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1 Overview

1.1 The importance of snow in Svalbard 

Next to the ocean, snow is the second largest interface between the atmosphere and 
Earth’s surface during winter. Snow deposited on land or ice surfaces is thermodynamically 
unstable and in constant evolution through snow metamorphism, which is controlled by 
temperature gradients in the snowpack. Seasonal snowpacks are therefore very sensitive to 
changing climate conditions. In Svalbard, the seasonal snowpack (including glaciers) covers 
~60 to 100 % of the land between winter and summer. Changes in Arctic snowpack proper-
ties have been observed in the last decade in response to high-latitude warming (Bokhorst 
et al., 2016), and will likely continue in the future, with important anticipated effects on 
different aspects of the Svalbard environment, as reviewed below. Snow research could 
therefore become an important vehicle for monitoring and analysing the rate and effects of 
climate change in Svalbard. However, while efforts are on going to develop more and better 
remotely-sensed snow products for this region (Malnes et al., 2015; Aalstad et al., 2018), 
there are presently few regular in situ measurements in Svalbard for even basic snowpack 
properties (snow depth, density, temperature, hardness, the presence of ice layers, etc.). 
For example, Norway's Environmental monitoring of Svalbard and Jan Mayen (MOSJ) only 
reports snow cover duration data in three areas (Longyearbyen, Ny Ålesund and Sveagruva). 
More of these measurements, and others, are needed both to validate space borne obser-
vations, and to better understand and anticipate interactions between the changing snow 
cover and other Earth system components, i.e. the atmosphere, glaciers, soils, freshwater 
networks, the ocean and sea-ice. In what follows we discuss some of these aspects, with 
emphasis on recent research from Svalbard.

1.2 Snow-atmosphere interactions: Climatic and biogeochemical consequences

Owing to its high reflectivity (visible albedo of up to 0.9), snow cover plays a crucial role 
in Earth's energy budget (Lemke et al., 2007). Snow also has a very high specific surface 
area, allowing it to absorb and scavenge a wide variety of gases and aerosols from the 
atmosphere (Grannas et al., 2007; Nawrot et al., 2016), including some that affect its radi-
ative properties. For example, many recent studies have focused on the black carbon (BC) 
content of Arctic snow packs (Aamaas et al., 2011; Forsstrom et al., 2009, Khan et al., 2017; 
Sviashchennikov et al., 2014), which reduces the albedo of snow because the BC strongly 
absorbs solar radiation (Pedersen et al., 2015; Warren, 1984; Sviashchennikov et al., 2015). 
Physical, chemical, and biological processes involving organic matter in the snowpack also 
have significant impacts on atmospheric and biogeochemical cycles of carbon, nitrogen 
and other elements (Morin et al., 2008; McNeill et al., 2012). For example, the photochem-
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istry of organic compounds stored in the snowpack leads to volatile organic compound 
(VOC) production (i.e. CO2, CHCl3, (CH3)2S, CS2, CHBrCl2), and conversely acts as a sink for 
other compounds such as CO, COS, some halogenated compounds and hydrocarbons. As 
the Arctic climate warms, seasonal snow coverage is expected to decrease in some areas, 
exposing new sources of windblown dust and other aerosols, with impacts on the radiative 
balance of the atmosphere and cryosphere (Kylling et al., 2018). And as snow melts, the 
impurities stored within, including organic matter, nutrients, impurities and pollutants, can 
be released to the atmosphere or transferred by melt waters to soil or aquatic ecosystems 
(Kuhn, 2001, Björkman et al., 2014). Snow also provides nutrients for bacterial and fungal 
growth and acts as a habitat for a diverse community of micro-organisms (Maccario et al., 
2014) that, if active, metabolize chemical compounds and contribute to changes in the com-
position of the snow and the overlying atmosphere (Domine & Shepson, 2002, Amoroso 
et al., 2010). These microorganisms can in return, modify the albedo of the snow/ice and 
affect glacier melt rates (Ryan et al., 2018). Understanding and quantifying these processes 
necessitates interdisciplinarity and the consideration of a large number of variables, some of 
which are still difficult to measure in the field and require very specialized instruments and 
field protocols. Some current process-oriented research in Svalbard contributes to address 
this knowledge gap (e.g. Björkman et al, 2014: Hodson et al, 2010; Larose et al, 2010), but 
there remains a great degree of unfulfilled potential which should be addressed in future 
research priorities.

