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First-Spike-Based Visual Categorization
Using Reward-Modulated STDP

Milad Mozafari, Saeed Reza Kheradpisheh, Timothée Masquelier,

Abbas Nowzari-Dalini, and Mohammad Ganjtabesh

Abstract— Reinforcement learning (RL) has recently regained
popularity with major achievements such as beating the
European game of Go champion. Here, for the first time,
we show that RL can be used efficiently to train a spiking neural
network (SNN) to perform object recognition in natural images
without using an external classifier. We used a feedforward
convolutional SNN and a temporal coding scheme where the
most strongly activated neurons fire first, while less activated
ones fire later, or not at all. In the highest layers, each neuron
was assigned to an object category, and it was assumed that
the stimulus category was the category of the first neuron to
fire. If this assumption was correct, the neuron was rewarded,
i.e., spike-timing-dependent plasticity (STDP) was applied, which
reinforced the neuron’s selectivity. Otherwise, anti-STDP was
applied, which encouraged the neuron to learn something else.
As demonstrated on various image data sets (Caltech, ETH-80,
and NORB), this reward-modulated STDP (R-STDP) approach
has extracted particularly discriminative visual features, whereas
classic unsupervised STDP extracts any feature that consistently
repeats. As a result, R-STDP has outperformed STDP on these
data sets. Furthermore, R-STDP is suitable for online learning
and can adapt to drastic changes such as label permutations.
Finally, it is worth mentioning that both feature extraction and
classification were done with spikes, using at most one spike
per neuron. Thus, the network is hardware friendly and energy
efficient.

Index Terms— First-spike-based categorization, reinforcement
learning (RL), reward-modulated spike-timing-dependent
plasticity (R-STDP), spiking neural networks (SNNs), temporal
coding, visual object recognition.
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I. INTRODUCTION

NEURONS in the brain are connected by synapses that
can be strengthened or weakened over time. The neural

mechanisms behind long-term synaptic plasticity, which is
crucial for learning, have been under investigation for many
years. Spike-timing-dependent plasticity (STDP) is an unsu-
pervised form of synaptic plasticity, observed in different
brain areas [1]–[4], in particular in the visual cortex [5]–[7].
STDP works by considering the time difference between
presynaptic and postsynaptic spikes. According to this rule,
if the presynaptic neuron fires earlier (later) than the
postsynaptic one, the synapse is strengthened (weakened).
Studies have shown that STDP results in coincidence detectors,
by which a neuron gets selective to a frequent input spike
pattern leading to an action potential whenever the pattern
is presented [8]–[11]. STDP works well in finding statistically
frequent features; however, as any unsupervised learning algo-
rithm, it faces with difficulties in detecting rare but diagnostic
features for important functionalities such as decision-making.

Several studies suggest that the brain’s reward system plays
a vital role in decision-making and forming behaviors. This
is also known as reinforcement learning (RL), by which
the learner is encouraged to repeat rewarding behaviors and
avoid those leading to punishments [12]–[18]. It is found
that dopamine, as a neuromodulator, is one of the important
chemical substances involved in the reward system [19], where
its release is proportional to the expected future reward [17],
[20], [21]. It is also shown that dopamine as well as some
other neuromodulators influences the synaptic plasticity, such
as changing the polarity [22] or adjusting the time window of
STDP [23]–[27].

One of the well-studied ideas to model the role of the reward
system is to modulate or even reverse the weight change
determined by STDP, which is called reward-modulated
STDP (R-STDP) [28]. R-STDP stores the trace of synapses
that are eligible for STDP and applies the modulated weight
changes at the time of receiving a modulatory signal: a
reward or punishment (negative reward).

In 2007, Izhikevich [29] proposed an R-STDP rule to solve
the distal reward problem, where the reward is not immediately
received. He solved the problem using a decaying eligibility
trace by which the recent activities are considered to be more
important. He showed that his model can solve both classical
and instrumental conditionings [30], [31]. In the same year,
Farries and Fairhall [32] employed R-STDP to train neurons
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for generating particular spike patterns. They measured the
difference between the output and target spike trains to com-
pute the value of the reward. Also, Florian [33] showed that
R-STDP is able to solve the XOR task by either rate or tempo-
ral input coding and learning a target firing rate. A year later,
Legenstein et al. [34] investigated conditions, under which
R-STDP achieves a desired learning effect. They demonstrated
the advantages of R-STDP by a theoretical analysis, as well as
practical applications to biofeedbacks and a two-class isolated
spoken digit recognition task. Vasilaki et al. [35] examined
the idea of R-STDP on problems with continuous space.
They showed that their model is able to solve the Morris
water maze quite fast, while the standard policy gradient rule
is failed. Investigating capabilities of R-STDP continued by
research from Frémaux et al. [36], in which conditions for a
successful learning is theoretically discussed. They showed
that a prediction of the expected reward is necessary for
R-STDP to learn multiple tasks simultaneously. Studying the
RL mechanism in the brain has gathered attention in recent
years, and researchers try to solve more practical tasks by
reward-modulated synaptic plasticity [37]–[39].

