonlinear ISDE.

Generation of realizations of random matrix [H λ ι ]

The objective is to compute

n MC independent realizations [η 1 λ ι ], . . . , [η n MC λ ι ] of random matrix [H λ ι ]
in which n MC is assumed to be independent of λ ι . The reduced-order nonlinear ISDE is constructed as the projection of the nonlinear ISDE defined by Eqs. ( 63) to (65) on the diffusionmaps basis represented by matrix [g] ∈ M N,m . We therefore define the

M ν,m × M ν,m -valued stochastic process {([Z λ ι (t)], [Y λ ι (t)]), t ≥ 0} such that, for all t ≥ 0, [U λ ι (t)] = [Z λ ι (t)] [g] T , [V λ ι (t)] = [Y λ ι (t)] [g] T . ( 93 
)
The projection of Eqs. (63) to (65) yields

d[Z λ ι (t)] = [Y λ ι (t)] dt , (94) 
d[Y λ ι (t)] = [L λ ι ([Z λ ι (t)])] dt - 1 2 f 0 [Y λ ι (t)] dt + f 0 d[W wien λ ι (t)] , (95) 
with the projected initial conditions (see Eqs. ( 86) and ( 91)

) at t = 0, [Z λ ι (0)] = [η n MC λ ι-1 ] [a] , [Y λ ι (0)] = [v n MC λ ι-1 ] [a] , a.s. , (96) 
in which the random matrix [L λ ι ([Z λ ι (t)])] with values in M ν,m is written as

[L λ ι ([Z λ ι (t)])] = [L λ ι ([Z λ ι (t)] [g] T )] [a] , (97) 
[W wien λ ι (t)] = [W wien λ ι (t)] [a] . (98) 
Using the results presented in Section 5.7.3, it can be deduced that random matrix

[Z λ ι ] = lim t→+∞ [Z λ ι (t)] in probability distribution. We can then compute n MC independent realiza- tions [z 1 λ ι ], . . . , [z n MC λ ι ] of random matrix [Z λ ι ],
using the stationary regime of stochastic process {[Z λ ι (t)], t > 0} that is the solution of Eqs. (94) to (98). The realizations of [H λ ι ] are then obtained using Eq. ( 90),

[η ℓ λ ι ] = [z ℓ λ ι ] [g] T ∈ M ν,N , ℓ = 1, . . . , n MC . ( 99 
)
The Störmer-Verlet algorithm is used for solving the reduced-order nonlinear ISDE defined by Eqs. (94) to (98) as proposed in [START_REF] Soize | Polynomial chaos expansion of a multimodal random vector[END_REF][START_REF] Soize | Data-driven probability concentration and sampling on manifold[END_REF]. This algorithm is summarized in Appendix B.

Deducing the realization of random vector H λ ι

Let be M = n MC × N. Once the realizations {[η ℓ λ ι ], ℓ = 1, . . . , n MC } of the M ν,N -valued random variable [H λ ι ] have been computed using Eq. ( 99), the M ≫ N realizations {η ℓ ′ λ ι , ℓ ′ = 1, . . . , M} of the R ν -valued random variable H λ ι are deduced by reshaping the matrices {[η ℓ λ ι ], ℓ = 1, . . . , n MC }.

Computing the additional realizations of random vector X c

As soon as the error function defined by Eq. ( 59) is less that a given small tolerance (that is to say, considering the iteration number ι such that err(ι) ≤ tol), the iteration algorithm detailed in Section 5.6 is converged and the solution λ sol defined by Eq. ( 54) is such that λ sol ≃ λ ι . The realizations {η ℓ ′ λ ι , ℓ ′ = 1, . . . , M} of the random vector H c constructed in Section 5.8.4, which correspond to the last iteration λ ι , are rewritten as {η c,ℓ ′ , ℓ ′ = 1, . . . , M} (that is to say, η c,ℓ ′ = η ℓ ′ λ ι ). Using Eq. ( 28), the M realizations {x c,ℓ ′ , ℓ ′ = 1, . . . , M} of random vector X c are such that

x c,ℓ ′ = x + [Φ] [µ] 1/2 η c,ℓ ′ , ℓ ′ = 1, . . . , M .
(100)

Convergence analysis of the probabilistic learning with respect dimension N of initial dataset

Let us assumed that ε, which has been introduced in Eq. ( 18), is fixed independently of the value of N. Except for the case for which ε is chosen very small, in general, ν = ν(N) depends on N for N belonging to the ordered subset J N = {N min , ..., N max } ⊂ N of integers, with 0 < N min < N max . The value of N max corresponds to the maximum value that is available for constructing the initial dataset D N max . Consequently, the random variable X c,ν(N) depends on N ∈ J N and will simply be denoted as X c,N . A question related to the proposed probabilistic learning on manifolds is the convergence of the probability distribution P X c,N when N goes through the ordered set J N . This means that, for a given tolerance, when N goes from N min to N max , the probability distribution P X c,N must converge. If it is not the case, this means that the learning is not convergent and then N max has to be increased. Therefore, additional calculations have to be carried out with the computational models for constituting a new bigger training set.

(i) Since the mean-square convergence implies the convergence in probability distribution, we can study the convergence of the learning in analyzing the function

N → conv L 2 ,X c (N) = E{ X c,N 2 } .
(101)

In fact, the limit is unknown and a Cauchy sequence could be studied (Hilbert space L 2 (Θ, R n ) is a complete vector space). In practice, since set J N is not sufficiently big for using such a Cauchy criterion, we can check that

N → conv L 2 ,X c (N) is flat on {N f , . . . , N max } for N max < N f < N max .
(ii) Because the contribution of Q c,N and W c,N , such that X c,N = (Q c,N , W c,N ), can be very different in the value of conv L 2 ,X c (N), the definition of conv L 2 ,X c (N) given by Eq. ( 101) can be replaced by the following one,

N → conv L 2 ,X c (N) = 1 √ 2 E{ Q c,N 2 } E{ Q N max 2 } + E{ W c,N 2 } E{ W N max 2 } . ( 102 
)
(iii) Sometimes, for a given J N , the criteria defined by Eqs. (101) or ( 102) is not sufficiently sensitive when N goes through J N . In such a case, and if the constraints are only applied to the quantities of interest, indicators of the convergence of the learning can be analyzed by studying, for a given subset of components k, the graphs of the functions

N → m Q c k (N) , N → s Q c k (N) , N → {q → p Q c k (q; N)} , (103) 
of the mean value, the standard deviation, and the pdf of Q c k , which are estimated by using the M additional realizations generated with the PLoM.

