
HAL Id: hal-02341924
https://hal.science/hal-02341924

Submitted on 8 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep learning in spiking neural networks
Saeed Reza Kheradpisheh, Amirhossein Tavanaei, Masoud Ghodrati, Saeed

Reza Kheradpisheh, Timothée Masquelier, Anthony Maida

To cite this version:
Saeed Reza Kheradpisheh, Amirhossein Tavanaei, Masoud Ghodrati, Saeed Reza Kheradpisheh, Tim-
othée Masquelier, et al.. Deep learning in spiking neural networks. Neural Networks, 2019, 111,
pp.47–63. �10.1016/j.neunet.2018.12.002�. �hal-02341924�

https://hal.science/hal-02341924
https://hal.archives-ouvertes.fr

Deep Learning in Spiking Neural Networks
Amirhossein Tavanaei∗, Masoud Ghodrati†, Saeed Reza Kheradpisheh‡,

Timothée Masquelier§ and Anthony Maida∗

∗Center for Advanced Computer Studies, University of Louisiana at Lafayette
Lafayette, Louisiana, LA 70504, USA

†Department of Physiology, Monash University, Clayton, VIC, Australia
‡Department of Computer Science, Faculty of Mathematical Sciences and Computer,

Kharazmi University, Tehran, Iran
§CERCO UMR 5549, CNRS-Université de Toulouse 3, F-31300, France

tavanaei@louisiana.edu, masoud.ghodrati@monash.edu, kheradpisheh@ut.ac.ir,
timothee.masquelier@cnrs.fr, maida@louisiana.edu

Abstract—1 In recent years, deep learning has
revolutionized the field of machine learning, for
computer vision in particular. In this approach, a deep
(multilayer) artificial neural network (ANN) is trained
in a supervised manner using backpropagation. Vast
amounts of labeled training examples are required, but
the resulting classification accuracy is truly impressive,
sometimes outperforming humans. Neurons in an ANN
are characterized by a single, static, continuous-valued
activation. Yet biological neurons use discrete spikes to
compute and transmit information, and the spike times,
in addition to the spike rates, matter. Spiking neural
networks (SNNs) are thus more biologically realistic than
ANNs, and arguably the only viable option if one wants
to understand how the brain computes. SNNs are also
more hardware friendly and energy-efficient than ANNs,
and are thus appealing for technology, especially for
portable devices. However, training deep SNNs remains a
challenge. Spiking neurons’ transfer function is usually
non-differentiable, which prevents using backpropagation.
Here we review recent supervised and unsupervised
methods to train deep SNNs, and compare them in
terms of accuracy, but also computational cost and
hardware friendliness. The emerging picture is that
SNNs still lag behind ANNs in terms of accuracy,
but the gap is decreasing, and can even vanish on some
tasks, while SNNs typically require many fewer operations.

Keywords: Deep learning, Spiking neural network, Bio-
logical plausibility, Machine learning, Power-efficient archi-
tecture.

1The final/complete version of this paper has been published
in the Neural Networks journal. Please cite as: Tavanaei, A.,
Ghodrati, M., Kheradpisheh, S. R., Masquelier, T., and Maida, A.
(2018). Deep learning in spiking neural networks. Neural Networks.

I. INTRODUCTION

Artificial neural networks (ANNs) are predominantly
built using idealized computing units with continuous
activation values and a set of weighted inputs. These
units are commonly called ‘neurons’ because of their
biological inspiration. These (non-spiking) neurons use
differentiable, non-linear activation functions. The non-
linear activation functions make it representationally
meaningful to stack more than one layer and the ex-
istence of their derivatives makes it possible to use
gradient-based optimization methods for training. With
recent advances in availability of large labeled data sets,
computing power in the form of general purpose GPU
computing, and advanced regularization methods, these
networks have become very deep (dozens of layers)
with great ability to generalize to unseen data and there
have been huge advances in the performance of such
networks.

A distinct historical landmark is the 2012 success
of AlexNet [1] in the ILSVRC image classification
challenge [2]. AlexNet became known as a deep neural
network (DNN) because it consisted of about eight
sequential layers of end-to-end learning, totaling 60 mil-
lion trainable parameters. For recent reviews of DNNs,
see [3], [4]. DNNs have been remarkably successful
in many applications including image recognition [1],
[5], [6], object detection [7], [8], speech recognition [9],
biomedicine and bioinformatics [10], [11], temporal data
processing [12], and many other applications [4], [13],
[14]. These recent advances in artificial intelligence (AI)
have opened up new avenues for developing different

ar
X

iv
:1

80
4.

08
15

0v
4

 [
cs

.N
E

]
 2

0
Ja

n
20

19

engineering applications and understanding of how bio-
logical brains work [13], [14].

Although DNNs are historically brain-inspired, there
are fundamental differences in their structure, neural
computations, and learning rule compared to the brain.
One of the most important differences is the way that
information propagates between their units. It is this
observation that leads to the realm of spiking neural
networks (SNNs). In the brain, the communication be-
tween neurons is done by broadcasting trains of action
potentials, also known as spike trains to downstream
neurons. These individual spikes are sparse in time, so
each spike has high information content, and to a first
approximation has uniform amplitude (100 mV with
spike width about 1 msec). Thus, information in SNNs
is conveyed by spike timing, including latencies, and
spike rates, possibly over populations [15]. SNNs almost
universally use idealized spike generation mechanisms in
contrast to the actual biophysical mechanisms [16].

ANNs, that are non-spiking DNNs, communicate us-
ing continuous valued activations. Although the energy
efficiency of DNNs can likely be improved, SNNs offer
a special opportunity in this regard because, as explained
below, spike events are sparse in time. Spiking networks
also have the advantage of being intrinsically sensitive
to the temporal characteristics of information transmis-
sion that occurs in the biological neural systems. It
has been shown that the precise timing of every spike
is highly reliable for several areas of the brain and
suggesting an important role in neural coding [17], [18],
[19]. This precise temporal pattern in spiking activity
is considered as a crucial coding strategy in sensory
information processing areas [20], [21], [22], [23], [24]
and neural motor control areas in the brain [25], [26].
SNNs have become the focus of a number of recent
applications in many areas of pattern recognition such
as visual processing [27], [28], [29], [30], speech recog-
nition [31], [32], [33], [34], [35], [36], [37], and medical
diagnosis [38], [39]. In recent years, a new generation of
neural networks that incorporates the multilayer structure
of DNNs (and the brain) and the type of information
communication in SNNs has emerged. These deep SNNs
are great candidates to investigate neural computation
and different coding strategies in the brain.

In regard to the scientific motivation, it is well ac-
cepted that the ability of the brain to recognize complex
visual patterns or identifying auditory targets in a noisy
environment is a result of several processing stages and
multiple learning mechanisms embedded in deep spiking
networks [40], [41], [42]. In comparison to traditional

deep networks, training deep spiking networks is in its
early phases. It is an important scientific question to
understand how such networks can be trained to perform
different tasks as this can help us to generate and investi-
gate novel hypotheses, such as rate versus temporal cod-
ing, and develop experimental ideas prior to performing
physiological experiments. In regard to the engineering
motivation, SNNs have some advantages over traditional
neural networks in regard to implementation in special
purpose hardware. At the present, effective training of
traditional deep networks requires the use of energy
intensive high-end graphic cards. Spiking networks have
the interesting property that the output spike trains can be
made sparse in time. An advantage of this in biological
networks is that the spike events consume energy and
that using few spikes which have high information
content reduces energy consumption [43]. This same
advantage is maintained in hardware [44], [45], [46],
[47]. Thus, it is possible to create low energy spiking
hardware based on the property that spikes are sparse in
time.

An important part of the learning in deep neural
models, both spiking and non-spiking, occurs in the
feature discovery hierarchy, where increasingly complex,
discriminative, abstract, and invariant features are ac-
quired [48]. Given the scientific and engineering motiva-
tions mentioned above, deep SNNs provide appropriate
architectures for developing an efficient, brain-like repre-
sentation. Also, pattern recognition in the primate’s brain
is done through multi-layer neural circuits that commu-
nicate by spiking events. This naturally leads to interest
in using artificial SNNs in applications that brains are
good at, such as pattern recognition [49]. Bio-inspired
SNNs, in principle, have higher representation power
and capacity than traditional rate-coded networks [50].
Furthermore, SNNs allow a type of bio-inspired learning
(weight modification) that depends on the relative timing
of spikes between pairs of directly connected neurons in
which the information required for weight modification
is locally available. This local learning resembles the
remarkable learning that occurs in many areas of the
brain [51], [52], [53], [54], [55].

The spike trains are represented formally by sums of
Dirac delta functions and do not have derivatives. This
makes it difficult to use derivative-based optimization for
training SNNs, although very recent work has explored
the use of various types of substitute or approximate
derivatives [56], [57]. This raises a question: How are
neural networks in the brain trained if derivative-based
optimization is not available? Although spiking networks

have theoretically been shown to have Turing-equivalent
computing power [58], it remains a challenge to train
SNNs, especially deep SNNs using multi-layer learning.
In many existing spiking networks, learning is restricted
to a single layer, for example [59], [60], [61]. Equipping
spiking networks with multi-layer learning is an open
area that has potential to greatly improve their perfor-
mance on different tasks. The main core of the previous
research is based on the fact that coding with the timing
of spikes carries useful information and exhibits great
computational power in biological systems [23], [24],
[25].

Here, we review recent studies in developing deep
learning models in SNNs with the focus on: (1) de-
scribing the SNNs’ architectures and their learning
approaches; (2) reviewing deep SNNs composed of
feedforward, fully connected spiking neural layers; (3)
spiking convolutional neural networks; (4) reviewing
spiking restricted Boltzmann machines and spiking deep
belief networks; (5) reviewing recurrent SNNs; and (6)
providing a comprehensive summary comparing the per-
formance of recent deep spiking networks. We hope that
this review will help researchers in the area of artificial
neural networks to develop and extend efficient and high-
performance deep SNNs and will also foster a cross-
fertilization in future experimental and theoretical work
in neuroscience.

II. SPIKING NEURAL NETWORK: A BIOLOGICALLY

INSPIRED APPROACH TO INFORMATION PROCESSING

The introduction of SNNs in the last few decades,
as a powerful third generation neural network [50], has
encouraged many studies with the focus on biologically
motivated approaches for pattern recognition [62], [63].
SNNs were originally inspired by the brain and the
communication scheme that neurons use for information
transformation via discrete action potentials (spikes) in
time through adaptive synapses. In a biological neuron,
a spike is generated when the running sum of changes
in the membrane potential, which can result from presy-
naptic stimulation, crosses a threshold. The rate of spike
generation and the temporal pattern of spike trains carry
information about external stimuli [64], [65] and ongoing
calculations. SNNs use a very similar process for spike
generation and information transformation. In the follow-
ing sections, we explain the details of SNN architectures
and learning methods applied to these types of networks.

A. SNN Architecture

An SNN architecture consists of spiking neurons and
interconnecting synapses that are modeled by adjustable
scalar weights. The first step in implementing an SNN
is to encode the analog input data into the spike trains
using either a rate based method [64], [15], some form
of temporal coding [66], [67], or population coding [68].
As stated earlier, a biological neuron in the brain (and
similarly in a simulated spiking neuron) receives synaptic
inputs form other neurons in the neural network. Biologi-
cal neural networks have both action potential generation
dynamics and network dynamics. In comparison to true
biological networks, the network dynamics of artificial
SNNs are highly simplified. In this context, it is useful
to assume that the modeled spiking neurons have pure
threshold dynamics (in contrast to, e.g., refractoriness,
hysteresis, resonance dynamics, or post-inhibitory re-
bound properties). The activity of pre-synaptic neurons
modulates the membrane potential of postsynaptic neu-
rons, generating an action potential or spike when the
membrane potential crosses a threshold. Hodgkin and
Huxley were the first to model this phenomenon [16].
Specifically, they created a model of action potential
generation from the voltage gating properties of the ion
channels in the squid cell membrane of the squid axon.
After the Hodgkin and Huxley model with extensive
biological details and high computational cost [16], [64],
[69], diverse neuron models have been proposed such as
the spike response model (SRM) [70], the Izhikevich
neuron model [71], and the leaky integrated-and-fire
(LIF) neuron [72]. The LIF model is extremely popular
because it captures the intuitive properties of external
input accumulating charge across a leaky cell membrane
with a clear threshold.

Spike trains in a network of spiking neurons are
propagated through synaptic connections. A synapse
can be either excitatory, which increases the neuron’s
membrane potential upon receiving input, or inhibitory,
which decreases the neuron’s membrane potential [73].
The strength of the adaptive synapses (weights) can
be changed as a result of learning. The learning rule
of an SNN is its most challenging component for de-
veloping multi-layer (deep) SNNs, because the non-
differentiability of spike trains limits the popular back-
propagation algorithm.

B. Learning Rules in SNNs

As previously mentioned, in virtually all ANNs, spik-
ing or non-spiking, learning is realized by adjusting
scalar-valued synaptic weights. Spiking enables a type

of bio-plausible learning rule that cannot be directly
replicated in non-spiking networks. Neuroscientists have
identified many variants of this learning rule that falls
under the umbrella term spike-timing-dependent plastic-
ity (STDP). Its key feature is that the weight (synaptic
efficacy) connecting a pre- and post-synaptic neuron is
adjusted according to their relative spike times within an
interval of roughly tens of milliseconds in length [74].
The information used to perform the weight adjustment
is both local to the synapse and local in time. The follow-
ing subsections describe common learning mechanisms
in SNNs, both unsupervised and supervised.

1) Unsupervised Learning via STDP: As stated
above, unsupervised learning in SNNs often involves
STDP as part of the learning mechanism [74], [75].
The most common form of biological STDP has a
very intuitive interpretation. If a presynaptic neuron fires
briefly (e.g., ≈ 10 ms) before the postsynaptic neuron,
the weight connecting them is strengthened. If the presy-
naptic neuron fires briefly after the postsynaptic neuron,
then the causal relationship between the temporal events
is spurious and the weight is weakened. Strengthening
is called long-term potentiation (LTP) and weakening is
called long-term depression (LTD). The phrase “long-
term” is used to distinguish between very transient
effects on the scale of a few ms that are observed in
experiments.