Visual object recognition is a sophisticated task, at which
humans are expert. This task requires both feature extrac-
tion that is done by the brain’s visual cortex and decision-
making on the category of the object, for which higher brain
areas are involved. Spiking neural networks (SNNs) have
been widely used in computational object recognition models.
In terms of network architecture, there are several models with
shallow [40]–[43], deep [44]–[46], recurrent [47], fully con-
nected [48], and convolutional structures [40], [46], [49], [50].
Some use rate-based coding [51]–[53], while others use
the temporal coding [40], [43], [46], [48], [54]. Various
kinds of learning techniques are also applied to SNNs, from
backpropagation [49], [55], tempotron [43], [56], and other
supervised techniques [52], [53], [57], [58], to unsuper-
vised STDP and STDP-variants [42], [48], [59]. Although
STDP-enabled networks provide a more biological plausible
means of visual feature extraction, they need an external
readout, e.g., support vector machines (SVM) [46], [60],
to classify input stimuli. In addition, STDP tends to extract
frequent features that are not necessarily suitable for the
desired task. In this paper, we present a hierarchical SNN
equipped with R-STDP to solve the visual object recognition
in natural images without using any external classifier. Instead,
we put class-specific neurons that are reinforced to fire as
early as possible if their target stimulus is presented to the
network. Thus, the input stimuli are classified solely based on
the first-spike latencies in a fast and biologically plausible way.
R-STDP enables our network to find task-specific diagnostic
features, therefore decreasing the computational cost of the
final recognition system.

Our network is based on Masquelier and Thorpe’s
model [40] with four layers. The first layer of the network
converts the input image into spike latencies based on the
saliency of its oriented edges. This spike train goes under a
local pooling operation in the second layer. The third layer of
the network includes several grids of integrate-and-fire (IF)
neurons that combine the received information of oriented

edges and extract complex features. This is the only trainable
layer in our network which employs R-STDP for synaptic
plasticity. The signal (reward/punishment) for modulation of
synaptic plasticity is provided by the fourth layer, in which
the decision of the network is made. Our network only uses
the earliest spike emitted by the neurons in the third layer to
make a decision without using any external classifier. If its
decision is correct (incorrect), a global reward (punishment)
signal is generated. Besides, in order to increase the com-
putational efficiency, each cell in the network is allowed to
spike only once per image. The motivation for at most one
spike per neuron is not only computational efficiency, but it
is also biological realism [61], [62]. Decision-making without
any classifiers with at most one spike per neuron turns the
proposed method into a well-suited candidate for the hardware
implementation.

We performed two toy experiments to illustrate the
abilities of R-STDP. We showed that the network employing
R-STDP finds informative features using fewer computational
resources than STDP. We also showed that R-STDP can
change the behavior of a neuron, if needed, by encouraging
it to unlearn what it has learned before. Thus, reusing a
computational resource is no longer useful. Moreover, we eval-
uated the proposed network on object recognition in natural
images, using three different benchmarks, that are Caltech
face/motorbike (two classes), ETH-80 (eight classes), and
NORB (five classes). The results of the experiments demon-
strate the advantage of employing R-STDP over STDP in
finding task-specific discriminative features. Our network has
reached the performances (recognition accuracies) of 98.9%
on Caltech face/motorbike, 89.5% on ETH-80, and 88.4% on
NORB data sets.

The rest of this paper is organized as follows. A precise
description of the proposed network is provided in Section II.
Then, in Section III, the results of the experiments are
presented. Finally, in Section IV, the proposed network is
discussed from different points of view and the possible future
works are highlighted.

II. MATERIALS AND METHODS

In this section, we first describe the structure of the proposed
network and the functionality of each layer. We then explain
R-STDP, by which the neurons achieve reinforced selectivity
to a specific group of input stimuli. Finally, we give a detailed
description on the classification strategy that is used to evaluate
the network’s performance.

A. Overall Structure

Similar to Masquelier and Thorpe’s model [40], our network
consists of two simple and two complex layers that are
alternately arranged in a feedforward manner (see Fig. 1).

The first layer of the network (S1) is a simple layer whose
cells detect oriented edges in the input image. These cells emit
a spike with a latency that is inversely proportional to the
saliency of the edge. After S1, there is a complex layer (C1),
which introduces some degrees of position invariance by
applying local pooling operation. A C1 neuron propagates the
earliest spike in its input window.
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Fig. 1. Overall structure of the proposed network with four retinotopically
organized layers. The first layer (S1) extracts oriented edges from the input
image by applying Gabor filters. A local max-pooling operation is applied
by the cells in the subsequent layer (C1) to gain some degrees of position
invariance. From here, spikes are propagated by the latencies that are inversely
proportional to the maximum values. These spikes are the inputs for the
IF neurons in the layer S2 that are equipped with the R-STDP learning rule.
These neurons are encouraged/punished to learn/unlearn complex features.
The activity of S2 neurons is used by C2 neurons for decision-making. These
neurons are associated with class labels and the decision is made based on
the neuron with the earliest spike.

The second simple layer (S2) is made of IF neurons.
A neuron in this layer, which detects a complex feature,
receives its inputs from C1 neurons and generates a spike once
its membrane potential reaches the threshold. For synaptic
plasticity, we use a learning rule based on three factors:
1) presynaptic spike time; 2) postsynaptic spike time; and
3) a reward/punishment signal. This kind of synaptic plasticity
provides the ability to control the behavior of the neurons in
terms of their selectivity to input patterns.

The second complex layer (C2) of our network is the
decision-making layer. Each neuron in this layer is assigned
to a category and performs a global pooling operation over
S2 neurons in a particular grid. Using a rank-order decoding
scheme, the neuron that fires first indicates the network’s deci-
sion about the input image. According to the decision made
by the network, a reward/punishment signal is then generated,
which drives in the synaptic plasticity of S2 neurons.

Implementation of the network is mainly done with C# and
the code is available on ModelDB.1

B. Layer S1

The goal of this layer is to extract oriented edges from the
grayscaled input image and turn them into spike latencies.
To this end, the input image is convolved with Gabor filters
of four different orientations. Thus, this layer includes four
feature maps, each representing the saliency of edges in a
particularly preferred orientation.