Remarks concerning the convergence of the iteration algorithm in the framework of the existence of a solution

If there exists a unique solution (see the comments formulated in Section 5.4-(iv)), then, for all ι ≥ 1, [Γ ′′ (λ ι )] is a positive-definite matrix and reciprocally. Let us assume that this hypothesis holds. Since the initial point is correctly chosen as explained in Section 5.6, then the iteration algorithm defined by Eq. ( 55) is convergent and it is not necessary to introduce an under-relaxation of the type λ ι+1 = λ ιβ relax [Γ ′′ (λ ι )] -1 ∇Γ(λ ι ) with β relax ∈]0, 1[. If for a given iteration number ι, the rank of positive matrix [Γ ′′ (λ ι )] becomes less than ν c , then solution λ sol cannot be constructed in C ad,λ , which means that there is no solution. This difficulty is related to the value of ν c and cannot be compensated using an under-relaxation. The introduction of an under-relaxation does not modify the fact that there will exist ι ′ > ι (before reaching the convergence) such that the rank of [Γ ′′ (λ ι ′ )] is less than ν c (all the numerical experiments that have been done have confirmed this analysis). In fact, the existence of a solution is related to the number ν c of projected constraint equations defined by Eq. ( 33), which is the projection by [Ψ] ∈ M m c ,ν c of the constraint equations defined by the Eq. ( 10). If τ c is too small, then ν c is too big compared to the stochastic dimension ν s that have been introduced in Section 5. 4-(iv). This means that the number ν c of projected constraint equations is too large with respect to the number ν s of "stochastic degrees of freedom" and consequently, the projected constraint equations defined by Eq. ( 33) cannot be exactly satisfied. An effective method to solve such a non-convergence problem is to slightly increase the value τ c , which makes it possible to obtain a slightly smaller rank ν c and thus to reduce the number of projected constraint equations (all the numerical experiments that have been conducted validate this analysis).

Assumptions for the applicability of the proposed method. The proposed method is general. The given constraints for performing the probabilistic learning on manifolds are not limited to second-order moments but can be expressed as the mathematical expectation of any measurable mapping of the control parameters and the quantities of interest. For example, marginal probability densities can be imposed as shown in Appendix A. There is obviously a domain of validity, which is not due to the method proposed itself, but which is due to the coherence of the given constraints with respect to the initial dataset (that is used for the probabilistic learning). If the introduced constraints are not consistent with the initial dataset, then the optimization problem will have no solution. The existence of this solution is therefore conditioned by hypotheses that are discussed above and in Section 5.4-(iv).

Application (AP1)

In this section, an application is presented and is used for performing the validation of the methodology and the algorithms presented. All the random variables are defined on probability space (Θ, T , P). This application that will be referenced as (AP1) is sufficiently simple in order to be easily reproducible by the reader and will also allow for presenting a detailed analysis for several aspects of the proposed method.

Stochastic model

The stochastic model used for generating the initial dataset D N = {x j = (q j , w j ), j = 1, . . . , N} (see the Remark at the end of Section 2), related to random variable X = (Q, W) in which Q = (Q 1 , . . . , Q n q ) and W = (W 1 , . . . , W n w ), is written as

Q = [B(U)] (W + V b AP1 ) , ( 104 
)
in which U, V, and W are independent random variables. The maximum value of N is 300 and n w = 20. We have n q = 200. The deterministic vector b AP1 in R n w is written as b AP1 = 0.2 u + 0.9 in which all the components of u belong to ]0, 1[ (generated with the Matlab script: rng('default'); u = rand(n w , 1)). The real-valued random variable V = 0.2 U + 0.9 in which U is a uniform random variable on [0, 1]. The random vector U = (U 1 , . . . , U n u ) with n u = 6 is written, for α = 1, . . . , n u , as U α = 2 u α U α + 1u α in which U 1 , . . . , U n u are n u independent uniform random variables on [0, 1] and where, u α = 0.2(α -1)/(n u -1). The entries [B(U)] k j of the (n q × n w ) random matrix are defined by [B(U)] 

k j = n u α=1 ω α (U α ) φ α k (U α ) φ α j+n q /2 (U α ) in which φ α k (U α ) = sin{α kπ/(n q + 1)} is independent of U α (deterministic) and ω α (U α ) = 1/(αU α ) 2 . The random vector W is written as W = 3 β=1 √ ̟ β φ β w A β , in which ̟ β = 1/β 2 and φ β w = (φ β w,1 , . . . , φ β w,n w ) with φ β w, j = sin{βπ j/(1 + n w )}. The non-Gaussian centered random vector A = (A 1 , A 2 , A 3 ) is written as A = 27 γ=1 a γ ψ α (γ) 1 (Ξ 1 ) ψ α (γ)

Simulated experiments

Simulated experiments are not required for the proposed methodology. Only some statistics corresponding to the constraints must be specified. Nevertheless, in order to generate coherent statistics for the constraints (but also for validating the methodology), we introduce an experimental dataset that is generated with an "experimental model". This experimental dataset is used for estimating the statistics that correspond to the constraints. We insist on the fact that for applying the method proposed, the experimental dataset is not used and consequently, is not required.

The experimental dataset D

exp n r is generated with n r = 200 independent experimental realiza- tions {q exp,r , r = 1, . . . n r } of Q exp = (Q exp 1 , . . . , Q exp n q ),
which are used for estimating the right-hand side member of Eq. [START_REF] Kullback | On information and sufficiency[END_REF]. The simulated experiments correspond to model uncertainties induced by modeling errors and are constructed using significant perturbations of the stochastic model. The experimental stochastic model is then written as

Q exp = [B(U exp )] (W exp + V exp b AP1 ) , ( 105 
)
in which U exp , V exp , and W exp are independent random variables that are also independent of U, V, and W. The real-valued random variable V exp = 0.2 U exp + 0.9 in which U exp is a uniform random variable on [0, 1] independent of U. The random vector

U exp = (U exp 1 , . . . , U exp n u ) is written, for α = 1, . . . , n u , as U exp α = 2 u exp α U exp α + 1 -u exp α in which U exp 1 , . . . , U
exp n u are n u independent uniform random variables on [0, 1] and where, u exp α = 0.3(α -1)/(n u -1). Note that the coefficient is 0.3 and not 0.2 as in the stochastic model. The mapping u → [B(u)] is the same as the one of the stochastic model. The random vector W exp is written as

W exp = ζ MEAN × 1 n w + ζ STD × W exp , (106) 
in which 1 n w ∈ R n w is the vector whose components are equal to 1 and where W exp is an independent copy of the stochastic model of W. The parameter ζ MEAN controls the mean value of W exp while ζ STD controls the amplitude of its covariance matrix. Many values of (ζ MEAN , ζ STD ) have been considered in the subset [-0.2, +0.7] × [0, 1.4] for analyzing the robustness of the algorithm. In order to limit the number of figures, we will limit the presentation of the results to the value ζ MEAN = 0.4 and ζ STD = 1.4.