Formula 1 below idealizes the most common experi-
mentally observed STDP rule for a single pair of spikes
obtained by fitting to experimental data [76].

∆w =

{
Ae

−(|tpre−tpost|)
τ tpre − tpost ≤ 0 , A > 0

Be
−(|tpre−tpost|)

τ tpre − tpost > 0 , B < 0
(1)

w is the synaptic weight. A > 0 and B < 0 are usually
constant parameters indicating learning rates. τ is the
time constant (e.g., 15 ms) for the temporal learning
window. The first of the above cases describes LTP while
the second describes LTD. The strength of the effect is
modulated by a decaying exponential whose magnitude
is controlled by the time-constant-scaled time difference
between the pre- and postsynaptic spikes. Rarely, do
artificial SNNs use this exact rule. They usually use a
variant, either to achieve more simplicity or to satisfy a
convenient mathematical property.

Besides the temporally and spatially local weight
change described in Eq. 1, STDP has known impor-
tant temporally accumulated network-level effects. For
instance, STDP affects a neuron’s behavior in response to
repeated spike patterns embedded in a possibly stochas-

tic spike train. A neuron (equipped with STDP-trained
synapses) in coincidence with similar volleys of spikes
is able to concentrate on afferents that consistently fire
early (shorter latencies) [77], [78]. Spike trains in many
areas of the brain are highly reproducible. Guyonneau et
al. [78] have shown that presenting repeated inputs to an
SNN equipped with STDP shapes neuronal selectivity
to the stimulus patterns within the SNN. Specifically,
they showed that the response latency of the postsynaptic
potential is decreased as STDP proceeds. Reducing the
postsynaptic latency results in faster neural processing.
Thus, the neuron responds faster to a specific input
pattern than to any other. In fact, the STDP rule focuses
on the first spikes of the input pattern which contain
most of the information needed for pattern recognition.
It has been shown that repeating spatio-temporal patterns
can be detected and learned by a single neuron based on
STDP [79], [80]. STDP can also solve difficult computa-
tional problems in localizing a repeating spatio-temporal
spike pattern and enabling some forms of temporal
coding, even if an explicit time reference is missing [79],
[81]. Using this approach, more complex networks with
multiple output neurons have been developed [59], [82],
[83], [84].

2) Probabilistic Characterization of Unsupervised
STDP: Many studies have provided evidence that at least
an approximate Bayesian analysis of sensory stimuli
occurs in the brain [85], [86], [87], [88]. In Bayesian
inference, hidden causes (such as presence of an object
of a particular category) are inferred using both prior
knowledge and the likelihood of new observations to
obtain a posterior probability of the possible cause.
Researchers have considered the possible role of proba-
bilistic (Bayesian) computation as a primary information
processing step in the brain in terms of STDP.

Nessler et al. (2009) [89] showed that a form of
STDP, when used with Poisson spiking input neurons
coupled with the appropriate stochastic winner-take-all
(WTA) circuit, is able to approximate a stochastic online
expectation maximization (EM) algorithm to learn the
parameters for a multinomial mixture distribution. The
model was intended to have some biological plausibility.
The STDP rule used in their network is shown in Eq. 2.
LTP occurs if the presynaptic neuron fires briefly (e.g.,
within ε = 10 ms) before the postsynaptic neuron. Other-
wise LTD occurs. Generating a spike by an output neuron
creates a sample from the coded posterior distribution of
hidden variables which can be considered as the E-step
in the EM algorithm. The application of STDP to the
synapses of fired output neurons specifies the M-step in

EM. Nessler et al. (2013) [90] extended their network
by using an inhibitory neuron to implement the WTA
in order to improve the compatibility of the model for
embedding in a cortical microcircuit.

∆wki =

{
e−wki − 1, 0 < tfk − tfi < ε

−1, otherwise
(2)

Building on the stochastic WTA circuits described
above, Klampfl and Maass (2013) [91] developed a liquid
state machine (LSM) containing input neurons, a reser-
voir of the WTA circuits, and a linear output readout.
Further extension showed that STDP, applied on both the
lateral excitatory synapses and synapses from afferent
neurons, is able to represent the underlying statistical
structure of such spatio-temporal input patterns [92]. In
this framework, each spike train generated by the WTA
circuits can be viewed as a sample from the state space
of a hidden Markov model (HMM).

One drawback of the STDP model introduced in [89],
[90] is that its excitatory synaptic weights are negative.
This, however, can be solved by shifting the weights to
a positive value by using a constant parameter in the
LTP rule. Based on this idea, Tavanaei and Maida [93],
[94] proposed an unsupervised rule for spatio-temporal
pattern recognition and spoken word classification. It
has been shown that the EM acquired in an SNN is
able to approximately implement the EM algorithm in a
Gaussian mixture model (GMM) embedded in the HMM
states [94].

Using probabilistic learning in spiking neurons for
modeling hidden causes has recently attracted attention.
Rezende et al. (2011) [95] developed a bio-plausible
learning rule based on the joint distribution of per-
ceptions and hidden causes to adapt spontaneous spike
sequences to match the empirical distribution of actual
spike sequences [95]. The learning strategy involved
minimizing the Kullback-Leibler divergence [96] as a
non-commutative distance measure between the distri-
bution representing the model (SNN) and a target dis-
tribution (observation). The EM algorithm in recurrent
SNNs [97] and probabilistic association between neu-
rons generated by STDP in combination with intrinsic
plasticity [98] are two other instances of probabilistic
learning in SNNs. The probabilistic rules also have been
employed in sequential data processing [99] and Markov
chain Monte Carlo sampling interpreted by stochastic
firing activity of spiking neurons [100].

3) Supervised Learning: All supervised learning uses
labels of some kind. Most commonly, supervised learn-

ing adjusts weights via gradient descent on a cost func-
tion comparing observed and desired network outputs.
In the context of SNNs, supervised learning tries to
minimize the error between desired and output spike
trains, sometimes called readout error, in response to
inputs.

a) SNN Issues in Relation to Backpropagation:
From a biological vantage point, there has been con-
siderable skepticism about whether the backpropagation
training procedure can be directly implemented in the
brain. With respect to SNNs, there are two prominent
issues which can be seen from the formula below. Shown
below is a core formula, obtained from the chain rule,
that occurs in all variants of backpropagation [101].

δµj = g′(aµj)
∑
k

wkjδ
µ
k (3)

In the above, δµj and δµk denote the partial derivative of
the cost function for input pattern µ with respect to the
net input to some arbitrary unit j or k. Unit j projects
direct feedforward connections to the set of units indexed
by k. g(·) is the activation function applied to the net
input of unit j, where that net input is denoted aµj . wkj
are the feedforward weights projecting from unit j to the
set of units indexed by k.

Both parts of the RHS of Eq. 3 present complications
for bio-plausible spiking versions of backpropagation.
First, the expression g′(·) requires g(·) with respect to
wkj . Since g(·) applies to a spiking neuron, it is likely
represented by a sum of Dirac delta functions, which
means the derivative does not exist. The second, and
more serious complication, applies to both spiking and
non-spiking networks and was apparently first pointed
out by Grossberg [102, p. 49] and termed the “weight
transport” problem. The problem is the following. The
expression

∑
k wkjδ

µ
k is using the feedforward weights

wkj in a feedback fashion. This means that matching
symmetric feedback weights must exist and project ac-
curately to the correct neurons (point-to-point feedback)
in order for Eq. 3 to be useable.

In the literature, the first issue has generally been
addressed by using substitute or approximate derivatives.
One must be aware that some of these solutions are not
bio-plausible. For example, using the membrane poten-
tial of the presynaptic neuron as a surrogate becomes
problematic because its value is not local to the synapse
(cf. [57], Section III-A of this review). These approaches,
however, are still useful from both engineering and
scientific standpoints.

Progress on the second issue has recently been made
by [103] and [104]. It was shown in [103] that for
some tasks, backpropagation could still perform well
if random feedback weights were used. The authors in
[104] explored this further, examining three kinds of
feedback (uniform, random, and symmetric). They found
that simpler problems could be solved by any kind of
feedback whereas complex problems needed symmetric
feedback.

b) Some Supervised Learning Methods for SNNs:
SpikeProp [105] appears to be the first algorithm to train
SNNs by backpropagating errors. Their cost function
took into account spike timing and SpikeProp was able
to classify non-linearly separable data for a temporally
encoded XOR problem using a 3-layer architecture. One
of their key design choices was to use Gerstner’s [64]
spike-response model (SRM) for the spiking neurons.
Using the SRM model, the issue of taking derivatives on
the output spikes of the hidden units was avoided because
those units’ responses could be directly modeled as
continuous-valued PSPs applying to the output synapses
that they projected to. One limitation of this work is that
each output unit was constrained to discharge exactly one
spike. Also, continuous variable values, such as in the
temporally extended XOR problem, had to be encoded
as spike-time delays which could be quite long.

Later advanced versions of SpikeProp, Multi-
SpikeProp, were applicable in multiple spike cod-
ing [106], [107]. Using the same neural architecture of
SpikeProp, new formulations of temporal spike coding
and spike time errors have recently improved the spiking
backpropagation algorithm [108], [109]. The most recent
implementation of backpropagation in SNNs has been
proposed by Wu et. al. (2017) [110] who developed
spatio-temporal gradient descent in multi-layer SNNs.

More recent approaches to supervised training of
SNNs include ReSuMe (remote supervised learning)
[111], [112], Chronotron [113], and SPAN (spike pattern
association neuron) [114], [115], among others. All of
the above models consist of a single spiking neuron
receiving inputs from many spiking presynaptic neurons.
The goal is to train the synapses to cause the post-
synaptic neuron to generate a spike train with desired
spike times.

ReSuMe adapts the Widrow-Hoff (Delta) rule, orig-
inally used for non-spiking linear units, to SNNs. The
Widrow-Hoff rule weight changes is proportional to the
desired output minus the observed output, as shown
below.

∆w = (yd − yo)x = ydx− yox (4)

where x is the presynaptic input and yd and yo are
the desired and observed outputs, respectively. When
expanded as shown on the RHS and reformulated for
SNNs, the rule can be expressed as a sum of STDP
and anti-STDP. That is, the rule for training excitatory
synapses takes the form

∆w = ∆wSTDP(Sin, Sd) + ∆waSTDP(Sin, So). (5)

In the above, ∆wSTDP is a function of the correlation
of the presynaptic and desired spike trains, whereas
∆waSTDP depends on the presynaptic and observed
spike trains. Because the learning rule uses the correla-
tion between the teacher neuron (desired output) and the
input neuron, there is not a direct physical connection.
This is why the word “remote” is used in the phrase
“remote supervised learning.” Although it is not apparent
in the above equation, the learning is constrained to fall
with typical STDP eligibility windows. The Chronotron
was developed to improve on the Tempotron [116] which
had the ability to train single neurons to recognize
encodings by the precise timing of incoming spikes. The
limitation of the Tempotron was that was restricted to
outputting 0 or 1 spikes during a predetermined interval.
Because of this, the output did not encode spike timing
information. This precluded the ability of a Tempotron
to meaningfully send its output to another Tempotron.
The motivation of the Chronotron was similar to that
of SpikeProp and its successors. The innovation of the
Chronotron was to base the supervised training on a
more sophisticated distance measure, namely the Victor-
Purpora (VP) distance metric [117] between two spike
trains. This metric is “the minimum cost of transforming
one spike train into the other by creating, removing,
or moving spikes.” [113, p. 3] They adapted the VP
distance so that it would be piecewise differentiable and
admissible as a cost function to perform gradient descent
with respect to the weights.

Similar to ReSuMe, the SPAN model develops its
learning algorithm from the Widrow-Hoff rule. However,
instead of adapting the rule to an SNN, SPAN makes
the SNN compatible with Widrow-Hoff by digital-to-
analog conversion of spike trains using alpha kernels
of the form te

−t
τ . As this is a common formula for

modeling a postsynaptic potential, this step in effect
converts all spikes to a linear summation of PSPs. Note
that this is similar to the technique that was used in

SpikeProp described at the beginning of this subsection.
The learning rule can then be written as

∆w ∝
∫
x̃i(ỹd(t)− ỹo(t))dt (6)

where the tilde symbol indicates the analog version of
the spike train and the bounds of integration cover the
relevant local time interval.

In [56], it was observed that the previous gradient-
based learning methods all still had the constraint that the
number and times of output spikes must be prespecified
which placed limits on their applicability. They replaced
the hard spike threshold with a narrow support gate func-
tion, g(·), such that g(v) ≥ 0 and

∫
gdv = 1, and v is

the membrane potential. Intuitively, this allows modeled
postsynaptic currents to be released when the membrane
potential approaches threshold leading to continuity in
the spike generation mechanism. Experimentally, it was
found that weight updates occured near spike times
“bearing close resemblence to reward-modulated STDP”
[56, p. 8], which enhances the biological relevance of
the model.

In [118], a supervised learning method was proposed
(BP-STDP) where the backpropagation update rules
were converted to temporally local STDP rules for multi-
layer SNNs. This model achieved accuracies comparable
to equal-sized conventional and spiking networks for the
MNIST benchmark (see Section III-A).

Another implementation of supervised learning in
SNNs can be based on optimizing the likelihood and
probability of the postsynaptic spikes to match the de-
sired ones. Pfister et al. (2006) [119] developed a model
to optimize the likelihood of postsynaptic firing at one or
several desired times. They proposed a modified version
of the SRM neuronal model such that it uses a stochastic
threshold on the membrane potential.