1https://senselab.med.yale.edu/ModelDB/

Let I be the grayscaled input image and G(θ) represent
a Gabor filter (convolution kernel) with window size 5 × 5,
wavelength 2.5, effective width 2, and orientation θ . Then,
the lth feature map of layer S1 is generated using the following
equations:

Sl
1 = |I ⊗ G(θl)|
θl = (l − 1) × π

4
+ π

8
(1)

where ⊗ is the convolution operator and l ∈ {1, 2, 3, 4}.
In order to introduce invariance to image negative operation,
the absolute value of the convolution is used. Also, since
vertical and horizontal edges are very common in natural
images, a (π/8) offset is applied to relax this bias [40].

For each of the feature maps (orientations), we put a
2-D grid of the same size containing dummy neurons to prop-
agate spikes. Using an intensity-to-latency encoding scheme,
the obtained feature maps are converted to the spike laten-
cies that are inversely proportional to the saliency of edges.
In other words, the more salient the edge is, the earlier the
corresponding spike is propagated.

We implemented the proposed network in an event-based
manner, where the spikes are sorted by their latencies in the
ascending order and propagated sequentially (i.e., the first
spike is propagated in time step t = 1, the second one in
t = 2, and so on).

C. Layer C1

Our first complex layer is a local pooling layer over the
spikes coming from layer S1. Here, there are four 2-D neu-
ronal grids corresponding to each of the orientations. Each
C1 neuron performs a local pooling operation over a window
of size ωc1 × ωc1 and stride rc1 (here we set rc1 = ωc1 − 1)
on S1 neurons in a particular grid, after which it emits a
spike immediately after receiving its earliest input spike. This
pooling operation decreases the redundancy of layer S1, and
shrinks the number of required neurons, which consequently
increases the computational efficiency. It also adds a local
invariance to the position of oriented edges.

Let Pc1(i) be the set of all presynaptic neurons of the i th
neuron in layer C1. Then, the firing time of this neuron is
computed as follows:

t f
c1(i) = min

j∈Pc1(i)

�
t f
s1( j)

�
(2)

where t f
s1( j) denotes the firing time of the j th neuron

in Pc1(i).
In addition, two kinds of lateral inhibition mechanisms

are employed, which help the network to propagate more
salient information. If a neuron located at position (x, y) of
the i th grid (orientation) fires: 1) the other neurons at the
same position, but in other grids, are prevented from firing
and 2) the latencies of the nearby neurons in the same grid
are increased by a factor relative to their mutual Euclidean
distance. In our experiments, inhibition is done for distances
from 1 to 5 pixel(s) (floating-point distances are truncated
to integer values) with inhibition factors 15%, 12%, 10%, 7%,
and 5%, respectively.
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D. Layer S2

This layer combines the incoming information about ori-
ented edges and turns them into meaningful complex features.
Here, there are n 2-D grids of IF neurons with the threshold T .
Each neuron receives its inputs from a ωs2 × ωs2 × 4 window
of C1 neurons through the plastic synapses. A weight sharing
mechanism is also applied to the neurons belonging to the
same grid. This mechanism provides the ability of detecting
a particular feature over the entire spatial positions. To be
precise, let Ps2(i) be the set of all presynaptic neurons
corresponding to the i th neuron. Then, the membrane potential
of this neuron at time step t is updated by the following
equation:

vi (t) = vi (t − 1) +
�

j∈Ps2(i)

Wij × δ
�
t − t f

c1( j)
�

(3)

where Wij denotes the synaptic weight, δ is the Kronecker
delta function, and t f

c1( j) is the firing time of the j th cell
in layer C1. For each input image, a neuron in S2 fires if
its membrane potential reaches the threshold T . Also, these
neurons have no leakage and are allowed to fire at most once,
while an image is being presented.

As the neurons fire, their synaptic weights—the feature they
are detecting—are being updated based on the order of presy-
naptic and postsynaptic spikes, as well as a reward/punishment
signal (see Section II-F). This signal is derived from the
activity of the next layer, which indicates the network’s
decision. Besides, initial weights of the synapses are randomly
generated, with mean 0.8 and standard deviation 0.05. Note
that choosing small or midrange values for mean results
in inactive, thus untrained, neurons. Moreover, large values
for variance increase the impact of network’s initial state.
Accordingly, a high mean value with small variance is a
suitable choice [46].

E. Layer C2

This layer contains exactly n neurons, and each is assigned
to one of the S2 neuronal grids. A C2 neuron only propagates
the first spike that is received from its corresponding neuronal
grid. To put it differently, let Pc2(i) define the set of S2
neurons in the i th neuronal grid (for i ∈ {1, 2, . . . , n}). Then,
the firing time of the i th C2 neuron is computed as follows:

t f
c2(i) = min

j∈Pc2(i)

�
t f
s2( j)

�
(4)

where t f
s2( j) denotes the firing time of the j th neuron in

layer S2.
As mentioned before, the activity of C2 neurons indicates

the decision of the network. To this end, we divide C2 neurons
into several groups and assign each group to a particular
category of input stimuli. Then, the network’s decision on the
category of the input stimulus is assumed to be the one whose
group propagates the earliest spike among other C2 groups.

Assume that there are m distinct categories for the input
stimuli, labeled from 1 to m, and n neuronal grids in layer S2.
Accordingly, there are exactly n neurons in layer C2 that are
divided into m groups. Let g : {1, 2, . . . , n} �→ {1, 2, . . . , m}

denote a function that returns the group’s index of a C2
neuron, and let t f

c2(i) denote the firing time of the i th neuron
in layer C2. Then, the network’s decision D is made by

F = arg min
i

�
t f
c2(i)|1 ≤ i ≤ n

�

D = g(F) (5)

where F is the index of a C2 neuron which fires first. The
network receives reward (punishment) if its decision matches
(does not match) the correct category of the input stimulus.
If none of the C2 neurons fire, no reward/punishment signal is
generated, and thus, no weight change is applied. Moreover,
if more than one neuron fire early (with the minimum spike
time), the one with the minimum index (i ) is selected.