Scaling

Using the block writing X = (Q, W), the scaling of the R n q -valued random variable Q and the scaling of the R n w -valued random variable W are written, using Eq. ( 5), as

Q = [α q ] Q + q min , Q = [α q ] -1 (Q -q min ) , (107) 
W = [α w ] W + w min , W = [α w ] -1 (W -w min ) , (108) 
in which x min = (q min , w min ) and where [α q ] and [α w ] correspond to the block writing of [α x ].

The scaling of Eq. ( 104) is then written as

Q = [B(U)] (W + V b AP1 + c AP1 ) + d AP1 , ( 109 
) in which [B(U)] = [α q ] -1 [B(U)] [α w ], b AP1 = [α w ] -1 b AP1 , c AP1 = [α w ] -1
w min , and d AP1 = -[α q ] -1 q min . The scaling of Q exp is such that Q exp = [α q ] -1 (Q expq min ), which shows that the n r independent experimental realizations {q exp,r , r = 1, . . . n r } of Q exp are such that q exp,r = [α q ] -1 (q exp,rq min ) .

(110)

Constraints

The constraints are those that are defined in Section 4, that is to say by Eqs. ( 13) and ( 14) in which κ mom = n q and where the experimental moments {(m exp κ , s exp κ ), κ = 1, . . . , κ mom } are estimated using the n r independent experimental realizations {q exp,r , r = 1, . . . n r } defined by Eq. (110). Consequently, the number of constraints is m c = 2 n q = 400.

Values of the parameters of the algorithms

In this paragraph, all the values of the parameters are related to N = 300. The PCA of X (see Section 5.1) is performed with ε = 10 -6 in Eq. ( 17) and yields ν = 9. The values of the two parameters of the Gaussian kernel-density estimation defined by Eq. ( 24) are s ν = 0.5966 and s ν = 0.5129. Concerning the construction of the diffusion-maps basis, the use of Eqs. ( 88) and (89) yields ε opt diff = 48 and the optimal value of m is m opt = 12. The graph α → Λ α of the eigenvalues of the transition matrix defined in Section 5.8.1, which corresponds to these optimal values, is shown in Fig. 1-(a). For solving the reduced-order nonlinear ISDE defined in Section 5.8.3, the parameters related to the algorithm are those introduced in Appendix B, have been estimated using the procedure that is detailed in Section 4.7.2 in [START_REF] Soize | Data-driven probability concentration and sampling on manifold[END_REF], and are the following: f 0 = 1.5, n MC = 50, ℓ 0 = 10, M 0 = 10, ∆t = 0.16115, and then, M = 15 000. The projection of the constraints introduced in Section 5.3 has been performed with τ c = 0.001 that yields ν c = 3 (see Eq. ( 39)). Figure 1-(b) displays the graph of the error function ι → err(ι) that is defined by Eq. ( 59), which shows the convergence of the iteration algorithm for computing the Lagrange multiplier λ sol . It can be seen that the convergence is fast, the error decreases exponentially as a function of the iteration number ι. 59) showing the convergence of the iteration algorithm for computing the Lagrange multiplier λ sol . The vertical axis is in log.

Convergence of the learning with respect to the value of N

For this application, the use of the criterion defined by Eq. (101) or by Eq. ( 102) for analyzing the convergence of the learning with respect to dimension N of the initial dataset is not sufficiently informative. For N ∈ [125, 300], conv L 2 ,X c (N) fluctuates between 9.86 and 9.92. Consequently, for this application, the convergence of the learning is analyzed by using Section 5.10-(iii), that is to say by studying the sequence in N of graphs of the functions {k → s Q c k (N)} N and {q → p Q c 110 (q; N)} N for N ∈ {125, 150, 250, 300}. These quantities are related to the unscaled vector-valued random variable Q c with values in R n q for which n q = 200. For fixed N,

s Q c k (N) is the standard deviation of component Q c k and q → p Q c 110 (q; N) is the pdf of Q c
110 (only component 110 that corresponds to the maximum of response has been selected for limiting the number of figures). Figure 2-(a) shows the graphs of standard-deviation functions k → s Q c k (N) for which a zoom in k has been carried out in order to better separate the curves for viewing the convergence in N. Figure 2-(b) shows the graphs of pdf-functions q → p Q c 110 (q; N) for the same values of N. The convergence of the learning is particularly clear for the standarddeviation functions. For N = 250 and N = 300 the two curves are practically overlapping. consists in comparing Q c with the random vector Q c,model that is transformed from W c using the stochastic computational model, that is to say, (ii) To complete the analysis and the validation, we present the results obtained for the probability density functions. In order to limit the number of figures, we have selected, as previously, component 110 for Q. Figure 4 displays the graphs of the probability density functions q → p Q 110 (q), q → p Q exp 110 (q), q → p Q c 110 (q), and q → p Q c,model 110 (q). The constraints that are imposed concern only the second-order moments of Q. Consequently, there is no reason for that the pdf of Q c 110 coincides with the pdf of Q exp 110 . Nevertheless, it can be seen that the probabilistic learning on manifolds under these constraints yields a pdf that is not so bad. Note also that, in practice and in the framework of this application, the pdf of Q exp 110 cannot be estimated because the n r realizations of Q exp are not available. Nevertheless, it can be seen that the quality assessment is good enough because pdf q → p Q c,model 110 (q) is very close to pdf q → p Q c 110 (q). Figure 4: Application AP1: For M = 15 000, for N = 300, for n r = 200, graphs of the probability density functions q → p Q 110 (q) (black dashed line), q → p Q exp 110 (q) (red line), q → p Q c 110 (q) (blue line), and q → p Q c,model 110 (q) (blue dashed line, almost overlapping with the blue line).