In another approach to supervised learning, each out-
put neuron represents a class of data (pattern). Output
neurons are in competition to be selected and responsive
to the input patterns. In this approach, firing the target
neuron causes STDP over the incoming synapses and
firing the non-target neurons causes anti-STDP. This
approach has successfully been used in SNNs for nu-
merical data classification [120], handwritten digit recog-
nition [121], spoken digit classification [83], and rein-
forcement learning in SNNs [122]. The sharp synaptic
weight adaptation based on immediate STDP and anti-
STDP results in fast learning.

III. DEEP LEARNING IN SNNS

Deep learning uses an architecture with many layers of
trainable parameters and has demonstrated outstanding
performance in machine learning and AI applications [3],
[4]. Deep neural networks (DNNs) are trained end-to-
end by using optimization algorithms usually based on
backpropagation. The multi-layer neural architecture in
the primate’s brain has inspired researchers to concen-
trate on the depth of non-linear neural layers instead
of using shallow networks with many neurons. Also,
theoretical and experimental results show better perfor-
mance of deep rather than wide structures [123], [124],
[125]. Deep neural networks extract complex features
through sequential layers of neurons equipped by non-
linear, differentiable activation functions to provide an
appropriate platform for the backpropagation algorithm.
Fig. 1 depicts a deep NN architecture with several hidden
layers.

For most classification problems, the output layer of a
deep network uses a softmax module. The training vec-
tors use a one-hot encoding. In a one-hot encoding each
vector component corresponds to one of the possible
classes. This vector is binary with exactly one component
set to 1 that corresponds to the desired target class. The
softmax module for the output layer guarantees that the
values of each of the output units falls within the range
(0, 1) and also sum to 1. This gives a set of mutually
exclusive and exhaustive probability values. The softmax
formula, sometimes called the normalized exponential, is
given below

yi =
exp(ai)∑
j exp(aj)

(7)

where, ai, is the net input to a particular output unit, j
indexes the set of output units, and yi is the value of
output unit i, which falls in the range (0, 1).

In addition to the fully connected architecture in Fig. 1
and discussed in Section III-A, there are also deep
convolutional neural networks (DCNNs) discussed in
Section III-B, deep belief networks (DBNs) discussed
in Section III-C, and recurrent neural networks (RNNs)
discussed in Section III-D.

SNNs have also shown promising performance in a
number of pattern recognition tasks [62], [126]. How-
ever, the performance of directly trained spiking deep
networks are not as good as traditional DNNs rep-
resented in the literature. Therefore, a spiking deep
network (spiking DNN, spiking CNN,spiking RNN, or
spiking DBN) with good performance comparable with

Fig. 1: Simplest deep neural architecture, usually fully
connected, with input, hidden, and output layers. The
input layer learns to perform pre-processing on the
input. The information is then sent to a series of hidden
layers, the number of which can vary. As the information
propagates through hidden layers, more complex features
are extracted and learned. The output layer performs
classification and determines the label of the input stim-
ulus, usually by softmax (see text).

traditional deep learning methods, is a challenging topic
because of its importance in DNN hardware implemen-
tations.

Masquelier and Thorpe (2007, 2010) developed one
of the earliest feedforward hierarchical convolutional
network of spiking neurons for unsupervised learning
of visual features [59], [82]. This network was extended
for larger problems, such as [84]. Using an STDP rule
with a probabilistic interpretation, the performance of the
model was later improved in different object recognition
tasks [60]. Further attempts led to several multi-layer
SNNs, with STDP learning, that performed greatly in
adaptive multi-view pattern recognition [127] and hand-
written digit recognition [61]. These models mostly used
one or more layers for pre-processing, one learning layer,
and one classifier (output neuron) layer. Although these
networks are known as multi-layer SNNs, they do not
offer multi-layer learning. Specifically, these SNNs are
limited by using only one trainable layer, even though
they have many layers of processing.

Encouraged by the power-efficiency and biological
plausibility of neuromorphic platforms, a number of
recent studies have concentrated on developing deep
SNNs for these platforms. Previous studies exploring
supervised and unsupervised learning rules in spiking
architectures can be employed to develop hierarchies of
feature extraction and classification modules. Existing
deep SNNs do not perform as accurately as the tra-
ditional deep learning models. However, SNNs enable
power-efficient platforms mimicking the brain function-
ality for solving complex problems, especially in new

trends of autonomous objects. Therefore, developing
a neural network that is as efficient and biologically
plausible as SNNs but as powerful as DNNs in per-
forming different tasks can be the next challenging topic
in the field of artificial intelligence and computational
neuroscience. The initial steps for implementing a deep
spiking framework can be fulfilled by either converting
the trained neural networks to a spiking platform or using
spike-based, online learning methods.

The remaining subsections review spiking deep learn-
ing approaches covering deep fully connected SNNs,
spiking CNNs, spiking DBNs, and spiking RNNs.

A. Deep, Fully Connected SNNs

Recent studies have developed a number of deep
SNNs using STDP and stochastic gradient descent. Spik-
ing networks consisting of many LIF neurons equipped
by spike-based synaptic plasticity rules have shown suc-
cess in different pattern recognition tasks [128], [129].
Diehl et al. [130] showed that STDP in a two-layer SNN
is able to extract discriminative features and patterns
from stimuli. They used unsupervised learning rules
introduced by [131], [90], [132] to train the SNN for the
Modified National Institute of Standards and Technology
(MNIST) dataset [133] digit recognition with the best
performance of 95%.

Towards linking biologically plausible learning meth-
ods and conventional learning algorithms in neural net-
works, a number of deep SNNs have recently been devel-
oped. For example, Bengio et al. [134] proposed a deep
learning method using forward and backward neural
activity propagation. The learning rule in this network
is based on the idea that STDP implements the gradi-
ent descent learning rule [135], [136]. Using pre- and
postsynaptic spike trains, O’Connor and Welling [137]
developed a backpropagation algorithm in deep SNNs
using the outer product of pre- and postsynaptic spike
counts. They showed high performance of the spik-
ing multi-layer perceptron on the MNIST benchmark
(97.93%) which is comparable to the performance of
the conventional deep neural networks equipped with
rectified linear units (ReLUs) of 98.37%. Recently, Lee
et al. (2016) [57] proposed a backpropagation algo-
rithm by treating the neuron’s membrane potential as
the differentiable signal to act analogous to the non-
linear activation functions in traditional neural networks
(Fig. 2). The performance of 98.88% on the MNIST
dataset was reported in this study while the number
of computational operations were five times fewer than
traditional DNNs, in their experiments. To further reduce

the computational cost of learning in these deep SNNs,
Neftci et. al. (2017) [138] proposed an event-driven
random backpropagation (eRBP) algorithm simplifying
the backpropagation chain path. The eRBP rule used
an error-modulated synaptic plasticity in which all the
information used for learning was locally available at
the neuron and synapse [138].

Fig. 2: Deep SNN equipped with backpropagation pro-
posed by Lee et. al. [57]. The neuron’s activation value,
al,i, is given by the neuron’s membrane potential. The
differentiable activation function, which is calculated
by the neuron’s excitatory input, lateral inhibition, and
threshold, is used for developing backpropagation using
the chain rule. The output activation value of the current
layer (layer l) is used as input for the next layer in the
backpropagation algorithm.

A more direct approach to taking advantage of power-
efficient SNNs is to convert an offline trained DNN
to a neuromorphic spiking platform (ANN-to-SNN),
specifically for hardware implementation [139]. To sub-
stitute for the floating-point activation values in DNNs,
rate-based coding is generally used in which higher
activations are replaced by higher spike rates. Using
this approach, several models have been developed that
obtained excellent accuracy performance [140], [141],
[142], [143]. In a separate effort to assess the power
consumption of deep SNNs, Neil et al [144] studied
many different models, all of which achieved the same
accuracy rate of 98% on the MNIST digit recognition
task. They all used the same 784-1200-1200-10 three-
layer architecture but applied optimized parameters and
SNN architecture settings, in ANN-to-SNN conversion,

to reduce the power and latency of the model. The
performance of a DNN and its converted deep SNN
versus the total required operations is shown in Fig. 3.

0 0.5 1 1.5 2 2.5 3x10
6

0

20

40

60

80

100

Total Operations

A
cc

ur
ac

y
(%

)

Fig. 3: The total number of operations needed to achieve
a given accuracy for MNIST classification by deep SNNs
converted from an offline trained deep neural network
in comparison with the traditional (non-spiking) deep
neural network [144]. The vertical dashed line shows
the number of operations required for the non-spiking
deep neural network to achieve the accuracy of 98%.
The other curves show the accuracy of 522 deep SNNs
(with different network setups) versus the number of
operations. The pink curves show the networks that
achieve less than 98% accuracy within the computing
constraint. The colored vertical lines on the horizontal
axis indicate the number of operations at which the
corresponding SNNs reached 98% accuracy.

B. Spiking CNNs

Deep convolutional neural networks (DCNNs) are
mostly used in applications involving images. They
consist of a sequence of convolution and pooling (sub-
sampling) layers followed by a feedforward classifier
like that in Fig. 1. This type of network has shown
outstanding performance in image recognition [1], [145],
[146], [147], speech recognition [148], [149], [150],
bioinformatics [151], [152], [153], object detection and
segmentation [154], [7], and so forth. Fig. 4 shows
the LeNet architecture, an early deep CNN, for image
classification [155], [156], [157]. The question is how an
spiking CNN with such an architecture can be trained
while incorporating traditional CNN properties. In the
case of vision, the first layer of convolution is interpreted
as extracting primary visual features (sometimes resem-
bling oriented-edge detectors modeled by the outputs of

Gabor filters [158]). Subsequent layers extract increas-
ingly more complex features for classification purposes.
The pooling layer performs subsampling and reduces the
size of the previous layer using an arithmetic operation
such as maximum or average over a square neighborhood
of neurons in the relevant feature map. Later in the
hierarchy, these layers develop invariance to changes in
orientation, scale, and local translation.

The representational properties of early layers in the
CNN mentioned above are similar to the response prop-
erties of neurons in primary visual cortex (V1), which
is the first cortical area in the visual hierarchy of the
primate’s brain. For example, neurons in area V1 detect
primary visual features, such as oriented edges, from
input images [159], [160]. Each V1 neuron is selective
to a particular orientation, meaning that when a stimulus
with this orientation is presented, only selective neurons
to this orientation respond maximally. Representation
learning methods, which use neural networks such as au-
toencoders and sparse coding schemes, learn to discover
visual features similar to the receptive field properties
found in V1 [161], [162], [163], [164]. Bio-inspired
SNNs also have obvious footprints in representation
learning using sparse coding [165], [166], independent
component analysis (ICA) [167], and an STDP-based
autoencoder [168].

As mentioned earlier, CNNs commonly use V1-like
receptive field kernels in early layers to extract features
from stimuli by convolving the kernels over the input
(e.g. image). Subsequent layers combine the previous
layer’s kernels to learn increasingly complex and abstract
stimulus features. Representation filters (trained or hand-
crafted) and STDP learning rules can be used to develop
spiking CNNs. A convolutional/pooling layer trained by
a local spike-based representation learning algorithm is
shown in Fig. 5. Hand-crafted convolutional kernels have
been used in the first layer of a number of spiking CNNs
that have obtained high classification performance [59],
[84], [60], [169], [170]. Difference-of-Gaussian (DoG)
is a common hand-crafted filter that is used to extract
features in the early layers of SNNs. This choice is bio-
motivated to mimic inputs to the mammalian primary
visual cortex. A recent study has used a layer of DoG
filters as input layer of an SNN that is followed by more
convolutional/pooling layers trained by STDP [170].
This network architecture extracted visual features that
were sent to an SVM classifier, yielding accuracy of
98.4% on MNIST. To train convolutional filters, layer-
wise spiking representation learning approaches have
been implemented in recent spiking CNNs [171], [172],

[173], [174]. Tavanaei et al. (2017) [171], [172] used
SAILnet [165] to train orientation selective kernels used
in the initial layer of a spiking CNN. The convolutional
layer in this network is followed by a feature discovery
layer equipped with an STDP variant [60] to extract vi-
sual features for classification. Implementing the stacked
convolutional autoencoders [173] showed further im-
provement in performance on MNIST (99.05%), which
is comparable to the traditional CNNs.

Non-spiking CNNs are trained using the backprop-
agation algorithm. Recently, backpropagation has also
been employed for training spiking CNNs [57], [173].
Panda and Roy (2016) [173], using approximations de-
veloped in [175], showed how to build a hierarchical
spiking convolutional autoencoder (AE) using backprop-
agation. The spiking convolutional autoencoder is an
important module for enabling the construction of deep
spiking CNNs. Their proof-of-concept implementation
(SpikeCNN) used two learning layers on the MNIST
dataset (handwritten digits) [155] and three learning
layers on the CIFAR-10 dataset (10-category tiny im-
ages) [176]. They used local, layer-wise learning of con-
volutional layers while Lee et. al. (2016) [57] developed
an end-to-end gradient descent learning method. Both
methods used the neural membrane potential as replace-
ments for differentiable activation functions to apply
the backpropagation algorithm. Lee et. al.’s approach
(for the spiking CNN) [57] showed better performance
than the layer-wise convolutional autoencoders [173]. In
these models, higher membrane potential correlates with
higher spike probability.

The main approach to take advantage of spiking
platforms while avoiding the training process of spik-
ing CNNs is to convert an already trained CNN to
a spiking architecture by using the trained synaptic
weights, similar to the ANN-to-SNN conversion method.
Many studies have shown high performance of converted
spiking CNNs (close to conventional CNNs) while us-
ing fewer operations and consuming less energy [177],
[178], [141], [179], which enable the deep CNNs to be
implemented on hardware [180], [181], [182]. One of
the initial successful CNN-to-SNN conversion methods
for energy efficient pattern recognition is the architecture
shown in Fig. 6 [183]. Later, Diehl et al. (2015) [140]
improved this architecture using weight normalization to
reduce performance loss. Recent work by Rueckauer et
al. [184], [142] proposed several conversion criteria such
that the new spiking CNN recognize’s more difficult ob-
jects than MNIST (e.g. CIFAR-10 and ImageNet [185]).