F. Reward-Modulated STDP

We propose an RL mechanism to update the presynaptic
weights of S2 neurons. Here, the magnitude of weight change
is modulated by a reward/punishment signal, which is received
according to the correctness/incorrectness of the network’s
decision. We also applied a one-winner-takes-all learning
competition among the S2 neurons, by which the one with the
earliest spike is the winner and the only one which updates its
synaptic weights. Note that this neuron is the one determining
the network’s decision.

To formulate our R-STDP learning rule, if a reward signal
is received, then

�Wij =

⎧
⎪⎨

⎪⎩

a+
r ×Wij ×(1−Wij ) if t f

c1( j) − t f
s2(i) ≤ 0

a−
r ×Wij ×(1−Wij ) if t f

c1( j) − t f
s2(i) > 0

or the j th cell is silent

(6)

and in case of receiving a punishment signal, we have

�Wij =

⎧
⎪⎨

⎪⎩

a+
p ×Wij ×(1−Wij ) if t f

c1( j)−t f
s2(i) > 0

or the j th cell is silent

a−
p ×Wij ×(1−Wij ) if t f

c1( j) − t f
s2(i) ≤ 0

(7)

where i and j refer to the postsynaptic and presynaptic cells,
respectively, �Wij is the amount of weight change for the
synapse connecting the two neurons, and a+

r , a−
r , a+

p , and
a−

p scale the magnitude of weight change. Furthermore, to
specify the direction of weight change, we set a+

r , a+
p > 0 and

a−
r , a−

p < 0. Here, our learning rule does not take into account
the exact spike time difference and uses an infinite time
window. According to this learning rule, the punishment signal
reverses the polarity of STDP (also known as anti-STDP).
In other words, it swaps long-term-depression (LTD) with
long-term potentiation (LTP), which is done to conduct the
effect of aversion (avoid repeating a bad behavior), and a+

p is
there to encourage the neuron to learn something else.

G. Overfitting Avoidance

In RL problems, there is a chance of being trapped into
local optima or overfitting to acquiring the maximum pos-
sible reward over the training examples. In order to help
the network, exploring other possible solutions that are more
general to cover both seen and unseen examples, we apply
two additional mechanisms during the training phase. These
techniques are only used for object recognition tasks.
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1) Adaptive Learning Rate: Since the initial weights of
the neurons are randomly set, the number of misclassified
samples is relatively high at the beginning of the training phase
(i.e., the performance is at the chance level). As training
trials go on, the ratio of correctly classified samples to
the misclassified ones increases. In the case of high rate
of misclassification, the network receives more punishment
signals, which rapidly weakens synaptic weights and generates
dead or highly selective neurons that cover a small number of
inputs. Similarly, when the rate of correct classification gets
higher, the rate of reward acquisition increases as well. In this
case, the network prefers to exclude misclassified samples by
getting more and more selective to correct ones and remain
silent for the others. In either case, the overfitting happens due
to the unbalanced impact of reward and punishment.

To tackle this problem, we multiply an adjustment factor
to the amount of weight modification, by which the impact
of correct and incorrect training samples is balanced over the
trials. Assume that the network sees all of the training samples
on each training iteration and let Nhit and Nmiss denote the
number of samples that are classified correctly and incorrectly
in the last training iteration, respectively. If N is the number
of all training samples, then the weight changes for the current
training trial are modified as follows:

Wij = Wij +

⎧
⎪⎪⎨

⎪⎪⎩

�
Nmiss

N

�
�Wij if a reward is received

�
Nhit

N

�
�Wij otherwise.

(8)

Note that Nhit + Nmiss ≤ N , since there may be some samples
for which none of the S2 neurons is active.

2) Dropout: In an RL scenario, the goal of the learner is
to maximize the expected value of reward acquisition. In our
case, since the network only sees the training samples, it may
find a few number of features that are sufficient to correctly
classify almost all of the training samples. This issue appears
to cause severe overfitting in face of complex problems and the
network prefers to leave some of the neurons untrained. These
neurons decrease the hit rate of the network over the testing
samples, as they blindly fire for almost all of the stimuli.

Here, we employ the dropout technique [63], which causes a
C2 neuron to be temporary turned OFF with the probability of
pdrop. This technique gives rise to the overall involvement rate
of the neurons, which in turn, not only increases the chance of
finding more discriminative features but also decreases the rate
of blind firings (see Dropout in the Supplementary Material).

H. Classification

As mentioned before, the activity of the last layer, partic-
ularly the earliest spike in layer C2, is the only information
that our network uses to make its final decision on the input
stimuli. In this way, we do not need external classifiers and
increase the biological plausibility of the network at the same
time.

To set up the network for a classification task with
m categories, we put n = k × m neuronal grids in layer S2,
where k is the number of features associated with each

category. Then, we assign each C2 neurons to a category
by the association function g : {1, 2, . . . , n} �→ {1, 2, . . . , m}
defined as follows:

g(i) = �(i − 1)/k� + 1. (9)

Then, the network uses (5) to classify the input stimuli. During
the training phase, each network’s decision is compared with
the label of stimulus and a reward (punishment) signal is
generated, if the decision matches (mismatches) the label.

I. Comparison of R-STDP and STDP

In object recognition tasks, we make a comparison between
our model, SNN with R-STDP, and the one that uses STDP.
To this end, we first train the network using STDP and let
the network extract features in an unsupervised manner. Next,
we compute three kinds of feature vectors of length n from
layer S2.

1) First-Spike Vector: This is a binary vector, in which all
the values are zeros except the one corresponding to the
neuronal grid with earliest spike.

2) Spike-Count Vector: This vector saves the total number
of spikes emitted by neurons in each grid.