Q c,model = [B(U)] (W c + V b AP1 ). For that the pdf of component Q c k can be compared to the pdf of component Q c,model k . (i) For k = 1, . . . , 200, Fig. 3-(a) displays the graphs of the mean functions k → m Q k , k → m Q exp k , k → m Q c k , and k → m Q c,model k . Figure 3-(b) shows the graphs of the standard-deviation functions k → s Q k , k → s Q exp k , k → s Q c k ,
7. Application (AP2): Probabilistic learning of the random elasticity field for a heterogeneous anisotropic medium

In this section, we present an application in high dimension related to the learning of the random elasticity field for a heterogeneous anisotropic medium. This application is described in details in order that it can be reproduced. The R n w -valued random system parameter, W, corresponds to the spatial discretization of the tensor-valued random elasticity field for which n w = 420 000. The R n q -valued random quantity of interest, Q, has dimension n q = 1 683 corresponding to observed components of the displacement field at 561 points located on the boundary of the domain occupied by the heterogeneous material, and m c = 3 366 constraints defined in Section 4 are introduced. All the random variables are defined on probability space (Θ, T , P). 

= Γ 0 ∪ Γ ∪ Γ obs ∪ Γ c in which Γ 0 = {ζ 1 = 1.0 , 0 ≤ ζ 2 ≤ 0.2 , 0 ≤ ζ 3 ≤ 0.1} , Γ = {ζ 1 = 0.0 , 0 ≤ ζ 2 ≤ 0.2 , 0 ≤ ζ 3 ≤ 0.1} , Γ obs = {0 ≤ ζ 1 ≤ 1.0 , 0 ≤ ζ 2 ≤ 0.2 , ζ 3 = 0.1}} ,
and where Γ c = ∂Ω meso \{Γ 0 ∪ Γ ∪ Γ obs }. The outward unit normal to ∂Ω is denoted by n(ζ).

The heterogeneous complex material is modeled by a heterogeneous and anisotropic elastic random medium for which the elastic properties are defined by the fourth-order tensor-valued non-Gaussian random field {C = {C i jkh (ζ)} i jkh , ζ ∈ Ω}, which is rewritten, for i, j, k, and h in {1, 2, 3}, as

C i jkh (ζ) = [K(ζ)] IJ with I = (i, j) and J = (k, h) , (111) 
in which indices I and J belong to {1, . . . , 6} and where the matrix-valued non-Gaussian random elasticity field

{[K(ζ)], ζ ∈ Ω} will be defined after. The R 3 -valued displacement field Ξ = (Ξ 1 , Ξ 2 , Ξ 3 ) is defined in Ω. A Dirichlet condition Ξ = 0 is given on Γ 0 while a Neumann condition is given on Γ ∪ Γ obs ∪ Γ c .
The Neumann condition is zero on Γ obs ∪ Γ c while on Γ, a given random surface force field G Γ is applied (note that there is no surface force field applied to Γ obs , which is the part of the boundary for which field Ξ is observed). The stochastic boundary value problem is written as

-div Σ = 0 in Ω , (112) 
Ξ = 0 on Γ 0 , (113) 
Σ n = G Γ on Γ , (114) 
Σ n = 0 on Γ obs ∪ Γ c . (115) 
The stress tensor Σ = {Σ i j } i j is related to the strain tensor E(Ξ) = {E kh (Ξ)} kh by the constitutive equation,

Σ i j (ζ) = C i jkh (ζ) E kh (Ξ(ζ)) (116) 
in which the strain tensor is such that E kh (Ξ) = (∂Ξ k /∂ζ h + ∂Ξ h /∂ζ k )/2.

( 

(ζ) = (G Γ 1 (ζ), G Γ 2 (ζ), G Γ 3 (ζ)), ζ ∈ Γ} applied on surface Γ is defined as follows. For all ζ = (ζ 1 , ζ 2 , ζ 3 ) in Γ, G Γ 1 (ζ) = -g ζ 1 cos(U 1 ) , (117) 
G Γ 2 (ζ) = -g ζ 1 sin(U 1 ) -g ζ 2 cos(U 2 ) -g ζ 3 sin U 3 , (118) 29 
G Γ 3 (ζ) = -g ζ 2 sin(U 2 ) -g ζ 3 cos U 3 , (119) 
where U = (U 1 , U 2 , U 3 ) is a R 3 -valued random variable such that

U k = α 0 (2 U k -1) , α 0 = 2πα d 0 /360 , α d 0 = 1 o , (120) 
in which U 1 , U 2 , U 3 are three independent uniform random variables on [0, 1], which are also independent of random field C. It can then be deduced that U is independent of random field C.

The amplitudes are such that g ζ 1 = 15 000 N/m 2 , g ζ 2 = 130 N/m 2 , and g

ζ 3 = 50 N/m 2 .
(iii) Stochastic model of the random elasticity field. The non-Gaussian fourth-order tensorvalued random field {C(ζ), ζ ∈ Ω} is assumed to be of second order and statistically homogeneous. Its mean function is thus independent of ζ and is an elasticity tensor denoted by C, which is defined using its representation [K] ∈ M + 6 (see Eq. ( 111)) such that C i jkh = [K] IJ . Elasticity tensor C is associated with a homogeneous isotropic elastic material whose Young modulus is 10 10 N/m 2 and Poisson coefficient 0.15 (note that the fluctuations are those of a heterogeneous anisotropic elastic material). The non-Gaussian M + 6 -valued random field {[K(ζ)] , ζ ∈ Ω} is constructed using the stochastic model [START_REF] Soize | Non gaussian positive-definite matrix-valued random fields for elliptic stochastic partial dif-ferential operators[END_REF][START_REF] Soize | Uncertainty Quantification[END_REF] of random elasticity fields for heterogeneous anisotropic elastic media that are isotropic in statistical mean and exhibit anisotropic statistical fluctuations, for which the parameterization consists of spatial-correlation lengths and of a positive-definite lower bound. The random field

{[K(ζ)], ζ ∈ Ω} is written as, [K(ζ)] = [C ℓ ] + [ C ] 1/2 [G 0 (ζ)] [ C ] 1/2 , ∀ζ ∈ Ω . (121) 
The lower-bound matrix is defined by

[C ℓ ] = ε ℓ (1 + ε ℓ ) -1 [K] ∈ M + 6 in which ε ℓ is chosen equal to 10 -6 . Consequently, [ C ] = [ K ] -[C ℓ ] = (1 + ε ℓ ) -1 [K] belongs to M + 6 . Note that [ C ] 1/2 is the square root of matrix [ C ] in M + n . The non-Gaussian random field {[G 0 (ζ)], ζ ∈ R 3 }, which is indexed by R 3 with values in M +
6 , is homogeneous in R 3 and is a second-order random field such that, for all ζ in R 3 ,

E{[G 0 (ζ)]} = [I 6 ] , [G 0 (ζ)] > 0 a.s. ( 122 
)
It can then be deduced that, for all ζ in Ω, With such a stochastic model of the elasticity field, it is proven in [START_REF] Soize | Non gaussian positive-definite matrix-valued random fields for elliptic stochastic partial dif-ferential operators[END_REF] that the stochastic boundary value problem defined by Eqs. (112) to (116) admits a unique second-order solution.