Fig. 4: LeNet: Early CNN proposed by LeCun et. al. [155], [156]. The network consists of two convolutional/pooling
layers followed by fully connected layers for image classification.

Fig. 5: Representation learning (SAILnet [165]) for layer-wise unsupervised learning of a spiking CNN [172].
The excitatory synaptic weights connected to neurons in the representation layer specify convolutional filters. This
architecture determines that representation learning in single-layer SNNs can be utilized to train layer-wise spiking
CNNs.

Fig. 6: Spiking CNN architecture developed by Cao et. al. [183]. The input image, after pre-processing, is converted
to spike trains based on the pixel intensity. The spiking layers use the weights trained by a non-spiking CNN. The
last component selects the neuron with maximum activity (spike frequency) as the image’s class.

C. Spiking Deep Belief Networks

Deep belief networks (DBNs) [48] are a type of
multi-layer network initially developed by Hinton et
al. (2006) [186]. They efficiently use greedy layer-
wise unsupervised learning and are made of stochastic
binary units, meaning that the binary state of the unit
is updated using a probability function. The layer-wise
method stacks pre-trained, single-layer learning modules
known as restricted Boltzmann machines (RBMs). The
representation layer in an RBM is restricted from having
lateral connections. This enables the learning algorithm
to optimize the representation by making use of indepen-
dence assumptions among the representation units, given
a particular input state. The original DBN architecture
was successfully trained on the MNIST dataset and
is shown in Figure 7a. The RBMs are trained in a
layerwise fashion by contrastive divergence (CD), which
approximates a maximum-likelihood learning algorithm.
Unlike backpropagation, the CD update equations do not
use derivatives. The pre-trained hierarchy is fine-tuned
by backpropagation if labeled data are available. DBNs
provide a layer-wise structure for feature extraction,
representation, and universal approximation [187], [188],
[189].

Lee et. al. (2008) [190] used interleaving CD with
gradient descent on the sparsity term to implement sparse
DBNs which were used to model cortical visual areas
V1 and V2. Further extensions of the model led to
a convolutional sparse DBNs [191]. This was accom-
plished by redefining the energy function to be consistent
with the tied weights of a convolutional network and
then using Gibbs sampling to realize the appropriate
weight update rules. DBNs and convolutional DBNs
have successfully been employed in many areas such
as visual processing [192], [193], [194], [195], audio
processing [196], [197], [198], [199], [200], time series
forecasting [201], and protein folding [202].

The first step in developing a spiking DBN is to start
with a spiking RBM. Figure 7b shows the architecture of
a spiking RBM introduced by Neftci et al. (2014) [203].
A spiking RBM uses stochastic integrate-and-fire neu-
rons instead of the memoryless stochastic units in a
standard RBM. Neftci et al. (2014) showed that, in
the context of a particular type of spiking network,
a variant of STDP can approximate CD. That is, the
learned distributions for spiking networks capture the
same statistical properties as the learned distributions
for the equivalent non-spiking networks, establishing an
important foundational result.

(a)

(b)

Fig. 7: (a): The DBN proposed by Hinton et. al. [186]
for MNIST image classification. This network consists
of three stacked RBMs with 500, 500, and 2000 repre-
sentation neurons. The input and output include 784 (as
the number of pixels, 28×28) and 10 (as the number of
classes, 0,...,9) neurons, respectively. (b): The spiking
RBM architecture introduced by Neftci et. al. [203]
consisting of 500 hidden neurons, 784 input neurons,
and 40 class neurons (824 visible neurons).

One approach toward developing functional spiking
DBNs is to convert previously trained DBNs to spiking
platforms similar to the conversion method explained
for SNNs or spiking CNNs. The first spiking DBN
was introduced by O’Connor et al. (2013) [204] in
which a DBN is converted to a network of LIF spiking
neurons for MNIST image classification. This work was
then extended [205] to develop a noise robust spiking
DBN and as well as conforming to hardware constraints.
The spiking DBNs and RBMs are power-efficient and
this enables them to be implemented on low latency
hardware with high accuracy close to that of traditional
DBNs [206], [207], [208].

Recently, it has been shown there is an equivalence
between so called ‘hybrid’ Boltzmann machines (HBMs)
[209] and Hopfield networks [210], [211]. An HBM is a
restricted Boltzmann machine in which the hidden (rep-
resentation) units can take on continuous values (while
the visible units still have binary values) [209]. When

the functions within the HBM are marginalized over the
hidden units, both the Hopfield and the HBM systems
have been shown to be thermodynamically equivalent.
Although Hopfield networks are primarily used as mod-
els of pattern association, the thermodynamic equiva-
lence allows them to be simulated by HBMs. In the
HBM, the N binary visible units correspond to binary
stochastic neurons in the Hopfield network and the P
hidden units in the HBM correspond to stored patterns in
the Hopfield network. HBMs offer a new way to simulate
Hopfield networks while using fewer synapses. Specifi-
cally, a Hopfield network requires updating N neurons
and N/(N − 1)/2 synapses, whereas the HBM requires
H +P neurons and updating HP synapses, where P is
the number of stored patterns. Further developments of
this theory are found in [212], [213], [214].

D. Recurrent SNNs

A neural network is recurrent if its directed graph
representation has a cycle. Any network that has a
winner(s)-take-all (WTA) module or a softmax module is
at least implicitly recurrent because equivalent function
is implemented in the brain by mutually recurrent in-
hibitory connections. Any network trained by backprop-
agation is also implicitly recurrent because the training
algorithm (as explained in Section II-B3) presupposes
the existence of recurrent connections. Sections III-D1
and III-D2 discuss gated SNNs and reservoir models, re-
spectively. Both types of models are intended to process
sequential data. The former processes spatiotemporal
data and is usually intended as a model of cortical
microcircuits. The latter focuses more on sequential data
only.

1) Gated SNNs: Recurrent neural networks (RNNs)
are used for processing temporal information. The most
common method to train RNNs is backpropagation
through time (BPTT), which unrolls the recurrent net-
work for some number of steps into the past, and then
trains the unrolled network as if it was a feedforward
network. Since the same recurrent weights are shared
through all unrolled layers for the resulting feedforward
network, there are issues in training for long sequences,
specifically the emergence of vanishing and exploding
gradients. In the former case, the network stops learning
and in the latter, the training becomes unstable [215].

Because of these problems, the research in [216]
introduced an innovation into recurrent networks called
a constant error carousel (CEC) that avoided repeated
multiplication of derivatives. These have become known
as gated recurrent networks and have virtually replaced

traditional RNNs. The first gated recurrent network was
the long short-term memory (LSTM) [216]. LSTMs
and other gated recurrent networks (GRUs) [217] are
conventional ANNs in the sense that they do not use
spiking neurons, but they are also unconventional in the
sense that they replace units having recurrent connections
with ‘cells’ that contain state as well as gates and,
because of this, can readily adapt to the structure of
input sequences. The gates control information flow into,
out of, and within the cells. The gates are controlled
by trainable weights. The topic we consider in this
subsection is the current status of the field with regard
to creating spiking LSTMs or gated recurrent networks.

There are only a few recurrent SNNs, in which con-
ventional (non-spiking) RNNs are converted to spiking
frameworks.

Shrestha et al. (2017) [218] implemented an energy-
efficient spiking LSTM onto the IBM TrueNorth neu-
rosynaptic system platform [219]. To do this, they had
to solve two problems. The first was to build a spik-
ing LSTM and the second was to implement it on a
neuromorphic chip. We focus on the former problem.
One of their design choices was to represent positive
and negative values using two channels of spike trains.
This is bio-plausible and the DoG filters discussed in
Section III-B commonly come in two forms for exactly
this purpose. The inputs, outputs, and most of the internal
LSTM variables used rate coding. There was one excep-
tion to this where the value of the variable representing
cell state needed higher precision and was represented
by a spike burst code. The main thrust of the paper was
overcoming the complications in mapping the LSTM to
a neuromorphic chip and accuracy results on standard
benchmarks were not reported.

The phased LSTM [220], although not a spiking
LSTM, is well suited to process event-driven, asyn-
chronously sampled data, which is a common task for
SNNs. This makes it useful to process inputs from
(possibly several) biomorphic input sensors that sample
inputs at multiple time scales. It is also potentially useful
for processing outputs from SNNs. The innovation of
the phased LSTM is the addition of a time gate to the
usual set of gates within a memory cell. The time gate is
synchronized to a rhythmic oscillation. When ‘open’, the
time gate allows the usal updates to the hidden output
and cell state vectors. When ‘closed’ it prevents the
updates forcing the hidden and cell vectors to retain
their values. The units within these vectors can have
separate with their own oscillation periods and phases.
This allows the phased LSTM to quantize its input at

different time scales. In a number of experiments that
involved event-driven sampling at varied time scales, the
phased LSTM has trained more quickly than a regular
LSTM while performing as accurately as the regular
LSTM.

2) Liquid State Machines and Reservoirs: The neo-
cortex, unique to mammals, has the ability to drastically
scale its surface area from about 1 square cm in the
mouse to about 2,500 square cm in the human while
keeping its thickness fairly constant (≤ 3 mm). To
support this expansion, one hypothesis is that mammals
discovered a structural motif that may be replicated
and functionally adapted to new tasks. Initially this was
called a minicolumn consisting of about 300 excitatory
and inhibitory recurrently connected neurons that span
the six layers of the three-millimeter-thick neocortex.
More recently the term canonical microcircuit has been
used. There has been great interest in modeling this
hypothesized module.

In an effort to model the computations that might
be taking place within the canonical neocortical micro-
circuit, the liquid state machine (LSM) was introduced
[221] which has since been partly absorbed by the field
of reservoir computing [222], [223]. In an LSM context,
a neural reservoir is a sparsely connected recurrent SNN
composed of excitatory and inhibitory neurons designed
to have enough structure to create a universal analog
fading memory. This module is constructed so that it
can transform a set of possibly multi-modal spike trains
into a spatiotemporal representation whose instantaneous
state can be recognized and readout by a layer of linear
units.

A reservoir model has three parts:

1) It needs one or more sensory-based, time-varying
input streams of spikes or continuous inputs that
can be transduced into spikes.

2) It needs a recurrent SNN known as a reservoir or
liquid whose synapses may (or may not) be able to
learn. The neurons are given physical locations in
space as a means to establish connection probabil-
ities, which generally decrease exponentially with
distance. Some ideas on why this might be useful
are given in [224]. Connections tend to be sparse
to avoid chaotic dynamics. The ratio of excitatory
to inhibitory neurons is usually about 80% to 20%
to reflect the ratio found in the neocortex.

3) It needs (usually) linear readout units which can be
trained to recognize instantaneous patterns within
the liquid. Part of the motivation for the linearity

is to prove that the information in the reservoir’s
dynamically evolving state can be easily read out.

The neuromorphic cube (NewCube) [126], [225],
[226] is a broad and futuristic model proposed as a
unifying computational architecture for modeling multi-
modality spatiotemporal data, most especially data re-
lated to the brain, such as EEG analysis [227]. The
core of the NeuCube architecture is a 3D reservoir of
spiking neurons trained by an STDP-like mechanism.
The reservoir’s structure is intended to directly reflect
the inter-area connectivity of the human neocortex as
revealed by structural connectivity based on anatomy
such as diffusion tensor imaging (DTI) and functional
connectivity based on measures like functional magnetic
resonance imaging (fMRI). This is contrast to the use of
a reservoir as a model of a neocortical microcircuit. The
claim of NeuCube is that the connectivity of the brain
at the macro scale obeys the properties of a reservoir.

The previous subsection discussed the status of at-
tempts to create spiking versions of LSTMs. Rather
than pursuing a direct approach to structurally trans-
lating an LSTM to a spiking version, the work of
[228] took a reservoir inspired approach. Their LSNN
architecture (long short-term memory SNNs) consisted
of four modules labeled: X , R, A, and Y . X provided
multiple streams of input spikes, R was the reservoir
consisting of excitatory and inhibitory neurons, A was
a module of excitatory neurons (connected to X , R,
and Y) with adaptive thresholds whose purpose was
in part to maintain a tight excitatory-inhibitory bal-
ance in R, and module Y consisted of the readout
neurons. The LSNN was trained using BPTT (Section
III-D1) with pseudo derivatives using the membrane
potential (as explained in Section II-B3). The network
achieved comparable accuracy performance to LSTMs
on the sequential MNIST benchmark and also on the
TIMIT Acoustic-Phonetic Continuous Speech Corpus.
Sequencial MNIST is a sequence learning benchmark for
assessing recurrent network performance first described
in [229]. The task is to recognize MNIST digits but now
the input is the set of 784 = 282 input pixels delivered
sequentially over consecutive time steps. Although the
LSNN architecture does not have a direct mapping to
the architecture of an LSTM, it has learning abilities that
are apparently unique to LSTMs. It has been shown that
LSTMs “can learn nonlinear functions from a teacher
without modifying their weights, and using their short-
term memory instead.” In [230], it was shown that
LSTMs had this property.

Another recent study, [231], has attempted to adapt the

architecture of a conventional LSTM to be a plausible
model of a cortical microcircuit. There were two inno-
vations in this model. First, to facilitate mapping to a
microcircuit, the multiplicative gating operations within
a standard LSTM were replaced with subtractive oper-
ations that could be implemented by lateral inhibitory
circuits in the neocortex. This lead to the name subLSTM
(subtractive LSTM). Second, to facilitate learning and
study using readily available deep learning frameworks,
the neural coding scheme was assumed to use rate-
coded LIF neurons. This allowed them to model spik-
ing neurons using a continuous approximation that was
compatible with deep learning environments. Their bio-
plausible subLSTM achieved comparable performance
to a standard LSTM on the sequential MNIST task.
Similar results were obtained in a language processing
benchmark. The subLSTMS did not perform better than
standard LSTMs but they have opened an avenue for
interdisciplinary dialog between questions of brain func-
tion and theoretical insights from deep learning.