3) Potential Vector: This vector contains the maximum
membrane potential among the neurons in each grid by
ignoring the threshold.

After extracting feature vectors for both training and testing
sets, K-nearest neighbors (KNN) and SVM classifiers are
used to evaluate the performance of the network. Moreover,
the learning strategy and the STDP formula are the same as
in [40], and to make a fair comparison, we use the same
values for parameters in both the models. The only parame-
ters that are explored for the STDP are the magnitudes of
LTP and LTD.

III. RESULTS

To evaluate the proposed network and learning strategy,
we performed two types of experiments. First, we used a series
of hand-made problems to show the superiority of R-STDP
over STDP. Second, we assessed the proposed network on
several object recognition benchmarks.

A. R-STDP Increases Computational Efficiency

Using STDP, when a neuron is exposed to input spike
patterns, it tends to find the earliest repetitive subpattern by
which the neuron reaches its threshold and fires [8], [11],
[64], [65]. This tendency to favor early input spikes can be
troublesome in case of distinguishing spike patterns that have
temporal differences in their late parts.

Assume that there are several categories of input stimuli
that possess the same spatial configuration [Fig. 2(a)]. They
also have identical early spikes. These patterns are repetitively
presented to a group of IF neurons, for which the synaptic
plasticity is governed by STDP and the one-winner-takes-all
mechanism. If the neurons have low thresholds, one of them
gets selective to the early common part of the input stimuli
and inhibits the other neurons. Since the early parts are spatio-
temporally the same among all of the input stimuli, there is
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Fig. 2. Temporal discrimination task. (a) Two input stimuli including a
temporally different subpattern. Spikes are propagated from the white squares
with the order written on them. (b) Synaptic weights (features) that are learned
by the neurons with STDP (left column) and R-STDP (right column). The
higher the weight, the lighter is the gray level. (c) Synaptic weights when we
used STDP-enabled neurons with large receptive fields and high thresholds.

no chance for the other neurons to fire and win the synaptic
plasticity. Consequently, the overall activity of the neuronal
group is the same for all of the input stimuli and classifies
them into a single category.

As we will see in Fig. 2(c), there are also some STDP-based
solutions for this problem, and however, they are inefficient in
using computational resources. For example, if we increase the
size of receptive fields along with the thresholds, neurons gain
the opportunity to receive the last spikes as well as the early
ones. Another possible solution is to use many neurons that
locally inhibit each other and drop the one-winner-takes-all
constraint. In this way, regarding the initial random weights,
there is a chance for the neurons to learn other parts of the
input stimuli.

Here, we show that the R-STDP learning rule solves this
issue in a more efficient way than STDP. For this purpose,
we designed an experiment containing two 3×11 input stimuli.
The inputs are spatially similar, which means that spikes are
propagated from similar locations of both inputs. As illustrated
in Fig. 2(a), each input is a 2-D grid of white and gray squares.
By white (gray) squares, we denote locations, from which a
spike is (is not) propagated. At the time of presenting any of
these patterns to the network, spikes are propagated with a
temporal order that is defined by the numbers written on the
squares. According to this ordering, spikes with lower numbers
are propagated earlier.

Since the input stimuli are artificial spike patterns, there
was no need to apply Gabor filters, and thus, they were fed
directly into layer S2. There, we put two neuronal grids with
parameters ωs2 = 3 and T = 3. Therefore, each grid has
contained 1 × 9 neurons to cover the entire input stimuli.
We also set a+

r = 0.05, a−
r = −0.05, a+

p = 0.1, and
a−

p = −0.1. The goal of the task was that the first (second)

C2 neuron fires earlier for the first (second) pattern. We exam-
ined both STDP and R-STDP learning rules to see if the
network finds discriminative features or not.

As shown in Fig. 2(b), using STDP, the network has
extracted a nondiscriminative feature, the shared one between
both input stimuli. On the other side, the proposed RL mech-
anism has guided the neurons to extract features whose
temporal order of appearance is the only thing leading to a
successful pattern discrimination. We repeated this experiment
for 100 times using different random initial weights. The
results showed that our network has succeeded in 98% of
the times, while there were no chance for STDP to find
the discriminative features. When we increased the threshold
to 4 (requiring at least two subpatterns) and the size of
the receptive fields to 11 × 11 (covering the entire pattern),
the network employing the STDP could also find discrimina-
tive features [see Fig. 2(c)] in 80% of the times.

B. Plastic Neurons

As mentioned earlier, the brain reward system plays an
important role in the emergence of a particular behavior.
In this section, we demonstrate the R-STDP’s capability of
readjusting neurons’ behavior in an online manner.

We designed an experiment, in which the predefined desired
behavior of the neurons is changed during the simulation.
The experimental setup is very similar to the “temporal
discrimination” task with similar input stimuli and parameter
values, except that we swapped the target input stimuli during
the training iterations [see Tasks 1 and 2 in Fig. 3(a)].
As shown in Fig. 3(b), at the beginning of the simulation,
the desired behavior was that the neurons belonging to the
first grid respond to the first stimulus earlier than those
in the second grid, and vice versa. After 200 iterations,
when the convergence is fulfilled, we swapped the target
stimuli. At this stage, since the neurons were exclusively
sensitive to the previous target stimuli, they began to generate
false alarms. Consequently, the network was receiving high
rates of punishments for around 80 iterations [see iterations
200 to 280 in Fig. 3(b)], which in turn swapped LTD and LTP
(see Sections II-F). As the network has received punishments,
the previously weakened (strengthened) synapses got stronger
(weaker). Therefore, the sensitivity diminished for a while, and
the neurons have regained the possibility of learning something
new. After iteration 300, neurons found their new target
stimulus and, once again, converged to the discriminative
features [see the plots of synaptic weights in the top two rows
in Fig. 3(b)].