E{[K(ζ)]} = [ K ] ∈ M + 6 , [K(ζ)] -[C ℓ ] > 0 a.s. ( 123 
(iv) Finite element approximation of the stochastic boundary value problem and construction of random vectors Q and W. Domain Ω =]0, 1.0[ × ]0, 0.2[ × ]0, 0.1[ is meshed with 50×10×5 = 2 500 finite elements using 8-nodes finite elements. There are 3 366 nodes and 10 098 dofs (degrees of freedom). The displacements are locked at all the 66 nodes belonging to surface Γ 0 and therefore, there are 198 zero Dirichlet conditions. The R n q -valued random variable Q of the QoIs are constituted of the three dofs of the 561 observed nodes on surface Γ obs ; we then have n q = 1 683 = 3×561. There are 8 integration points in each finite element. (v) Generation of the initial dataset. The finite element discretization of the stochastic boundary value problem allows for constructing Q as a function of W and U that is formally written as

Q = f(W, U) , (124) 
in which (w, u) → f(w, u) is a measurable mapping on R n w × R 3 with values in R n q . Note that the deterministic mapping f cannot explicitly be described because this mapping is associated with the solution of the finite element approximation of the stochastic boundary value problem. The initial dataset D N = {x j = (q j , w j ), j = 1, . . . , N}, relative to the random variable X = (Q, W), is then constructed by using the Monte Carlo simulation method for solving the discretized stochastic equation, in which q j = f(w j , u j ) where {w j , j = 1, . . . , N} and {u j , j = 1, . . . , N} are N independent realizations of random vectors W and U (note that u j is also an independent realization of w j ). 

Generation of the experimental dataset

As explained in Section 6 devoted to Application (AP1), simulated experiments are not required for the proposed methodology. Only some statistics that correspond to the constraints must be specified. Nevertheless, similarly to Application (AP1), in order to generate coherent statistics for the constraints, we introduce an experimental dataset generated as a perturbation of the stochastic boundary value problem (as previously, we insist on the fact that for applying the method proposed, the experimental dataset is not used and consequently, is not required). The experimental dataset D exp n r is generated with n r = 1 000 independent experimental realizations {q exp,r , r = 1, .

. . n r } of Q exp = (Q exp 1 , . . . , Q exp n q ) such that Q exp = f(W exp , U exp ) , (125) 
in which the deterministic mapping f is the same as the one used in Eq. ( 124). The R 3 -valued random variable U exp is an independent copy of the R 3 -valued random variable U introduced in Section 7.1-(ii). The random vector W exp is constructed as an independent copy of random vector W defines in in Section 7.1-(iv) for which the spatial correlation lengths are

L exp 1 = L exp 2 = L exp 3 = 0.
16 and the dispersion parameter is δ exp G 0 = 0.45.

Scaling

Using the block notation X = (Q, W), the scaling of the R n q -valued random variable Q and the scaling of the R n w -valued random variable W is carried out as explained in Section 6.3 and is obtained by using Eqs. ( 107) and ( 108) whose values of the parameterized transformation are those of the present application (AP2). The scaling of Eq. ( 124) is then written as

Q = f(W, U) , ( 126 
) in which f(W, U) = [α q ] -1 (f([α w ]W + w min , U) -q min ). The scaling of Q exp is such that Q exp = [α q ] -1 (Q exp -q min )
, which shows that the n r independent experimental realizations {q exp,r , r = 1, . . . n r } of Q exp are such that q exp,r = [α q ] -1 (q exp,rq min ) .

(127)

Constraints

The constraints are those that are defined by Eqs. ( 13) and ( 14) in which κ mom = n q and where the experimental moments {(m exp κ , s exp κ ), κ = 1, . . . , κ mom } are estimated using the n r independent experimental realizations {q exp,r , r = 1, . . . n r } defined by Eq. (127). Consequently, the number of constraints is m c = 3 366.

Values of the parameters of the algorithms

All the values of the parameters given in this paragraph are related to N = 200. (i) The PCA of X (see Section 5.1) is performed with ε = 10 -3 in Eq. ( 17) and yields ν = 193.

The graph of the error function ν → err PCA (ν) for ν ∈ [START_REF] Kaipio | Statistical and Computational Inverse Problems[END_REF]193], defined by Eq. ( 17), is shown in Fig. 6 (a). (ii) The parameters of the Gaussian kernel-density estimation defined by Eq. ( 24) are s ν = 0.9544 and s ν = 0.6913. (iii) For the diffusion-maps basis, the use of Eqs. ( 88) and (89) yields ε opt diff = 800 and the optimal value of m is m opt = 195. The graph α → Λ α of the eigenvalues of the transition matrix defined in Section 5.8.1, which corresponds to these optimal values, is shown in Fig. 6 (b). (iv) For solving the reduced-order nonlinear ISDE defined in Section 5.8.3, the parameters related to the algorithm are those introduced in Appendix B, have been estimated using the procedure that is detailed in Section 4.7.2 in [START_REF] Soize | Data-driven probability concentration and sampling on manifold[END_REF], and are the following: f 0 = 1.5, n MC = 250, ℓ 0 = 10, M 0 = 10, ∆t = 0.217192, and then, M = 50 000. (v) The projection of the constraints introduced in Section 5.3 has been performed with τ c = 0.004 that yields ν c = 14 (see Eq. ( 39)). Figure 7 (a) displays the graph of the error function ι → err(ι) that is defined by Eq. ( 59), which shows the convergence of the iteration algorithm for computing the Lagrange multiplier λ sol . It can be seen that the convergence is fast, the error decreases exponentially as a function of the iteration number ι. 