These studies show a bright future of recurrent SNNs
which take advantages of the conventional RNNs and
the bio-inspired recurrent neural framework of reservoir
computing.

E. Performance Comparisons of Contemporary Models

Table I shows the previous models for developing deep
SNNs and their architectures along with their accuracy
rates on different datasets. This table shows two tracks
of spiking models: 1) using online learning and 2) using
offline learning (deployment). The latter method has
reported higher performance but it avoids training the
multi-layer SNNs by converting the offline trained neural
networks to the relevant spiking platform. On the other
hand, online learning offers multi-layer learning in SNNs
but reports lower accuracy rates. Additionally, as ex-
pected, the spiking CNNs have achieved higher accuracy
rates than the spiking DBNs and the fully connected
SNNs on image classification. This comparison provides
insight into different SNN architectures and learning
mechanisms to choose the right tool for the right purpose
in future investigations.

IV. SUMMARY

Deep learning approaches have recently shown break-
through performance in many areas of pattern recogni-
tion recently. In spite of their effectiveness in hierarchical
feature extraction and classification, these types of neural
networks are computationally expensive and difficult to
implement on hardware for portable devices. In another

line of research of neural network architectures, SNNs
have been described as power-efficient models because
of their sparse, spike-based communication framework.
Recent studies try to take advantages of both frameworks
(deep learning and SNN) to develop a multi-layer SNN
architecture to achieve high performance of recently
proved deep networks while implementing bio-inspired,
power-efficient platforms. Additionally, the literature has
shown that the brain detects stimuli patterns through
multi-layer SNNs communicating by spike trains via
adaptive synapses. The biologically realistic spiking neu-
rons communicate using spike trains which do not have
obvious derivatives. This makes SNNs unable to directly
use derivative-based optimization for training. This paper
reviewed novel learning approaches for different layers
of SNNs to address some of the open questions in
this field. As biological neurons use sparse, stochastic,
spike-based communication, a spiking network can be
an appropriate starting point for modeling the brain’s
functionality.

SNNs with specific neural architectures demand new
neuron models and learning techniques. Spiking neurons
communicate through discrete spike trains via synapses
adapting locally to distinguish the pattern of stimuli. The
quest to meet these requirements can be accomplished by
bio-inspired neural simulations for integrating the stimuli
and releasing discriminative spike patterns according
to the adaptive filters associated with synaptic weight
sets. An important challenge in developing SNNs is
to develop appropriate learning rules to detect spatio-
temporally local patterns of spike trains. In this paper
we reviewed state-of-the-art deep SNNs developed to
reach the performance of conventional deep learning
methods while providing a bio-inspired, power-efficient
platform. Three popular deep learning methods as deep
fully connected SNNs, spiking CNNs, and spiking DBNs
were reviewed. The performances reported by recent
approaches determine that the spike-based deep learning
methods perform as well as traditional DNNs. Further-
more, SNNs are based on the human brain functionality
and are able to perform much better than traditional ones
in the future, as human brain does. This paper reviewed
methods, network architectures, experiments, and results
of recently proposed deep spiking networks to be useful
for next studies and experiments.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in
Advances in neural information processing systems, 2012, pp.
1097–1105.

TABLE I: Summary of recent deep learning models developed in SNN platforms and their accuracy on MNIST [155],
[133], N-MNIST [232], CIFAR-10, and CIFAR-100 [176]. MNIST: handwritten digits. N-MNIST: neuromorphic-
MNIST representing a spiking version of MNIST. CIFAR: tiny colored images.

Model Architecture Learning method Dataset Acc
Feedforward, fully connected, multi-layer SNNs

O’Connor (2016) [137] Deep SNN Stochastic gradient descent MNIST 96.40
O’Connor (2016) [137] Deep SNN Fractional stochastic gradient descent MNIST 97.93
Lee (2016) [57] Deep SNN Backpropagation MNIST 98.88
Lee (2016) [57] Deep SNN Backpropagation N-MNIST 98.74
Neftci (2017) [138] Deep SNN Event-driven random backpropagation MNIST 97.98
Liu (2017) [108] SNN Temporal backpropagation (3-layer) MNIST 99.10
Eliasmith (2012) [129] SNN Spaun brain model MNIST 94.00
Diehl (2015) [130] SNN STDP (2-layer) MNIST 95.00
Tavanaei (2017) [118] SNN STDP-based backpropagation (3-layer) MNIST 97.20
Mostafa (2017) [109] SNN Temporal backpropagation (3-layer) MNIST 97.14
Querlioz (2013) [139] SNN STDP, Hardware implementation MNIST 93.50
Brader (2007)[128] SNN Spike-driven synaptic plasticity MNIST 96.50
Diehl (2015) [140] Deep SNN Offline learning, Conversion MNIST 98.60
Neil (2016) [144] Deep SNN Offline learning, Conversion MNIST 98.00
Hunsberger (2015) [177], [178] Deep SNN Offline learning, Conversion MNIST 98.37
Esser (2015) [141] Deep SNN Offline learning, Conversion MNIST 99.42

Spiking CNNs
Lee (2016) [57] Spiking CNN Backpropagation MNIST 99.31
Lee (2016) [57] Spiking CNN Backpropagation N-MNIST 98.30
Panda (2016) [173] Spiking CNN Convolutional autoencoder MNIST 99.05
Panda (2016) [173] Spiking CNN Convolutional autoencoder CIFAR-10 75.42
Tavanaei (2017) [171], [172] Spiking CNN Layer wise sparse coding and STDP MNIST 98.36
Tavanaei (2018) [174] Spiking CNN Layer-wise and end-to-end STDP rules MNIST 98.60
Kheradpisheh (2016) [170] Spiking CNN Layer wise STDP MNIST 98.40
Zhao (2015) [169] Spiking CNN Tempotron MNIST 91.29
Cao (2015) [183] Spiking CNN Offline learning, Conversion CIFAR-10 77.43
Neil (2016) [179] Spiking CNN Offline learning, Conversion N-MNIST 95.72
Diehl (2015) [140] Spiking CNN Offline learning, Conversion MNIST 99.10
Rueckauer (2017) [142] Spiking CNN Offline learning, Conversion MNIST 99.44
Rueckauer (2017) [142] Spiking CNN Offline learning, Conversion CIFAR-10 90.85
Hunsberger (2015) [177] Spiking CNN Offline learning, Conversion CIFAR-10 82.95
Garbin (2014) [181] Spiking CNN Offline learning, Hardware MNIST 94.00
Esser (2016) [182] Spiking CNN Offline learning, Hardware CIFAR-10 87.50
Esser (2016) [182] Spiking CNN Offline learning, Hardware CIFAR-100 63.05

Spiking RBMs and DBNs
Neftci (2014) [203] Spiking RBM Contrastive divergence in LIF neurons MNIST 91.90
O’Connor (2013) [204] Spiking DBN Offline learning, Conversion MNIST 94.09
Stromatias (2015) [205] Spiking DBN Offline learning, Conversion MNIST 94.94
Stromatias (2015) [206] Spiking DBN Offline learning, Hardware MNIST 95.00
Merolla (2011) [207] Spiking RBM Offline learning, Hardware MNIST 94.00
Neil (2014) [208] Spiking DBN Offline learning, Hardware MNIST 92.00

[2] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg,
and L. Fei-Fei, “ImageNet Large Scale Visual Recognition
Challenge,” International Journal of Computer Vision (IJCV),
vol. 115, no. 3, pp. 211–252, 2015.

[3] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436–444, 2015.

[4] J. Schmidhuber, “Deep learning in neural networks: An
overview,” Neural Networks, vol. 61, pp. 85–117, 2015.

[5] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,”
in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2016, pp. 2818–2826.
[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning

for image recognition,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2016, pp. 770–
778.

[7] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional
networks for semantic segmentation,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2015, pp. 3431–3440.

[8] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich
feature hierarchies for accurate object detection and semantic
segmentation,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2014, pp. 580–587.
[9] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed,

N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath
et al., “Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,” IEEE
Signal Processing Magazine, vol. 29, no. 6, pp. 82–97, 2012.

[10] P. Mamoshina, A. Vieira, E. Putin, and A. Zhavoronkov,
“Applications of deep learning in biomedicine,” Molecular
Pharmaceutics, vol. 13, no. 5, pp. 1445–1454, 2016.

[11] S. Min, B. Lee, and S. Yoon, “Deep learning in bioinformat-
ics,” Briefings in bioinformatics, vol. 18, no. 5, pp. 851–869,
2017.

[12] S. R. Venna, A. Tavanaei, R. N. Gottumukkala, V. V. Ragha-
van, A. Maida, and S. Nichols, “A novel data-driven model
for real-time influenza forecasting,” bioRxiv, p. 185512, 2017.

[13] D. Hassabis, D. Kumaran, C. Summerfield, and M. Botvinick,
“Neuroscience-inspired artificial intelligence,” Neuron, vol. 95,
no. 2, pp. 245–258, 2017.

[14] R. VanRullen, “Perception science in the age of deep neural
networks,” Frontiers in Psychology, vol. 8, p. 142, 2017.

[15] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neu-
ronal dynamics: From single neurons to networks and models
of cognition. Cambridge University Press, 2014.

[16] A. L. Hodgkin and A. F. Huxley, “A quantitative description
of membrane current and its application to conduction and
excitation in nerve,” The Journal of physiology, vol. 117, no. 4,
pp. 500–544, 1952.

[17] Z. F. Mainen and T. J. Sejnowski, “Reliability of spike timing
in neocortical neurons,” Science, vol. 268, pp. 1503–1506,
1995.

[18] W. Bair and C. Koch, “Temporal precision of spike trains in
extrastriate cortex of the behaving macaque monkey,” Neural
Computation, vol. 8, no. 6, pp. 1185–1202, 1996.

[19] R. Herikstad, J. Baker, J. Lachaux, C. Gray, and S. Yen, “Nat-
ural movies evoke spike trains with low spike time variability
in cat primary visual cortex,” Journal of Neuroscience, vol. 31,
no. 44, pp. 15 844–15 860, 2011.

[20] T. Gollisch and M. Meister, “Rapid neural coding in the retina
with relative spike latencies,” Science, vol. 319, no. 5866, pp.
1108–1111, 2008.

[21] R. Sinha, M. Hoon, J. Baudin, H. Okawa, R. O. Wong,
and F. Rieke, “Cellular and circuit mechanisms shaping the
perceptual properties of the primate fovea,” Cell, vol. 168,
no. 3, pp. 413–426, 2017.

[22] J. D. Victor, “Spike train metrics,” Current opinion in neuro-
biology, vol. 15, no. 5, pp. 585–592, 2005.

[23] D. A. Butts, C. Weng, J. Jin, C.-I. Yeh, N. A. Lesica, J.-M.
Alonso, and G. B. Stanley, “Temporal precision in the neural
code and the timescales of natural vision,” Nature, vol. 449,
no. 7158, pp. 92–95, 2007.

[24] P. Reinagel and R. C. Reid, “Temporal coding of visual
information in the thalamus,” Journal of Neuroscience, vol. 20,
no. 14, pp. 5392–5400, 2000.

[25] K. H. Srivastava, C. M. Holmes, M. Vellema, A. R. Pack,
C. P. Elemans, I. Nemenman, and S. J. Sober, “Motor control
by precisely timed spike patterns,” Proceedings of the National
Academy of Sciences, p. 201611734, 2017.

[26] C. Tang, D. Chehayeb, K. Srivastava, I. Nemenman, and S. J.
Sober, “Millisecond-scale motor encoding in a cortical vocal
area,” PLoS biology, vol. 12, no. 12, p. e1002018, 2014.

[27] S. G. Wysoski, L. Benuskova, and N. Kasabov, “Evolving spik-
ing neural networks for audiovisual information processing,”
Neural Networks, vol. 23, no. 7, pp. 819–835, 2010.

[28] A. Gupta and L. N. Long, “Character recognition using spiking
neural networks,” in Neural Networks, 2007. IJCNN 2007.
International Joint Conference on. IEEE, 2007, pp. 53–58.

[29] B. Meftah, O. Lezoray, and A. Benyettou, “Segmentation
and edge detection based on spiking neural network model,”
Neural Processing Letters, vol. 32, no. 2, pp. 131–146, 2010.

[30] M.-J. Escobar, G. S. Masson, T. Vieville, and P. Kornprobst,
“Action recognition using a bio-inspired feedforward spiking
network,” International Journal of Computer Vision, vol. 82,
no. 3, pp. 284–301, 2009.

[31] J.-S. Liaw and T. W. Berger, “Robust speech recognition with
dynamic synapses,” in Neural Networks Proceedings, 1998.
IEEE World Congress on Computational Intelligence. The
1998 IEEE International Joint Conference on, vol. 3. IEEE,
1998, pp. 2175–2179.

[32] B. J. Kröger, J. Kannampuzha, and C. Neuschaefer-Rube,
“Towards a neurocomputational model of speech production
and perception,” Speech Communication, vol. 51, no. 9, pp.
793–809, 2009.

[33] C. Panchev and S. Wermter, “Spike-timing-dependent synaptic
plasticity: from single spikes to spike trains,” Neurocomputing,
vol. 58, pp. 365–371, 2004.

[34] A. Tavanaei and A. Maida, “Bio-inspired multi-layer spiking
neural network extracts discriminative features from speech
signals,” in International Conference on Neural Information
Processing. Springer, 2017, pp. 899–908.

[35] J. J. Wade, L. J. McDaid, J. A. Santos, and H. M. Sayers,
“SWAT: a spiking neural network training algorithm for clas-
sification problems,” Neural Networks, IEEE Transactions on,
vol. 21, no. 11, pp. 1817–1830, 2010.

[36] C. Näger, J. Storck, and G. Deco, “Speech recognition with
spiking neurons and dynamic synapses: a model motivated by
the human auditory pathway,” Neurocomputing, vol. 44, pp.
937–942, 2002.