In summary, R-STDP enables the neurons to unlearn what
they have learned so far. This ability results in neurons with
a flexible behavior (plastic neurons) that are able to learn
rewarding behavior in changing environments. This ability also
helps the neurons to forget and escape from the local optima
in order to learn something that earns more reward. Applying
STDP in such a scenario does not work at all, since there is
no difference between Tasks 1 and 2 from an unsupervised
point of view.

C. Object Recognition

In this section, the performance of our network on cat-
egorization of natural images is evaluated. We begin with
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Fig. 3. Neurons with a flexible behavior. (a) Target stimuli for each neuronal grid. In Task 2, the target stimuli of Task 1 are swapped. (b) Flexibility of the
network in a changing environment. Top two rows represent changes of the synaptic weights. Bottom row illustrates changes in the rate of receiving reward
(green solid line), punishment (red dotted line), and the convergence of the synaptic weights (blue dashed line) over 500 iterations. Convergence is measured
by 1 − (



Wi j (1 − Wi j )/18), where the summation is over the 18 (3 × 3 + 3 × 3) synaptic weights that are shared between S2 neurons. As this value gets

closer to one, the synaptic weights have more binarylike values.

a description of the data sets that are used in our experi-
ments. Then, we show how the network benefits from the
RL mechanism to extract features from natural images, fol-
lowed by comparing R-STDP and STDP in object recognition
tasks. Finally, we illustrate how the dropout and adaptive
learning techniques reduce the chance of overfitting to the
training samples.

1) Data Sets: We used three well-known object recognition
benchmarks to evaluate the performance of the proposed
network. The first and easiest one is Caltech face/motorbike
which is mainly used for demonstration purposes. The next
two that are used to evaluate the proposed network are
ETH-80 and small NORB. These data sets contain images of
objects from different viewpoints which make the task harder
(see Fig. S1 in the Supplementary Material).

2) Reinforced Selectivity: The previous experiments showed
that R-STDP enables the network to find informative and
discriminative features, both spatially and temporally. Here,
we show that R-STDP encourages the neurons to become
selective to a particular category of natural images. To this
end, we trained and examined the network on images from
two categories of face and motorbike from the Caltech data
set.

In this experiment, we put 10 neuronal grids for each
category that were reinforced to win the first-spike compe-
tition in response to the images from their target categories.

Therefore, the desired behavior of the network was that the
neurons of the first 10 grids get selective to the face category,
while those in the other grids get selective to the motorbikes.

Fig. 4 shows the behavior of the network over the training
iterations. Since the early iterations have contained rapid
changes, they are plotted wider. During early iterations, strong
synaptic weights (see Section II-D) and 50% dropout prob-
ability are resulted in an unstable network whose neurons
are responded to random input stimuli. This chaotic behavior
can be easily spotted on early iterations in the middle plot
[see Fig. 4(b)]. As the network continues training iterations,
reward/punishment signals made neurons more and more
selective to their target categories. As shown in Fig. 4(b), after
200 iterations, a quite robust selectivity is appeared for the
training samples, while on the testing samples, it is elongated
for 300 more iterations. This quick convergence on training
samples is due to the fact that the network is relatively fast
in finding features that successfully discriminate seen samples
[see Fig. 4(a)]. These primary features need to converge more
to be applicable on testing samples, which requires even more
iterations because of the adaptive learning rates. Moreover,
we do not let the learning rate that drops below 20% of
the values of parameters a+

r , a−
r , a+

p , and a−
p . This allows

the network to continue convergence with a constant rate
even if all of the training samples are correctly categorized
[see Fig. 4(c)].
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Fig. 4. Training the network on the Caltech face/motorbike data set. (a) Evolution of four different features (out of 20) extracted by the network. The black
and red plots correspond to the face and motorbike neurons, respectively. (b) Hit rate for neurons of each category. The gray (pink) filled curves depict the
percentage of the times that the face (motorbike) neurons emit the earliest spike in response to their target stimulus. Notice that curves for motorbike neurons
are mirrored vertically for the sake of better illustration, and hit rates over testing set are indicated by dot patterns. (c) Trajectory of changes in learning rate
with respect to the number of correct (Nhit ) and incorrect (Nmiss) categorizations.

We repeated the experiment 30 times with random initial
weights and different training and testing samples and the
performance achieved by the proposed network is 98.9±0.4%
(mean ± std). When we tried the same network structure with
STDP, 97.2% was its best achievement (see Table I).

3) Performance: We have shown how the proposed network
has successfully classified faces from motorbikes with high
accuracy. Here, we examined the performance of the proposed
network on the ETH-80 and NORB data sets that are more
challenging (see Datasets in the Supplementary Material). The
performance of the network is tested over the entire testing set
after each training iteration, in which the network receives all
of the training samples in the random order.

For ETH-80 data set, we configured the network to extract
10 features per category, which have resulted in 8 × 10 = 80

features in total. The receptive field of each neuron in layer S2
was set in a way that it covered the whole input image. Here,
nine instances of each category were presented to the network
as the training samples, and the remaining were employed
in the test phase. After performing 250 training and testing
iterations, the best testing performance of the network was
reported.

Again, we repeated this experiment 30 times, each time
using a different training and testing set. As before, the net-
work successfully has extracted discriminative features (see
Fig. 2 in the SupplementaryMaterial) and reached the per-
formance of 89.5 ± 1.9% (mean ± std). We also applied
STDP to a network with the same structure. To examine
the STDP performance, we used SVMs with linear kernel
and KNNs (K was changed from 1 to 10). According to
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TABLE I

COMPARISON OF THE NETWORK’S PERFORMANCE WHEN USING R-STDP AND STDP

the results, the accuracy achieved by this network is 84.5%,
when the maximum potentials were used as the feature
vectors and the classifier was KNN. Considering that the
proposed network classifies input patterns solely based on the
first-spike information, R-STDP definitely outperforms STDP.
Table I provides the details of the comparison made between
R-STDP and STDP.