Convergence of the learning with respect to the value of N

Similarly to Application (AP1), the use of the criterion defined by Eq. (101) or by Eq. (102) for analyzing the convergence with respect to N (convergence of the learning with respect to dimension of the initial dataset) is not sufficiently informative for this application. In addition, taking into account the high dimensions n w = 420 000 and n q = 1 683, it is neither easy nor efficient to perform the analysis as carried out for Application (AP1). In this condition, we therefore propose to analyze the convergence of the mean value and the standard deviation of unscaled displacements Q k of three selected nodes, for which the displacements are maximum for the mean responses: Q 2 corresponding to the ζ 2 -displacement of the node of coordinates (0, 0, 0.1), Q 31 corresponding to the ζ 1 -displacement of the node of coordinates (0, 0.2, 0.1), and Q 33 corresponding to the ζ 3 -displacement of node of coordinates (0, 0.2, 0.1). The computation has been carried out with M = 50 000, n r = 1 000, and for ten values of integer N that 15 ≤ N ≤ 200.

For k ∈ {2, 31, 33}, Figure 8 allows for analyzing the convergence with respect to N of the mean value m(N) and of the standard deviation s(N) of the following random variables: Q k (estimated with the N points of the initial dataset), Q c k (estimated with the M additional realizations of the generated dataset computed with the probabilistic learning on manifolds under the m c = 2 366 constraints), Q exp k (corresponding to the experimental dataset), and finally, for the quality assessment, Q c,model k that results from the transformation of W c using the stochastic computational model, that is to say, Q c,model = f(W c , U). It can be seen that the effects of the constraints are significant: the thin lines (without constraints) are different from the thick lines (with constraints). The convergence with respect to N is good enough even for the quality assessment: the thick lines (with constraints) are close to the dashed lines (QoI computed with the stochastic model using W c learned with the constraints). (i) For N = 200 and M = 50 000, for components k = 2, 31, 33, Table 1 gives the mean values

m Q k , m Q exp k , m Q c k , m Q c,model k and the standard deviations s Q k , s Q exp k , s Q c k , s Q c,model k
. This table allows comparisons to be carried out. As already pointed out in Section 7.6, it can be seen that the constraints play an important role because the values relative to Q k (without the constraints) are very different from the corresponding values relative to Q c k (with the constraints). The predictions obtained under the constraints are good enough when comparing the values of Q c k (with the constraints) with the corresponding target values for Q exp k . Finally, the quality assessment is good taking into account the high dimension of the problem and the constraints that are applied, which are only relative to a subset of all the dofs and related to second-order moments. This quality can be analyzed by comparing the values relative to Q c k (with the constraints) with the values relative to Q c,model k .

(ii) To complete the analysis and validation, we present the results obtained for the probability density functions for components k = 2 (Fig. 9-a k (this experimental pdf is not used in the methodology, is not required, and is not available in the framework of the method proposed). (iii) In order to illustrate how the constraints qualitatively impact the concentration of the probability measure of random vector X = (Q, W), Fig. 10-left shows the 50 000 additional realizations computed with the probabilistic learning on manifolds for random vector (W 21 000 , W 121 000 , Q 33 ) (without the constraints) and (W 21 000 , W 121 000 , Q c 33 ) (with the constraints), while Fig. 10-right shows the results for (W 121 000 , W 321 000 , Q 33 ) (without the constraints) and (W 121 000 , W 321 000 , Q c 33 ) (with the constraints). It should be noted that the two submanifolds that are considered are not deterministic due to the presence of the random vector U and to the other components of W, which are not used in the chosen representation. The relatively large dispersion that seems to be obtained is only an appearance that is related to the choice of the scale that has been taken for Q 33 . On the other hand, according to Table 1, Q c 33 is more scattered than Q 33 due to the imposed constraints, so the concentration is less for Q c 33 than for Q 33 , which is normal. 

Conclusion

In this paper, we have presented a methodology that extends the probabilistic leaning on manifolds from a small dataset to the case for which constraints are imposed, during the learning process, to a subset of quantities of interest. These constraints are, for instance, experimental second-order statistical moments (mean and standard deviation) that are given. The method has the capability to consider more general constraints than the second-order statistical moments. The proposed method allows for analyzing non-Gaussian cases in high dimension related to functional inputs and outputs. The iteration algorithm presented is very robust and seems to be exponentially convergent with respect to the number of iterations. Two applications have been presented, which allow for analyzing the behavior of the method and for validating it.
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 221122 in which Ξ 1 and Ξ 2 are independent normalized Gaussian random variables. The indices α (γ) 1 and α (γ) 2 are such that 0 < α (γ) 1 +α (γ) 2 ≤ 6, and ψ α (γ) and ψ α (γ) are the polynomial chaos in Gaussian variables. The matrix [a] = [a 1 . . . a 27 ] is such that [a] [a] T = [I 3 ] and is generated using the Matlab script: rng('default'); M 1 = randn(27,27); [M 2 ,∼] = eig(M 1 *(M 1 ) ′ ); M 2 (: , 4:27) = []; [a] = (M 2 ) ′ .
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 1 Figure 1: Application AP1. Figure (a): graph α → Λ α of the eigenvalues of the transition matrix defined in Section 5.8.1.

Figure

  Figure (b): graph of the error function ι → err(ι) defined by Eq. (59) showing the convergence of the iteration algorithm

6. 7 .Figure 2 :

 72 Figure 2: Convergence of the probabilistic learning for application AP1 with M = 15 000 and for N in {125, 150, 250, 300}. Figure (a): graphs of the standard-deviation function k → s Q c k (N) for k = 92, . . . , 125. Figure (b): graphs of probability density function q → p Q c 110 (q; N).

  and k → s Q c,model k . In each one of these two figures, it can be seen that the two curves k → m Q exp k and k → m Q c k are indistinguishable and that the two curves k → s Q exp k and k → s Q c k , what validates the method proposed: the constraints on the mean and the standard deviation are well taken into account. Concerning the quality assessment, it can also be seen that the two curves k → m Q c k and k → m Q c,model k are overlapping and also that the two curves k → s Q c k and k → s Q c,model k are also overlapping, demonstrating the capability of the method at least for the second-order moments of the QoI.

Figure 3 :

 3 Figure 3: Application AP1 with M = 15 000, for N = 300, for n r = 200, and for k = 1, . . . , 200. Figure (a): graphs of the mean functions k → m Q k (black dashed line), k → m Q exp k (red line), k → m Q c k (blue line), and k → m Q c,model k

7. 1 .

 1 Construction of the initial dataset (i) Stochastic model defined by a stochastic boundary value problem. The stochastic model is used for generating the initial dataset and is based on the stochastic boundary value problem defined hereinafter. The medium occupies the domain Ω =]0, 1.0[ × ]0, 0.2[ × ]0, 0.1[ m 3 with generic point ζ = (ζ 1 , ζ 2 , ζ 3 ). The boundary ∂Ω of Ω is written as ∂Ω

)

  Random field {[G 0 (ζ)], ζ ∈ R 3 } depends on three spatial correlation lengths, L 1 , L 2 , and L 3 , and on a dispersion parameter, δ G 0 . Its construction and its generator are summarized in Appendix C.