[37] S. Loiselle, J. Rouat, D. Pressnitzer, and S. Thorpe, “Explo-
ration of rank order coding with spiking neural networks for
speech recognition,” in Neural Networks, 2005. IJCNN’05.
Proceedings. 2005 IEEE International Joint Conference on,
vol. 4. IEEE, 2005, pp. 2076–2080.

[38] S. Ghosh-Dastidar and H. Adeli, “Improved spiking neural
networks for EEG classification and epilepsy and seizure
detection,” Integrated Computer-Aided Engineering, vol. 14,
no. 3, pp. 187–212, 2007.

[39] N. Kasabov, V. Feigin, Z.-G. Hou, Y. Chen, L. Liang, R. Kr-
ishnamurthi, M. Othman, and P. Parmar, “Evolving spiking
neural networks for personalised modelling, classification and
prediction of spatio-temporal patterns with a case study on
stroke,” Neurocomputing, vol. 134, pp. 269–279, 2014.

[40] D. J. Felleman and D. C. Van Essen, “Distributed hierarchical
processing in the primate cerebral cortex.” Cerebral Cortex
(New York, NY: 1991), vol. 1, no. 1, pp. 1–47, 1991.

[41] T. Serre, “Hierarchical models of the visual system,” in Ency-
clopedia of computational neuroscience. Springer, 2014, pp.
1–12.

[42] W. A. Freiwald and D. Y. Tsao, “Functional compartmental-
ization and viewpoint generalization within the macaque face-
processing system,” Science, vol. 330, no. 6005, pp. 845–851,
2010.

[43] J. V. Stone, Principles of Neural Information Theory: Compu-
tational Neuroscience and Metabolic Efficiency. Sebtel Press,
2018.

[44] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy,
J. Sawada, F. Akopyan, B. L. Jackson, N. Imam, C. Guo,

Y. Nakamura et al., “A million spiking-neuron integrated
circuit with a scalable communication network and interface,”
Science, vol. 345, no. 6197, pp. 668–673, 2014.

[45] J.-s. Seo, B. Brezzo, Y. Liu, B. D. Parker, S. K. Esser, R. K.
Montoye, B. Rajendran, J. A. Tierno, L. Chang, D. S. Modha
et al., “A 45nm CMOS neuromorphic chip with a scalable
architecture for learning in networks of spiking neurons,” in
Custom Integrated Circuits Conference (CICC), 2011 IEEE.
IEEE, 2011, pp. 1–4.

[46] S. Carrillo, J. Harkin, L. McDaid, S. Pande, S. Cawley,
B. McGinley, and F. Morgan, “Advancing interconnect density
for spiking neural network hardware implementations using
traffic-aware adaptive network-on-chip routers,” Neural net-
works, vol. 33, pp. 42–57, 2012.

[47] S. Carrillo, J. Harkin, L. J. McDaid, F. Morgan, S. Pande,
S. Cawley, and B. McGinley, “Scalable hierarchical network-
on-chip architecture for spiking neural network hardware im-
plementations,” IEEE Transactions on Parallel and Distributed
Systems, vol. 24, no. 12, pp. 2451–2461, 2013.

[48] Y. Bengio, “Learning deep architectures for AI,” Foundations
and Trends in Machine Learning, vol. 2, no. 1, pp. 1–127,
2009.

[49] W. Maass, “To spike or not to spike: that is the question,”
Proceedings of the IEEE, vol. 103, no. 12, pp. 2219–2224,
2015.

[50] ——, “Networks of spiking neurons: the third generation of
neural network models,” Neural networks, vol. 10, no. 9, pp.
1659–1671, 1997.

[51] G. Rozenberg, T. Bck, and J. N. Kok, Handbook of natural
computing. Springer Publishing Company, Incorporated,
2011.

[52] H. S. Seung, “Learning in spiking neural networks by re-
inforcement of stochastic synaptic transmission,” Neuron,
vol. 40, no. 6, pp. 1063–1073, 2003.

[53] Q.-s. Liu, L. Pu, and M.-m. Poo, “Repeated cocaine expo-
sure in vivo facilitates LTP induction in midbrain dopamine
neurons,” Nature, vol. 437, no. 7061, p. 1027, 2005.

[54] T. Song, L. Pan, and G. Păun, “Asynchronous spiking neural
p systems with local synchronization,” Information Sciences,
vol. 219, pp. 197–207, 2013.

[55] L. Chavez-Noriega, J. Halliwell, and T. Bliss, “A decrease
in firing threshold observed after induction of the epsp-spike
(es) component of long-term potentiation in rat hippocampal
slices,” Experimental brain research, vol. 79, no. 3, pp. 633–
641, 1990.

[56] D. Huh and T. J. Sejnowski, “Gradient descent for spiking
neural networks,” arXiv preprint arXiv:1706.04698, pp. 1–10,
2017.

[57] J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training deep
spiking neural networks using backpropagation,” Frontiers in
Neuroscience, vol. 10, p. 508, 2016.

[58] W. Maass, “Lower bounds for the computational power of
networks of spiking neurons.” Neural Computation, vol. 8,
no. 1, pp. 1–40, 1996.

[59] T. Masquelier and S. J. Thorpe, “Unsupervised learning of
visual features through spike timing dependent plasticity,”
PLoS Comput Biol, vol. 3, no. 2, p. e31, 2007.

[60] A. Tavanaei, T. Masquelier, and A. S. Maida, “Acquisition of
visual features through probabilistic spike timing dependent
plasticity,” in Neural Networks (IJCNN), The 2016 Interna-
tional Joint Conference on. IEEE, 2016, pp. 1–8.

[61] M. Beyeler, N. D. Dutt, and J. L. Krichmar, “Categorization
and decision-making in a neurobiologically plausible spiking

network using a STDP-like learning rule,” Neural Networks,
vol. 48, pp. 109–124, 2013.

[62] S. Ghosh-Dastidar and H. Adeli, “Spiking neural networks,”
International Journal of Neural Systems, vol. 19, no. 04, pp.
295–308, 2009.

[63] N. Kasabov, K. Dhoble, N. Nuntalid, and G. Indiveri, “Dy-
namic evolving spiking neural networks for on-line spatio-
and spectro-temporal pattern recognition,” Neural Networks,
vol. 41, pp. 188–201, 2013.

[64] W. Gerstner and W. M. Kistler, Spiking neuron models: Single
neurons, populations, plasticity. Cambridge University Press,
2002.

[65] F. Rieke, Spikes: exploring the neural code. MIT press, 1999.
[66] S. M. Bohte, “The evidence for neural information process-

ing with precise spike-times: A survey,” Natural Computing,
vol. 3, no. 2, pp. 195–206, 2004.

[67] J. J. Hopfield et al., “Pattern recognition computation using
action potential timing for stimulus representation,” Nature,
vol. 376, no. 6535, pp. 33–36, 1995.

[68] S. M. Bohte, H. La Poutré, and J. N. Kok, “Unsupervised
clustering with spiking neurons by sparse temporal coding
and multilayer RBF networks,” IEEE Transactions on neural
networks, vol. 13, no. 2, pp. 426–435, 2002.

[69] W. M. Kistler, W. Gerstner, and J. L. van Hemmen, “Reduction
of the Hodgkin-Huxley equations to a single-variable threshold
model,” Neural Computation, vol. 9, no. 5, pp. 1015–1045,
1997.

[70] R. Jolivet, J. Timothy, and W. Gerstner, “The spike response
model: a framework to predict neuronal spike trains,” in Arti-
ficial Neural Networks and Neural Information Processing—
ICANN/ICONIP 2003. Springer, 2003, pp. 846–853.

[71] E. M. Izhikevich et al., “Simple model of spiking neurons,”
IEEE Transactions on neural networks, vol. 14, no. 6, pp.
1569–1572, 2003.

[72] A. Delorme, J. Gautrais, R. Van Rullen, and S. Thorpe,
“Spikenet: A simulator for modeling large networks of inte-
grate and fire neurons,” Neurocomputing, vol. 26, pp. 989–996,
1999.

[73] E. R. Kandel, J. H. Schwartz, T. M. Jessell, S. A. Siegelbaum,
A. J. Hudspeth et al., Principles of neural science. McGraw-
hill New York, 2000, vol. 4.

[74] N. Caporale and Y. Dan, “Spike timing-dependent plasticity:
a Hebbian learning rule,” Annu. Rev. Neurosci., vol. 31, pp.
25–46, 2008.

[75] H. Markram, W. Gerstner, and P. J. Sjöström, “A history
of spike-timing-dependent plasticity,” Spike-timing dependent
plasticity, p. 11, 2011.

[76] Y. Dan and M.-M. Poo, “Spike timing-dependent plasticity:
from synapse to perception,” Physiological reviews, vol. 86,
no. 3, pp. 1033–1048, 2006.

[77] S. Song, K. D. Miller, and L. F. Abbott, “Competitive Hebbian
learning through spike-timing-dependent synaptic plasticity,”
Nature neuroscience, vol. 3, no. 9, pp. 919–926, 2000.

[78] R. Guyonneau, R. VanRullen, and S. J. Thorpe, “Neurons tune
to the earliest spikes through STDP,” Neural Computation,
vol. 17, no. 4, pp. 859–879, 2005.

[79] T. Masquelier, R. Guyonneau, and S. J. Thorpe, “Spike timing
dependent plasticity finds the start of repeating patterns in
continuous spike trains,” PloS one, vol. 3, no. 1, p. e1377,
2008.

[80] T. Masquelier and S. R. Kheradpisheh, “Optimal local-
ist and distributed coding of spatiotemporal spike patterns

through stdp and coincidence detection,” arXiv preprint
arXiv:1803.00447, p. 99, 2018.

[81] T. Masquelier, R. Guyonneau, and S. J. Thorpe, “Competi-
tive STDP-based spike pattern learning,” Neural computation,
vol. 21, no. 5, pp. 1259–1276, 2009.

[82] T. Masquelier and S. J. Thorpe, “Learning to recognize objects
using waves of spikes and spike timing-dependent plasticity,”
in Neural Networks (IJCNN), The 2010 International Joint
Conference on. IEEE, 2010, pp. 1–8.

[83] A. Tavanaei and A. S. Maida, “A spiking network that learns
to extract spike signatures from speech signals,” Neurocom-
puting, vol. 240, pp. 191–199, 2017.

[84] S. R. Kheradpisheh, M. Ganjtabesh, and T. Masquelier, “Bio-
inspired unsupervised learning of visual features leads to
robust invariant object recognition,” Neurocomputing, vol. 205,
pp. 382–392, 2016.

[85] R. P. Rao, B. A. Olshausen, and M. S. Lewicki, Probabilistic
models of the brain: Perception and neural function. MIT
press, 2002.

[86] K. Doya, Bayesian brain: Probabilistic approaches to neural
coding. MIT press, 2007.

[87] M. C. Mozer, H. Pashler, and H. Homaei, “Optimal predictions
in everyday cognition: The wisdom of individuals or crowds?”
Cognitive Science, vol. 32, no. 7, pp. 1133–1147, 2008.

[88] K. P. Körding and D. M. Wolpert, “Bayesian integration in
sensorimotor learning,” Nature, vol. 427, no. 6971, pp. 244–
247, 2004.

[89] B. Nessler, M. Pfeiffer, and W. Maass, “STDP enables spiking
neurons to detect hidden causes of their inputs,” in Advances in
neural information processing systems, 2009, pp. 1357–1365.

[90] B. Nessler, M. Pfeiffer, L. Buesing, and W. Maass, “Bayesian
computation emerges in generic cortical microcircuits through
spike-timing-dependent plasticity,” PLoS Comput Biol, vol. 9,
no. 4, p. e1003037, 2013.

[91] S. Klampfl and W. Maass, “Emergence of dynamic memory
traces in cortical microcircuit models through STDP,” The
Journal of Neuroscience, vol. 33, no. 28, pp. 11 515–11 529,
2013.

[92] D. Kappel, B. Nessler, and W. Maass, “STDP installs in
winner-take-all circuits an online approximation to hidden
Markov model learning,” PLoS Comput Biol, vol. 10, no. 3,
p. e1003511, 2014.

[93] A. Tavanaei and A. S. Maida, “Studying the interaction of
a hidden Markov model with a Bayesian spiking neural
network,” in Machine Learning for Signal Processing (MLSP),
2015 IEEE 25th International Workshop on. IEEE, 2015, pp.
1–6.

[94] ——, “Training a hidden Markov model with a Bayesian
spiking neural network,” Journal of Signal Processing Systems,
pp. 1–10, 2016.

[95] D. J. Rezende, D. Wierstra, and W. Gerstner, “Variational
learning for recurrent spiking networks,” in Advances in Neu-
ral Information Processing Systems, 2011, pp. 136–144.

[96] S. Kullback and R. A. Leibler, “On information and suffi-
ciency,” The annals of mathematical statistics, vol. 22, no. 1,
pp. 79–86, 1951.

[97] J. Brea, W. Senn, and J.-P. Pfister, “Sequence learning with
hidden units in spiking neural networks,” in Advances in neural
information processing systems, 2011, pp. 1422–1430.

[98] D. Pecevski and W. Maass, “Learning probabilistic inference
through STDP,” eneuro, pp. ENEURO–0048, 2016.

[99] R. S. Zemel, R. Natarajan, P. Dayan, and Q. J. Huys, “Prob-

abilistic computation in spiking populations,” in Advances in
neural information processing systems, 2004, pp. 1609–1616.

[100] L. Buesing, J. Bill, B. Nessler, and W. Maass, “Neural dy-
namics as sampling: a model for stochastic computation in
recurrent networks of spiking neurons,” PLoS Comput Biol,
vol. 7, no. 11, p. e1002211, 2011.

[101] C. M. Bishop, Neural Networks for Pattern Recognition.
Oxford University Press, 1995.

[102] S. Grossberg, “Competitive learning: From interactive activa-
tion to adaptive resonance,” Cognitive Science, vol. 11, no.
23-63, 1987.

[103] T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman,
“Randome synaptic feedback weights support error backprop-
agation for deep learning,” Nature Communications, pp. 1–10,
2016.