By looking at confusion matrices [see Fig. 3(a) in the
Supplementary Material], we found that both R-STDP and
STDP agree on the most confusing categories that are cow,
dog, and horse. However, thanks to the RL, R-STDP not only
has decreased the confusion error but also provided a more
balanced error distribution.

The same experiment was also performed on the NORB
data set. Again, we put 10 neuronal grids for each of the
five categories, whose neurons are able to see the entire
incoming stimuli. The proposed network with R-STDP has
reached the performance of 88.4 ± 0.5% (mean ± std) on
testing samples, whereas STDP has achieved 66% at most.
By reviewing confusion matrices of both methods, we found
that both networks have encountered difficulties mostly in
distinguishing four-leg animals from humans, as well as cars
from trucks [see Fig. 3(b) in the Supplementary Material].
As before, R-STDP has resulted in a more balanced error
distribution.

In addition, we compared the proposed network to con-
volutional neural networks (CNNs). Although the proposed
network is not able to beat pretrained deep CNNs (DCNN)
such as VGG16 [66] (see Comparison with Deep Convo-
lutional Neural Networks in the Supplementary Material),
comparing it to a shallow CNN with a similar network
structure and the same input would be a fair point. We repeated
all of the object categorization experiments using a shal-
low CNN implemented with Keras neural networks API and
Tensorflow as its backend. As shown in Table I, the proposed
network has successfully outperformed the supervised CNN
in both the ETH-80 and NORB data sets.

4) Overfitting Problem: Overfitting is one of the most
common issues in supervised or RL scenarios. This problem
got even worse by the emergence of deep learning algorithms.
There are many studies focused on developing techniques that
increase the generalization power of the learning algorithms.
One of the mechanism that has shown promising empirical
results on deep neural networks is the dropout technique [63].
This technique temporarily reduces the complexity of the
network by suppressing the activity of a specific number
of neurons. This reduction in neuronal resources forces the
network to generalize more in order to reduce the prediction
error.

Fig. 5. Impact of the dropout and the adaptive learning rate techniques.
The plot on the left (right) demonstrates the result for ETH-80 (NORB) data
set. In these plots, the solid (dashed) lines illustrate the performance of the
network with different dropout probabilities when the adaptive learning rate
is on (off).

The proposed network is not an exception and has shown
tendencies to overfit on the training samples through our
examinations. Therefore, we adopted the dropout technique
in our experiments. We also found that a steady learning rate
does increase the chance of overfitting. Thus, we made use of
dynamic learning rates with respect to the performance of the
network (see Section II-G).

To show the impact of the aforementioned mechanisms,
we repeated the object recognition experiments with different
dropout probabilities and steady learning rates. Fig. 5 simul-
taneously shows the impact of both mentioned mechanisms
on categorization of test samples. It is clear that when the
adaptive learning rate mechanism is applied, the network has
achieved higher performances (solid lines). It is also shown
that the dropout probability must be chosen according to the
complexity of the data set as well as the network. Since
the NORB data set contains more complex samples than
the ETH-80, it tends more to overfitting on training samples.
As a consequence, it needs more dropout rate to overcome this
issue. The magnitude of this tendency is even clearer when
the steady learning rates are used. To put it differently, faster
convergence rate along with the complexity of the samples
induces more overfitting, which in turn needs more dropout
rate.

IV. DISCUSSION

Mammals are fast and accurate at visual object recognition.
Their visual cortex processes the incoming data in a hier-
archical manner, through which the complexity of neuronal
preference is gradually increased. This hierarchical processing
provides a robust and invariant object recognition [67]–[71].
Computational modeling of the mammalian visual cortex has
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been under investigation for many years. Developing a biolog-
ically plausible model not only enables scientists to examine
their hypotheses with low cost but also provides a humanlike
vision for artificially intelligent machines [40], [72]–[75].

DCNNs are the most successful works in this area [63],
[66], [76]–[78]. The idea behind these networks is inspired
by the hierarchical structure of the visual cortex. Despite the
promising results obtain by DCNNs, they are not biologi-
cally plausible because of using supervised learning rules.
In addition, they employ rate-based encoding scheme, which
is both energy and resource consuming. There is another
group of studies trying to use spiking neurons along with the
unsupervised STDP learning rule [40], [42], [46], [48], [59].
These models are more biologically plausible, but they cannot
beat DCNNs in terms of accuracy. In theory, SNNs have
more computational power than DCNNs, and however, they
are harder to control because of the complex dynamics and
high-dimensional space of effective parameter. Furthermore,
since most of them are trained in an unsupervised manner,
the classification step is done by an external classifier or sta-
tistical methods.

Here, we solved the object recognition task using a hierar-
chical SNN equipped with an RL rule called R-STDP [28].
There are several studies showing that the brain uses RL to
solve the problem of decision-making [15]–[18]. Therefore,
it is a suitable choice for training class-specific neurons that
are able to decide on the class of the input image. Therefore,
we put one step further developing a more biologically plau-
sible model which is able to perform the visual categorization
totally on its own. The proposed network functions in the
temporal domain, where the information is encoded by spike
times. The input image is first convolved with oriented Gabor
filters and a spike train is generated based on a latency-
to-intensity coding scheme. The resulting spikes are then
propagated toward the feature extraction layer. Using R-STDP,
the proposed network successfully found task-specific diagnos-
tic features using neurons that were preassigned to the class
labels. In other words, each neuron was assigned to a class
a priori, where its desired behavior was to respond early for
the instances belonging to the specified class. To decrease the
computational cost even more, neurons were forced to fire at
most once for an input image and the latency of their spike is
considered as the measure of stimulus preference. Therefore,
if a neuron fired earlier than the others, it would have received
its preferred stimulus. This measure of preference served
as an indicator for the network’s decision. That is to say,
when a neuron belonging to a particular class fired earlier,
the network’s decision was considered to be that class.