  Consequently, there are N i = 20 000 integration points ζ 1 , . . . , ζ N i . The R n w -valued random variable W is generated as follows. Let us consider the set {[L(ζ 1 )], . . . , [L(ζ N i )]} of the random values at the N i integration points of the random field {[L(ζ)], ζ ∈ R 3 } with values in the set of all the upper triangular (6×6) matrices with positive-valued diagonal entries. The random matrix [L(ζ)] is the factor in the Cholesky factorization [G 0 (ζ)] = [L(ζ)] T [L(ζ)] given by Eq. (C.1) (from Appendix C) of random matrix [G 0 (ζ)] used in Eq. (121). The components of random vector W are constituted, for i = 1, . . . N i and for 1 ≤ j ≤ k ≤ 6, of the family of random variables log{[L(ζ i )] j j } and [L(ζ i )] jk for j < k. Since there are 21 entries in the upper triangular random matrix [L(ζ i )], we have n w = 420 000 = 20 000×21.

  The generation is carried out with N = 200, L 1 = L 2 = L 3 = 0.2, and δ G 0 = 0.25. For illustration, Fig. 5 displays the 2D plot in the plane ζ 3 = 0.0958 m of one realization of the random fields (ζ 1 , ζ 2 ) → log{[L(ζ 1 , ζ 2 , 0.0958)] j j } for j = 1, 2, 4, and (ζ 1 , ζ 2 ) → [L((ζ 1 , ζ 2 , 0.0958))] 12 .

Figure 5 :

 5 Figure 5: Application AP2: 2D plot in the plane 3 = 0.0958 m of one realization of the random field (ζ 1 , ζ 2 ) → log{[L(ζ 1 , ζ 2 , 0.0958)] j j } for j = 1 (a), j = 2 (b), j = 4 (c), and of the random field (ζ 1 , ζ 2 ) → [L((ζ 1 , ζ 2 , 0.0958))] 12 (d).

Figure 7 (

 7 b) shows the graph of the components k → λ sol k , for k ∈ [1, ν c ] with ν c = 14, of the optimal solution λ sol = (λ sol 1 , . . . , λ sol ν c ) of the Lagrange multipliers λ computed by Eq. (54).

Figure 6 :

 6 Figure 6: Application AP2. Figure (a): graph of PCA-error function ν → err PCA (ν) for ν ∈ [1, 193], defined by Eq. (17).Figure (b): graph α → Λ α of the eigenvalues of the transition matrix defined in Section 5.8.1 (the vertical axis is in log).

  of the c components of Lagrange multiplier sol

Figure 7 :

 7 Figure 7: Application AP2. Figure (a): graph of the error function ι → err(ι) defined by Eq. (59) showing the convergence of the iteration algorithm for computing the Lagrange multiplier λ sol (the vertical axis is in log). Figure (b): graph of the components k → λ sol k , for k ∈ [1, ν c ] with ν c = 14, of the optimal solution λ sol = (λ sol 1 , . . . , λ sol νc ) of the Lagrange multipliers λ computed by Eq. (54).

Figure 8 :

 8 Figure 8: Application AP2: For component k = 2 (Figs. (a) and (b)), k = 31 (Figs. (c) and (d), and k = 33 (Figs. (e) and (f)), the left figures plot the graphs of the mean functions N → m Q k (N) (black thin line), N → m Q exp k (red horizontal line), N → m Q c k (N) (blue thick line), and N → m Q c,model k

Table 1 :,

 1 Applications (AP2): For N = 200 and M = 50 000, and for k = 2, 31, 33, values of the mean mQ k , m Q exp k , m Q c k , m Q c,model k , and values of the standard deviations s Q k , s Q exp k

7. 7 .

 7 Results obtained for N = 200 and M = 50 000 Similarly to Section 7.6, we consider, for k = 2, 31, 33, Q k defined by the initial dataset, Q exp k associated with the experiments, Q c k constructed using the constraints, and Q c,model k transformed from W c using the stochastic computational model.

  ), k = 31 (Fig.9-b), and k = 33 (Fig.9-c). These figures display the graphs of the probability density functions ofQ k , Q exp k , Q c k ,and Q c,model k . The results are very good and even a little unexpected since only the mean and the standard deviation are imposed for a subset of dofs of the stochastic computational model. The pdf of Q c k is close to the pdf of Q c,model k , which is itself close to the pdf of Q exp

Figure 9 :

 9 Figure 9: Application AP2: For M = 50 000 and N = 200, the three figures show, for components k = 2 (a), k = 31 (b), and k = 33 (c), the pdf of Q k (black thin line), Q exp k (red line), Q c k (blue thick line), and Q c,model k

Figure 10 :

 10 Figure 10: Application AP2. Left figure: 50 000 realizations of (W 21 000 , W 121 000 , Q 33 ) (red symbols) and of (W 21 000 , W 121 000 , Q c 33 ) (blue symbols). Right figure: 50 000 realizations of (W 121 000 , W 321 000 , Q 33 ) (red symbols) and of (W 121 000 , W 321 000 , Q c 33 ) (blue symbols).

  In addition, these Theorems allow for proving that Eqs. (63) to (65) has a unique solution {([U λ (t)], [V λ (t)]), t ∈ R + }, which is a second-order diffusion stochastic process that is asymptotic for t → +∞ to the stationary stochastic process {([U st λ (t st )], [V st λ (t st )]), t st ∈ R + } for the right-shift semi-group on R + . For all fixed t st , the joint probability distribution of the random matrices [U st λ (t st )] and [V st λ (t st )] is the invariant measure defined by Eq. (67). The probability distribution of random matrix [U st λ

  ii) Stochastic model of the applied forces. The surface force field applied on Γ induces the superposition (1) of a mean tension in the ζ 1 -axis induced by a surface force field applied in the -ζ 1 -axis direction with a constant amplitude g ζ 1 , (2) of a mean bending around ζ 3 -axis induced by a surface force field applied in the -ζ 2 -axis direction with a constant amplitude g ζ 2 , and (3) of a mean bending around ζ 2 -axis induced by a surface force field applied in the -ζ 3 -axis direction with a constant amplitude g ζ 3 . Consequently, the R 3 -valued random surface force field {G Γ

  -3 m) Component 2 Component 31 Component 33 m

	Q k m Q c k m Q c,model k m Q exp k s Q k	-4.01 -4.53 -4.65 -4.75 5.78	-6.82 -7.69 -7.79 -7.95 1.04	-6.98 -7.84 -8.21 -7.95 1.52
	s Q c k	7.38	1.23	3.18
	s Q c,model k	6.47	1.17	3.74
	s Q exp k	7.12	1.50	3.59
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Appendix A. Examples of constraints

In this Appendix, two examples of constraints are given in addition to the those given in Section 4.