[104] F. Zenke and S. Ganguli, “Superspike: Supervised learning
in multi-layer spiking neural networks,” Neural Computation,
vol. 30, no. 6, pp. 1514–1541, 2017.

[105] S. M. Bohte, J. N. Kok, and H. La Poutre, “Error-
backpropagation in temporally encoded networks of spiking
neurons,” Neurocomputing, vol. 48, no. 1, pp. 17–37, 2002.

[106] O. Booij and H. tat Nguyen, “A gradient descent rule for spik-
ing neurons emitting multiple spikes,” Information Processing
Letters, vol. 95, no. 6, pp. 552–558, 2005.

[107] S. Ghosh-Dastidar and H. Adeli, “A new supervised learning
algorithm for multiple spiking neural networks with appli-
cation in epilepsy and seizure detection,” Neural Networks,
vol. 22, no. 10, pp. 1419–1431, 2009.

[108] T. Liu, Z. Liu, F. Lin, Y. Jin, G. Quan, and W. Wen, “Mt-spike:
a multilayer time-based spiking neuromorphic architecture
with temporal error backpropagation,” in Proceedings of the
36th International Conference on Computer-Aided Design.
IEEE Press, 2017, pp. 450–457.

[109] H. Mostafa, “Supervised learning based on temporal coding
in spiking neural networks,” IEEE transactions on neural
networks and learning systems, pp. 1–9, 2017.

[110] Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Spatio-temporal
backpropagation for training high-performance spiking neural
networks,” arXiv preprint arXiv:1706.02609, pp. 1–10, 2017.

[111] F. Ponulak and A. Kasinski, “Supervised learning in spiking
neural networks with ReSuMe: sequence learning, classifica-
tion, and spike shifting,” Neural Computation, vol. 22, no. 2,
pp. 467–510, 2010.

[112] A. Kasinski and F. Ponulak, “Comparison of supervised
learning platforms for spike time coding in spiking neural
networks,” Int. J. Appl. Math. Comput. Sci, vol. 16, no. 1,
pp. 101–113, 2006.

[113] R. V. Florian, “The chronotron: A neuron that learns to fire
temporally precise spike patterns,” PLOS One, vol. 7, no. 8,
p. e40233, 2012.

[114] A. Mohemmed, S. Schliebs, S. Matsuda, and N. Kasabov,
“Span: Spike pattern association neuron for learning spatio-
temporal spike patterns,” International Journal of Neural Sys-
tems, vol. 22, no. 04, p. 1250012, 2012.

[115] ——, “Training spiking neural networks to associate spatio-
temporal input-output spike patterns,” Neurocomputing, vol.
107, pp. 3–10, 2013.

[116] R. Gütig and H. Sompolinsky, “The tempotron: a neuron
that learns spike timing-based decisions,” Nature neuroscience,
vol. 9, no. 3, pp. 420–428, 2006.

[117] J. D. Victor and K. P. Purpura, “Metric-space analysis of
spike trains: theory, algorithms and application,” Network:

computation in neural systems, vol. 8, no. 2, pp. 127–164,
1997.

[118] A. Tavanaei and A. S. Maida, “BP-STDP: Approximating
backpropagation using spike timing dependent plasticity,”
arXiv preprint arXiv:1711.04214, pp. 1–20, 2017.

[119] J.-P. Pfister, T. Toyoizumi, D. Barber, and W. Gerstner,
“Optimal spike-timing-dependent plasticity for precise action
potential firing in supervised learning,” Neural computation,
vol. 18, no. 6, pp. 1318–1348, 2006.

[120] J. Wang, A. Belatreche, L. Maguire, and T. M. McGinnity, “An
online supervised learning method for spiking neural networks
with adaptive structure,” Neurocomputing, vol. 144, pp. 526–
536, 2014.

[121] A. Tavanaei and A. S. Maida, “A minimal spiking neural
network to rapidly train and classify handwritten digits in
binary and 10-digit tasks,” International journal of advanced
research in artificial intelligence, vol. 4, no. 7, pp. 1–8, 2015.

[122] M. Mozafari, S. R. Kheradpisheh, T. Masquelier, A. Nowzari-
Dalini, and M. Ganjtabesh, “First-spike based visual catego-
rization using reward-modulated stdp,” IEEE Transactions on
Neural Networks and Learning Systems, In Press, pp. 1–24,
2018.

[123] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning.
MIT Press, 2016.

[124] S. R. Kheradpisheh, M. Ghodrati, M. Ganjtabesh, and
T. Masquelier, “Deep networks can resemble human feed-
forward vision in invariant object recognition,” Scientific re-
ports, vol. 6, p. 32672, 2016.

[125] ——, “Humans and deep networks largely agree on which
kinds of variation make object recognition harder,” Frontiers
in Computational Neuroscience, vol. 10, p. 92, 2016.

[126] N. K. Kasabov, “Neucube: A spiking neural network archi-
tecture for mapping, learning and understanding of spatio-
temporal brain data,” Neural Networks, vol. 52, pp. 62–76,
2014.

[127] S. G. Wysoski, L. Benuskova, and N. Kasabov, “Fast and
adaptive network of spiking neurons for multi-view visual
pattern recognition,” Neurocomputing, vol. 71, no. 13, pp.
2563–2575, 2008.

[128] J. M. Brader, W. Senn, and S. Fusi, “Learning real-world stim-
uli in a neural network with spike-driven synaptic dynamics,”
Neural computation, vol. 19, no. 11, pp. 2881–2912, 2007.

[129] C. Eliasmith, T. C. Stewart, X. Choo, T. Bekolay, T. DeWolf,
Y. Tang, and D. Rasmussen, “A large-scale model of the
functioning brain,” Science, vol. 338, no. 6111, pp. 1202–1205,
2012.

[130] P. U. Diehl and M. Cook, “Unsupervised learning of digit
recognition using spike-timing-dependent plasticity,” Frontiers
in Computational Neuroscience, vol. 9, pp. 1–9, 2015.

[131] A. Morrison, A. Aertsen, and M. Diesmann, “Spike-timing-
dependent plasticity in balanced random networks,” Neural
Computation, vol. 19, no. 6, pp. 1437–1467, 2007.

[132] J.-P. Pfister and W. Gerstner, “Triplets of spikes in a model of
spike timing-dependent plasticity,” Journal of Neuroscience,
vol. 26, no. 38, pp. 9673–9682, 2006.

[133] Y. LeCun, C. Cortes, and C. J. Burges, “The MNIST database,”
URL http://yann. lecun. com/exdb/mnist, 1998.

[134] Y. Bengio, D.-H. Lee, J. Bornschein, T. Mesnard, and Z. Lin,
“Towards biologically plausible deep learning,” arXiv preprint
arXiv:1502.04156, pp. 1–10, 2015.

[135] G. Hinton, “How to do backpropagation in a brain,” in Invited
talk at the NIPS’2007 Deep Learning Workshop, vol. 656,
2007.

[136] Y. Bengio, T. Mesnard, A. Fischer, S. Zhang, and Y. Wu,
“STDP-compatible approximation of backpropagation in an
energy-based model,” Neural Computation, pp. 555–577,
2017.

[137] P. O’Connor and M. Welling, “Deep spiking networks,” arXiv
preprint arXiv:1602.08323, pp. 1–16, 2016.

[138] E. O. Neftci, C. Augustine, S. Paul, and G. Detorakis, “Event-
driven random back-propagation: Enabling neuromorphic deep
learning machines,” Frontiers in Neuroscience, vol. 11, p. 324,
2017.

[139] D. Querlioz, O. Bichler, P. Dollfus, and C. Gamrat, “Immunity
to device variations in a spiking neural network with mem-
ristive nanodevices,” IEEE Transactions on Nanotechnology,
vol. 12, no. 3, pp. 288–295, 2013.

[140] P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu, and
M. Pfeiffer, “Fast-classifying, high-accuracy spiking deep net-
works through weight and threshold balancing,” in Neural
Networks (IJCNN), 2015 International Joint Conference on.
IEEE, 2015, pp. 1–8.

[141] S. K. Esser, R. Appuswamy, P. Merolla, J. V. Arthur, and D. S.
Modha, “Backpropagation for energy-efficient neuromorphic
computing,” in Advances in Neural Information Processing
Systems, 2015, pp. 1117–1125.

[142] B. Rueckauer, Y. Hu, I.-A. Lungu, M. Pfeiffer, and S.-C. Liu,
“Conversion of continuous-valued deep networks to efficient
event-driven networks for image classification,” Frontiers in
Neuroscience, vol. 11, p. 682, 2017.

[143] E. Stromatias, M. Soto, T. Serrano-Gotarredona, and
B. Linares-Barranco, “An event-driven classifier for spiking
neural networks fed with synthetic or dynamic vision sensor
data,” Frontiers in Neuroscience, vol. 11, p. 350, 2017.

[144] D. Neil, M. Pfeiffer, and S.-C. Liu, “Learning to be efficient:
Algorithms for training low-latency, low-compute deep spiking
neural networks,” in Proceedings of the 31st Annual ACM
Symposium on Applied Computing. ACM, 2016, pp. 293–
298.

[145] W. Rawat and Z. Wang, “Deep convolutional neural networks
for image classification: A comprehensive review,” Neural
Computation, pp. 2352–2449, 2017.

[146] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and
transferring mid-level image representations using convolu-
tional neural networks,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2014, pp. 1717–
1724.

[147] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, pp. 1–14, 2014.

[148] T. N. Sainath, A.-r. Mohamed, B. Kingsbury, and B. Ramab-
hadran, “Deep convolutional neural networks for LVCSR,” in
Acoustics, speech and signal processing (ICASSP), 2013 IEEE
international conference on. IEEE, 2013, pp. 8614–8618.

[149] O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, and G. Penn,
“Applying convolutional neural networks concepts to hybrid
nn-hmm model for speech recognition,” in Acoustics, Speech
and Signal Processing (ICASSP), 2012 IEEE International
Conference on. IEEE, 2012, pp. 4277–4280.

[150] O. Abdel-Hamid, L. Deng, and D. Yu, “Exploring convolu-
tional neural network structures and optimization techniques
for speech recognition.” in Interspeech, 2013, pp. 3366–3370.

[151] H. Zeng, M. D. Edwards, G. Liu, and D. K. Gifford, “Convolu-
tional neural network architectures for predicting DNA–protein
binding,” Bioinformatics, vol. 32, no. 12, pp. i121–i127, 2016.

[152] D. Quang and X. Xie, “Danq: a hybrid convolutional and
recurrent deep neural network for quantifying the function of
DNA sequences,” Nucleic acids research, vol. 44, no. 11, pp.
e107–e107, 2016.

[153] A. Tavanaei, A. S. Maida, A. Kaniymattam, and R. Loganan-
tharaj, “Towards recognition of protein function based on
its structure using deep convolutional networks,” in Bioin-
formatics and Biomedicine (BIBM), 2016 IEEE International
Conference on. IEEE, 2016, pp. 145–149.

[154] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in International
Conference on Medical Image Computing and Computer-
Assisted Intervention. Springer, 2015, pp. 234–241.

[155] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[156] Y. LeCun et al., “Lenet-5, convolutional neural networks,”
URL: http://yann. lecun. com/exdb/lenet, 2015.

[157] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, A. Rabinovich et al., “Going deeper
with convolutions.” CVPR, 2015.

[158] S. Marĉelja, “Mathematical description of the responses of
simple cortical cells,” JOSA, vol. 70, no. 11, pp. 1297–1300,
1980.

[159] D. H. Hubel and T. N. Wiesel, “Receptive fields of single
neurones in the cat’s striate cortex,” The Journal of physiology,
vol. 148, no. 3, pp. 574–591, 1959.

[160] ——, “Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex,” The Journal of physi-
ology, vol. 160, no. 1, pp. 106–154, 1962.

[161] P. Földiak, “Forming sparse representations by local anti-
hebbian learning,” Biological cybernetics, vol. 64, no. 2, pp.
165–170, 1990.

[162] B. A. Olshausen et al., “Emergence of simple-cell receptive
field properties by learning a sparse code for natural images,”
Nature, vol. 381, no. 6583, pp. 607–609, 1996.

[163] A. J. Bell and T. J. Sejnowski, “The “independent components”
of natural scenes are edge filters,” Vision research, vol. 37,
no. 23, pp. 3327–3338, 1997.

[164] M. Rehn and F. T. Sommer, “A network that uses few active
neurones to code visual input predicts the diverse shapes
of cortical receptive fields,” Journal of computational neuro-
science, vol. 22, no. 2, pp. 135–146, 2007.

[165] J. Zylberberg, J. T. Murphy, and M. R. DeWeese, “A sparse
coding model with synaptically local plasticity and spiking
neurons can account for the diverse shapes of V1 simple
cell receptive fields,” PLoS Comput Biol, vol. 7, no. 10, p.
e1002250, 2011.

[166] P. D. King, J. Zylberberg, and M. R. DeWeese, “Inhibitory
interneurons decorrelate excitatory cells to drive sparse code
formation in a spiking model of V1,” Journal of Neuroscience,
vol. 33, no. 13, pp. 5475–5485, 2013.

[167] C. Savin, P. Joshi, and J. Triesch, “Independent component
analysis in spiking neurons,” PLoS Comput Biol, vol. 6, no. 4,
p. e1000757, 2010.

[168] K. S. Burbank, “Mirrored STDP implements autoencoder
learning in a network of spiking neurons,” PLoS Comput Biol,
vol. 11, no. 12, p. e1004566, 2015.

[169] B. Zhao, R. Ding, S. Chen, B. Linares-Barranco, and H. Tang,
“Feedforward categorization on AER motion events using
cortex-like features in a spiking neural network,” IEEE trans-
actions on neural networks and learning systems, vol. 26,
no. 9, pp. 1963–1978, 2015.

[170] S. R. Kheradpisheh, M. Ganjtabesh, S. J. Thorpe, and
T. Masquelier, “Stdp-based spiking deep convolutional neural
networks for object recognition,” Neural Networks, vol. 99,
pp. 56–67, 2017.