Through our experiments, we compared R-STDP to STDP
from different aspects. We showed that R-STDP can save com-
putational resources. This was clarified by a hand-designed
discrimination task, in which the order of spikes was the only
discriminative feature. R-STDP has solved the problem using a
minimal number of neurons, synapses, and threshold, whereas
STDP has needed more neurons, more synapses, and higher
thresholds. This drawback for STDP is due to the fact that
it tends to find statistically frequent features [8]–[11], which
are not necessarily the diagnostic ones. As a consequence, one

needs to use either more neurons or more synapses to ensure
that the diagnostic features will be eventually found. On the
other hand, since R-STDP informs the neurons about their
outcomes, they can function better using minimal resources.

After having demonstrated the advantages of R-STDP in
finding diagnostic features, we investigated how well it can
be combined with a hierarchical SNN for solving both visual
feature extraction and object categorization in a biologically
plausible manner. We evaluated the proposed network and a
similar network which uses STDP, as well as a CNN with the
same structure, on three data sets of natural images Caltech
Face/Motorbike, ETH-80, and NORB. The last two contain
images of objects from different viewpoints, which made the
task harder. When we compared the performances obtained
by the networks, we found that R-STDP strongly outperforms
STDP and the CNN with the same structure. An even more
interesting point is that the proposed network has achieved this
superiority decisions solely based on the first-spikes, while in
the case of the others, even the powerful classifiers like SVMs
and error backpropagation were not of any help.

To compare R-STDP with STDP, both networks have used
the same values for parameters except the learning rate
(see Section II-I). However, one can use STDP with a higher
number of neurons and tuned thresholds to compensate the
blind unsupervised feature extraction and achieve better per-
formances [60]. Again, we conclude that R-STDP helps the
network to act more efficiently in consuming computational
resources.

Putting everything together, the proposed network has the
following prominent features.

1) Robust object recognition in natural images.
2) Each neuron is allowed to spike only once per image.

This results in a huge reduction of energy consumption.
3) Decision-making (classification) is performed using

the first-spike latencies instead of powerful classifiers.
Therefore, the biological plausibility of the model is
increased.

4) Synaptic plasticity is governed by RL (the R-STDP
rule), for which supporting biological evidence can be
found [28], and which allows to extract highly diagnostic
features.

Our network can be interesting for neuromorphic engi-
neering [79], since it is both biologically plausible and
hardware friendly. Although hardware implementation and
efficiency is out of the scope of this paper, we believe that
the proposed network can be implemented in hardware in
an energy-efficient manner for several reasons. First, SNNs
are more hardware friendly than classic artificial neural net-
works, because the energy-consuming “multiply-accumulator”
units can be replaced by more energy-efficient “accumulator”
units. For this reason, studies on training deep convolu-
tional SNNs (DCSNNs) [44], [46] and converting DCNNs
into DCSNNs [80] as well as restricted DCNNs [81]–[83]
have gained interests in recent years. Second, most SNN
hardwares use event-driven approaches by considering spikes
as events. In this way, energy consumption increases with
the number of spikes. Thus, by allowing at most one spike
per neuron, the proposed model is as efficient as possible.
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Finally, the proposed learning rule is more suitable for online,
on-chip learning than error backpropagation in deep networks,
where updating weights based on high-precision gradients
brings difficulties for hardware implementation.

To date, we could not find any other works possessing
the aforementioned features. To mention one of the clos-
est attempts, Gardner et al. [84] tried to classify Poisson-
distributed spike trains by a readout neuron equipped
with R-STDP. Although their method is working, it cannot be
applied on natural images as it is, because of their time-based
encoding and target labeling. There is another related work by
Huerta and Nowotny [85], where the authors designed a model
of the RL mechanism which occurs in the mushroom body.
They applied their RL mechanism on a pool of randomly con-
nected neurons with 10 readout neurons to classify handwritten
digits. This paper is different from theirs in several aspects.
First, we used a hierarchical structure based on the mammalian
visual cortex, while they used randomly connected neurons.
Second, we used the R-STDP learning rule, whereas they
employed a probabilistic approach for the synaptic plasticity.
Third, the input of our network was natural images using
intensity-to-latency encoding, while they used binary encoding
with a threshold on artificial images.

Although the results of the proposed network were signifi-
cantly better than the network employing STDP with external
classifiers, they are still not competitive to the state-of-the-
art deep learning approaches. One of the limitations to the
current method is using only one trainable layer. Besides,
the receptive field of the neurons in the last layer is set
to be large enough to cover an informative portion of the
image. As a result, the network cannot resist high rates of
variations in the object, unless using more and more number
of neurons. Extending the number of layers in the current
network is one of the directions for future research. Going
deeper seems to improve the performance by providing a
gradual simple to complex feature extraction. However, deeper
structure needs more parameter tuning and a suitable multi-
layer synaptic plasticity rule. Recent studies have also shown
that combining deep networks and RL can lead to outstanding
results [86], [87].

Another direction for the future research is to use the RL
for learning semantic associations. For example, STDP is able
to extract features for different kinds of animals in different
viewpoints, but it is not able of relating all of them into the
category of “animal,” because different animals have no reason
to co-occur. Or, it can extract features for the frontal and
profile face, but it cannot generate an association putting both
in the general category of “face.” On the other hand, by a
reinforcement signal and using learning rules like R-STDP,
neurons are not only able to extract diagnostic features but
also learn relative connections between categories and create
supercategories.
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