Appendix A.1. Learning from a training dataset under constraints defined by experimental secondorder moments given for components of Q c and by the mean value of a physical constaint This example corresponds to the concatenation of the two examples presented in Section 4.1 and in 4.2. Consequently, using the notations introduced in these two examples, m c = 2 κ mom +n q , function x → g c (x) = (g c 1 (x), . . . , g c m c (x)) from R n into R m c , and vector β c = (β c 1 , . . . , β c m c ) ∈ R m c , which define the constraints (see Eq. ( 10)), are such that, for κ = 1, . . . , κ mom and for k

Appendix A.2. Probability density functions given for components of Q c Let J pdf = {k 1 , . . . , k κ pdf } be κ pdf ≤ n q integers such that J pdf ⊆ {1, . . . , n q }. For κ ∈ {1, . . . , κ pdf }, let q → p exp κ (q) be the given experimental pdf assigned to component Q c k κ of random vector Q c , which is assumed to be defined by its values {p exp κ (q κi ), i = 1, . . . , m κ } that are given in m κ points q κ1 , . . . , q κm κ in R. We then have to take into account the m c = κ pdf κ=1 m κ constraints that could be written, for κ = 1, . . . , κ pdf , as

Since p X c kκ (q κi ) = E{δ 0 (Q c k κq κi }, the Dirac δ 0 can be regularized and Eq. (A.4) is replaced by the following approximation,

in which an estimation of the hyperparameter ε κ is detailed below. Consequently, function g c and vector β c is obtained by gathering g c κi and β c κi for all the κ in {1, . . . , κ pdf } and for all i in {1, . . . , m κ },

In Eq. (A.6), the hyperparameter ε κ can be estimated as follows. Since p Q c kκ (q κi ) = p exp κ (q κi ) is the value of the closest pdf to p Q kκ , ε κ can be estimated using the Gaussian kernel-density estimation method of p Q kκ (q κi ) constructed with the initial dataset D N = {(q j , w j ), j = 1, . . . , N} in which the component k κ of q j is q j k κ . We then have,

in which s s = (4/(3N)) 1/5 is the Sylverman bandwidth and where σ κ is the estimate of the standard deviation of Q k κ performed with D N . For N sufficiently large, the right-hand side of Eq. (A.8) is The number M of realizations is reparameterized as

in which n MC is the integer that has been introduced in Section 5.7.5. The reduced-order ISDE defined by Eqs. ( 94) to ( 98) is solved for t ∈ [0, t max ] with t max = (ℓ 0 + n MC ×M 0 ) ∆t in which ∆t is the sampling step, where ℓ 0 is chosen in order that the solution of Eqs. ( 94) to (96) has reached the stationary regime, and where M 0 allows for controlling the number of sampling steps between two consecutive realizations for obtaining a quasi-independence of the computed realizations For ℓ = 0, 1, . . . , n MC × M 0 , we consider the sampling points t ℓ = ℓ ∆t and the following notations:

. The Störmer-Verlet scheme is used for solving the reduced-order ISDE, which is written, for ℓ = 0, 1, . . . , n MC × M 0 , as

with the initial condition defined by Eq. ( 96), where β = f 0 ∆t /4, and where [L ℓ+ 1 2 ] is the M ν,mvalued random variable such that

In the above equation, [∆W wien

ℓ+1 ] = [∆W wien ℓ+1 ] [a] is a random variable with values in M ν,m , in which the increment [∆W wien ℓ+1 ] = [W wien λ ι (t ℓ+1 )] -[W wien λ ι (t ℓ )]. The increments are statistically independent. For all α = 1, . . . , ν and for all j = 1, . . . , N, the real-valued random variables {[∆W wien ℓ+1 ] α j } α j are independent, Gaussian, second-order, and centered random variables such that

Appendix C. Construction of the non-Gaussian random field [G 0 ] and its generator of realizations

In this Appendix, we summarize the construction of the non-Gaussian random field [G 0 ] and its generator of realizations (whose details can be found in [START_REF] Soize | Non gaussian positive-definite matrix-valued random fields for elliptic stochastic partial dif-ferential operators[END_REF][START_REF] Soize | Uncertainty Quantification[END_REF]). This construction starts with the introduction of a Gaussian random field.

Appendix C.1. Gaussian random field U allowing the stochastic germ of random field [G 0 ] to be constructed Let {U(ζ), ζ ∈ R 3 } be the real-valued second-order, centered, homogeneous, Gaussian, and normalized random field, defined on probability space (Θ, T , P), indexed by R 3 . For all ζ in R 3 , we then have,

The random field U is then completely and uniquely defined by the its autocorrelation function

in which χ 1 = (χ 1 , 0, 0), χ 2 = (0, χ 2 , 0), and χ 3 = (0, 0, χ 3 ). The autocorrelation function is written as

. Random field U is mean-square continuous on R 3 and its power spectral density function defined on R 3 has a compact support that is written as,

Such a model allows for sampling random field U as a function of the spatial-correlation lengths by using the Shannon theorem and has only 3 real parameters. The details concerning the generation of realizations of random field U can be found in [START_REF] Soize | Non gaussian positive-definite matrix-valued random fields for elliptic stochastic partial dif-ferential operators[END_REF]. One possible method is based on the usual numerical simulation of homogeneous Gaussian vector-valued random field constructed with the stochastic integral representation of homogeneous stochastic fields (see [START_REF] Shinozuka | Simulation of multivariate and multidimensional random processes[END_REF]).

Appendix C.2. Defining the random field [G 0 ] and its generator of realizations

Let δ G 0 be such that 0 < δ G 0 < √ 7/11. -For j = k, the positive-valued random field {[L(ζ)] j j , ζ ∈ R 3 } is defined by [L(ζ)] j j = σ 6 2 h(U j j (ζ), a j ) in which a j = (6 + 1)/(2δ 2 G 0 )+(1j)/2. Function u → h(α, u) is such that Γ α = h(α, U) is a gamma random variable with parameter α (U being a normalized Gaussian random variable).