[171] A. Tavanaei and A. S. Maida, “Bio-inspired spiking convo-
lutional neural network using layer-wise sparse coding and
STDP learning,” arXiv preprint arXiv:1611.03000, pp. 1–16,
2016.

[172] ——, “Multi-layer unsupervised learning in a spiking convo-
lutional neural network,” in Neural Networks (IJCNN), 2017
International Joint Conference on. IEEE, 2017, pp. 81–88.

[173] P. Panda and K. Roy, “Unsupervised regenerative learning
of hierarchical features in spiking deep networks for object
recognition,” in International Conference on Neural Networks
(IJCNN). IEEE, 2016, pp. 299–306.

[174] A. Tavanaei, Z. Kirby, and A. S. Maida, “Training spiking
ConvNets by STDP and gradient descent,” in Neural Networks
(IJCNN), The 2018 International Joint Conference on. IEEE,
2018, pp. 1–8.

[175] N. Anwani and B. Rajendran, “Normad-normalized approx-
imate descent based supervised learning rule for spiking
neurons,” in 2015 International Joint Conference on Neural
Networks (IJCNN). IEEE, 2015, pp. 1–8.

[176] A. Krizhevsky and G. Hinton, “Learning multiple layers of
features from tiny images,” pp. 1–60, 2009.

[177] E. Hunsberger and C. Eliasmith, “Spiking deep networks with
LIF neurons,” arXiv preprint arXiv:1510.08829, pp. 1–9, 2015.

[178] ——, “Training spiking deep networks for neuromorphic hard-
ware,” arXiv preprint arXiv:1611.05141, 2016.

[179] D. Neil and S.-C. Liu, “Effective sensor fusion with event-
based sensors and deep network architectures,” in Circuits
and Systems (ISCAS), 2016 IEEE International Symposium on.
IEEE, 2016, pp. 2282–2285.

[180] G. Indiveri, F. Corradi, and N. Qiao, “Neuromorphic architec-
tures for spiking deep neural networks,” in Electron Devices
Meeting (IEDM), 2015 IEEE International. IEEE, 2015, pp.
4–2.

[181] D. Garbin, O. Bichler, E. Vianello, Q. Rafhay, C. Gamrat,
L. Perniola, G. Ghibaudo, and B. DeSalvo, “Variability-
tolerant convolutional neural network for pattern recognition
applications based on oxram synapses,” in Electron Devices
Meeting (IEDM), 2014 IEEE International. IEEE, 2014, pp.
28–4.

[182] S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cassidy,
R. Appuswamy, A. Andreopoulos, D. J. Berg, J. L. McKinstry,
T. Melano, D. R. Barch et al., “Convolutional networks for
fast, energy-efficient neuromorphic computing,” Proceedings
of the National Academy of Sciences, p. 201604850, 2016.

[183] Y. Cao, Y. Chen, and D. Khosla, “Spiking deep convolutional
neural networks for energy-efficient object recognition,” In-
ternational Journal of Computer Vision, vol. 113, no. 1, pp.
54–66, 2015.

[184] B. Rueckauer, I.-A. Lungu, Y. Hu, and M. Pfeiffer, “Theory
and tools for the conversion of analog to spiking convolutional
neural networks,” arXiv preprint arXiv:1612.04052, pp. 1–9,
2016.

[185] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei, “Imagenet: A large-scale hierarchical image database,” in
Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on. IEEE, 2009, pp. 248–255.

[186] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning
algorithm for deep belief nets,” Neural computation, vol. 18,
no. 7, pp. 1527–1554, 2006.

[187] M. A. Salama, A. E. Hassanien, and A. A. Fahmy, “Deep belief
network for clustering and classification of a continuous data,”
in Signal Processing and Information Technology (ISSPIT),
2010 IEEE International Symposium on. IEEE, 2010, pp.
473–477.

[188] N. Le Roux and Y. Bengio, “Representational power of re-
stricted boltzmann machines and deep belief networks,” Neural
computation, vol. 20, no. 6, pp. 1631–1649, 2008.

[189] ——, “Deep belief networks are compact universal approxi-
mators,” Neural computation, vol. 22, no. 8, pp. 2192–2207,
2010.

[190] H. Lee, C. Ekanadham, and A. Y. Ng, “Sparse deep belief net
model for visual area V2,” in Advances in neural information
processing systems, 2008, pp. 873–880.

[191] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Unsupervised
learning of hierarchical representations with convolutional
deep belief networks,” Communications of the ACM, vol. 54,
no. 10, pp. 95–103, 2011.

[192] A. Krizhevsky and G. Hinton, “Convolutional deep belief
networks on CIFAR-10,” Unpublished manuscript, vol. 40,
2010.

[193] J. M. Susskind, G. E. Hinton, J. R. Movellan, and A. K.
Anderson, “Generating facial expressions with deep belief
nets,” in Affective Computing. InTech, 2008.

[194] W. K. Mleczko, T. Kapuściński, and R. K. Nowicki, “Rough
deep belief network-application to incomplete handwritten
digits pattern classification,” in International Conference on
Information and Software Technologies. Springer, 2015, pp.
400–411.

[195] P. Liu, S. Han, Z. Meng, and Y. Tong, “Facial expression
recognition via a boosted deep belief network,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 2014, pp. 1805–1812.

[196] H. Lee, P. Pham, Y. Largman, and A. Y. Ng, “Unsupervised
feature learning for audio classification using convolutional
deep belief networks,” in Advances in neural information
processing systems, 2009, pp. 1096–1104.

[197] S. Kang, X. Qian, and H. Meng, “Multi-distribution deep belief
network for speech synthesis,” in Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Conference on.
IEEE, 2013, pp. 8012–8016.

[198] A.-r. Mohamed, G. Dahl, and G. Hinton, “Deep belief net-
works for phone recognition,” in Nips workshop on deep learn-
ing for speech recognition and related applications, vol. 1,
no. 9, 2009, p. 39.

[199] P. Hamel and D. Eck, “Learning features from music audio
with deep belief networks.” in ISMIR, vol. 10. Utrecht, The
Netherlands, 2010, pp. 339–344.

[200] A.-r. Mohamed, G. E. Dahl, and G. Hinton, “Acoustic model-
ing using deep belief networks,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 20, no. 1, pp. 14–22,
2012.

[201] T. Kuremoto, S. Kimura, K. Kobayashi, and M. Obayashi,
“Time series forecasting using a deep belief network with
restricted boltzmann machines,” Neurocomputing, vol. 137, pp.
47–56, 2014.

[202] T. Jo, J. Hou, J. Eickholt, and J. Cheng, “Improving pro-
tein fold recognition by deep learning networks,” Scientific
Reports, vol. 5, p. 17573, 2015.

[203] E. Neftci, S. Das, B. Pedroni, K. Kreutz-Delgado, and
G. Cauwenberghs, “Event-driven contrastive divergence for
spiking neuromorphic systems,” Frontiers in Neuroscience,
vol. 8, pp. 1–14, 2014.

[204] P. O’Connor, D. Neil, S.-C. Liu, T. Delbruck, and M. Pfeiffer,
“Real-time classification and sensor fusion with a spiking deep
belief network,” Frontiers in Neuroscience, vol. 7, pp. 1–13,
2013.

[205] E. Stromatias, D. Neil, M. Pfeiffer, F. Galluppi, S. B. Furber,
and S.-C. Liu, “Robustness of spiking deep belief networks
to noise and reduced bit precision of neuro-inspired hardware
platforms,” Frontiers in Neuroscience, vol. 9, pp. 1–14, 2015.

[206] E. Stromatias, D. Neil, F. Galluppi, M. Pfeiffer, S.-C. Liu,
and S. Furber, “Scalable energy-efficient, low-latency im-
plementations of trained spiking deep belief networks on
spinnaker,” in Neural Networks (IJCNN), 2015 International
Joint Conference on. IEEE, 2015, pp. 1–8.

[207] P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, and
D. S. Modha, “A digital neurosynaptic core using embedded
crossbar memory with 45pj per spike in 45nm,” in Custom
Integrated Circuits Conference (CICC), 2011 IEEE. IEEE,
2011, pp. 1–4.

[208] D. Neil and S.-C. Liu, “Minitaur, an event-driven FPGA-
based spiking network accelerator,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 22, no. 12, pp.
2621–2628, 2014.

[209] A. Barra, A. Bernacchia, E. Santucci, and P. Contucci, “On the
equivalence of hopfield networks and boltzmann machines,”
Neural Networks, vol. 34, pp. 1–9, 2012.

[210] J. J. Hopfield, “Neural networks and physical systems with
emergent collective computational abilities,” Proceedings of
the national academy of sciences, vol. 79, no. 8, pp. 2554–
2558, 1982.

[211] J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the
Theory of Neural Computation. Addison-Wesley, 1991.

[212] A. Barra, G. Genovese, P. Sollich, and D. Tantari, “Phase tran-
sitions in restricted boltzmann machines with generic priors,”
Physical Review E, vol. 96, no. 4, p. 042156, 2017.

[213] ——, “Phase diagram of restricted boltzmann machines and
generalized hopfield networks with arbitrary priors,” Physical
Review E, vol. 97, no. 2, p. 022310, 2018.

[214] J. Tubiana and R. Monasson, “Emergence of compositional
representations in restricted boltzmann machines,” Physical
Review Letters, vol. 118, no. 13, p. 138301, 2017.

[215] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term
dependencies with gradient descent is difficult,” IEEE Trans-
actions on Neural Networks, vol. 5, no. 2, pp. 157–166, 1994.

[216] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[217] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical
evaluation of gated recurrent neural networks on sequence
modeling,” arXiv preprint arXiv:1412.3555, 2014.

[218] A. Shrestha, K. Ahmed, Y. Wang, D. P. Widemann, A. T.
Moody, B. C. Van Essen, and Q. Qiu, “A spike-based
long short-term memory on a neurosynaptic processor,” in
Computer-Aided Design (ICCAD), 2017 IEEE/ACM Interna-
tional Conference on. IEEE, 2017, pp. 631–637.

[219] F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza,
J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-
J. Nam et al., “Truenorth: Design and tool flow of a 65 mw
1 million neuron programmable neurosynaptic chip,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 34, no. 10, pp. 1537–1557, 2015.

[220] D. Neil, M. Pfeiffer, and S. Liu, “Phased lstm: Accelerating
neural network training for long or event-based sequences,” in
NIPS’16 Proceedings of the 30th International Conference on
Neural Information Processing Systems, 2016, pp. 3889–3897.

[221] W. Maass, T. Natschläger, and H. Markram, “Real-time com-
puting without stable states: A new framework for neural
computation based on perturbations,” Neural Computation,
vol. 14, no. 11, pp. 2531–2560, 2002.

[222] M. Lukoševičius and H. Jaeger, “Reservoir computing ap-
proaches to recurrent neural network training,” Computer
Science Review, vol. 3, no. 3, pp. 127–149, 2009.

[223] M. Lukoševičius, H. Jaeger, and B. Schrauwen, “Reservoir
computing trends,” KI-Künstliche Intelligenz, vol. 26, no. 4,
pp. 365–371, 2012.

[224] R. Pyle and R. Rosenbaum, “Spatiotemporal dynamics and
reliable computations in recurrent spiking neural networks,”
Physical Review Letters, vol. 118, no. 1, p. 018103, 2017.

[225] L. Paulun, A. Wendt, and N. K. Kasabov, “A retinotopic
spiking neural network system for accurate recognition of
moving objects using NeuCube and dynamic vision sensors,”
Frontiers in Computational Neuroscience, vol. 12, p. 42, 2018.

[226] S. Schliebs, H. N. A. Hamed, and N. Kasabov, “Reservoir-
based evolving spiking neural network for spatio-temporal pat-
tern recognition,” in Neural Information Processing. Springer,
2011, pp. 160–168.

[227] Z. G. Doborjeh, N. Kasabov, M. G. Doborjeh, and A. Sumich,
“Modelling peri-perceptual brain processes in a deep learning
spiking neural network architecture,” Scientific Reports, vol. 8,
no. 1, p. 8912, 2018.

[228] G. Bellec, D. Salaj, A. Subramoney, R. Legenstein, and
W. Maass, “Long short-term memory and learning-to-
learn in networks of spiking neurons,” arXiv preprint
arXiv:1803.09574, 2018.

[229] A. Lamb, A. Goyal, Y. Zhang, S. Zhang, A. Courville, and
Y. Bengio, “Professor forcing: A new algorithm for training
recurrent networks,” arXiv preprint arXiv:1610.09038, 2016.

[230] S. Hochreiter, A. S. Younger, and P. R. Conwell, “Learning to
learn using gradient descent,” in Intl Conf on Artificial Neural
Networks. Springer, 2001, pp. 87–94.

[231] R. Costa, I. A. Assael, B. Shillingford, N. de Freitas, and
T. Vogels, “Cortical microcircuits as gated-recurrent neural
networks,” in Advances in Neural Information Processing
Systems, 2017, pp. 272–283.

[232] G. Orchard, A. Jayawant, G. K. Cohen, and N. Thakor,
“Converting static image datasets to spiking neuromorphic
datasets using saccades,” Frontiers in Neuroscience, vol. 9,
p. 437, 2015.

	I Introduction
	II Spiking Neural Network: A Biologically Inspired Approach to Information Processing
	II-A SNN Architecture
	II-B Learning Rules in SNNs
	II-B1 Unsupervised Learning via STDP
	II-B2 Probabilistic Characterization of Unsupervised STDP
	II-B3 Supervised Learning

	III Deep Learning in SNNs
	III-A Deep, Fully Connected SNNs
	III-B Spiking CNNs
	III-C Spiking Deep Belief Networks
	III-D Recurrent SNNs
	III-D1 Gated SNNs
	III-D2 Liquid State Machines and Reservoirs

	III-E Performance Comparisons of Contemporary Models

	IV Summary
	References