1.3 Snow is key for glacial mass balance and climate modelling

Svalbard is an ideal physical laboratory for understanding how changes in snow cover can 
influence glacial processes, and its consequences for ecosystems. Snow is the dominant 
mode of accumulation on Svalbard glaciers and therefore controls mass balance change (van 
Pelt et al., 2016a; Sobota, 2017) due to its high reflectivity that regulates melting efficiency, 
and its porous properties that store significant volumes of melt (Østby et al., 2017, Chris-
tianson et al., 2015; Ivanov, Sviashchennikov, 2015). For example, snow can delay the melt 
season of glaciers by several days following just 1 to 2 cm of fresh snow fall in the summer 
(Box et al., 2012; Østby et al., 2013). Smaller, lower elevation Svalbard glaciers are cooling 
and undergoing a transition from poly-thermal to cold-based temperature conditions (e.g. 
Hodgkins et al., 1999), which has marked effects on glacier dynamics. Modelling studies 
have now demonstrated the importance of snow cover for both initiating and maintaining 
rapid ice flow at the bed of glaciers (Schäfer et al, 2014). Storage of melt water within snow 
also moderates the transfer of water to the snow/ice interface and further to the subglacial 
environment via moulins and crevasses, thus further influencing subglacial hydraulics and 
glacier dynamics (Irvine-Fynn et al., 2011). Therefore, changes in snow cover influences 
ice dynamics, mass balance and the cascade of melt water, and the sediment and solute 
(including nutrients) discharged by glacier-fed rivers during the summer (Hodson et al., 
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2005). However, due to the spatial variability of snow accumulation (Taurisano et al., 2007; 
Moller et al., 2011), and significant redistribution effects by wind (Sauter et al., 2013; Laska 
et al., 2017); determining the total amount of mass accumulated on glaciers is difficult, 
time-consuming and still requires ground validation (van Pelt et al., 2016b). 

1.4 Importance of snow over sea ice

Sea ice that forms, grows, and melts on the ocean surface is primarily found in the Polar 
Regions and is generally overlain by snow. Climate change influences the extent and dura-
tion of sea ice cover (Arzel et al., 2006), which in turn affects ocean-atmosphere interactions 
and impacts marine ecosystems and biogeochemical processes (Montes-Hugo et al., 2009). 
Sea ice and snow packs are active interfaces, in which a range of physico-chemical and 
microbially mediated reactions involved in global biogeochemical cycles occur (Amoroso 
et al., 2010; Domine & Shepson, 2002; Larose et al., 2013a,b; Spolaor et al., 2014; Van-
coppenolle et al., 2013). The most prominent example is the formation of reactive halogen 
species (e.g. Br atoms and BrO) over snow-covered sea ice (Simpson et al., 2007) that can 
destroy ozone in the boundary layer on a large-scale (Jacobi et al., 2010). Models predicting 
the consequences of sea ice retreat rarely describe snow cover further than a single layer 
with invariable properties, despite its dynamical changes and its critical role in modulating 
sea-ice melt and dynamics. For example, the high albedo of snow almost prevents the ice 
from absorbing energy and therefore reduces its melting. However, snow is also a very good 
insulator (Sturm et al., 1997), protecting the ice surface from cooling in winter, which con-
sequently reduces its growth (Sturm et al., 2002). Due to the opacity of the sea-ice-snow 
system to incoming light, snow also controls the amount of light reaching the ocean surface, 
thus, controlling the phytoplankton production underneath sea ice (Fernández-Méndez et 
al., 2018).

1.5 Importance of snow for terrestrial ecosystems

The influence of seasonal snow cover on soil temperature, soil freeze-thaw processes, and 
permafrost (Etzelmüller et al., 2011, Gisnås et al., 2014) has considerable impacts on the 
carbon exchange processes and on the hydrological cycle in cold regions. Soil moisture is 
regulated by the supply of snowmelt water and rainfall as well as by the depth of the top 
layer of permafrost (thaw depth), which determines the level of groundwater during the 
growing season. Changes in snow depth and duration can have variable effects on plant 
growth and health (Opala-Owczarek et al., 2018). A warmer climate may lead to more 
frequent rain on snow (ROS) events and winter warm spells (Vikhamar-Schuler et al., 2016) 
with severe impacts for the vertebrate resident communities in Svalbard (sibling vole, Sval-
bard reindeer, rock ptarmigan and Arctic fox), where population growth rates, survival and 
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reproduction success can be reduced (Hansen et al., 2011, 2013a; Stien et al., 2012). Ice 
on the ground also impacts the herbivorous populations in relation to foraging availability 
(Phoenix & Bjerke, 2016). More interdisciplinary research is required to link snow physical 
properties (such as e.g. snow cover, depth, thermal and optical properties, liquid water and 
ice content, permeability) to the biology of plants and animals. Changing snow pack proper-
ties can therefore, affect the linkage between plants and herbivores, not only by modulating 
available forage quantity during the ice-covered period, but also through changes to the 
abundance of forage plants during summer, which impacts animal energy use and their 
spatial and temporal habitat (Loe et al., 2016; Stien et al., 2010).

1.6 Importance of snow for high latitude communities and societies in Svalbard

In Svalbard, snow cover affects the entire environment but also has direct and indirect 
economic, social and cultural impacts, notably including snow avalanche risk (Eckerstorfer & 
Christiansen, 2012, Eckerstorfer et al., 2014) and fresh water supply in remote settlements 
like Longyearbyen and Barentsburg. Changes in the frequency and type of winter precip-
itation will change the avalanche hazard for structures, residents, and visitors in Svalbard 
(Bokhorst et al., 2016). As a result of more frequent large winter storms, snow clearing 
costs in Arctic settlements could increase. Regional increases in winter snow accumulation 
could also lead to a deepening of the permafrost active layer, destabilizing infrastructures 
on permafrost (Etzelmüller et al., 2011; Instanes, 2016). Conversely, earlier and/or increased 
snowmelt could cause flooding, and damage to municipal water pipes and drainage systems 
(Instanes et al., 2016; Shevnina et al., 2017), and the frequency of soil desiccation can affect 
living conditions. Snow environments also attract hundreds of thousands of (eco) tourists to 
Svalbard. The snowy spring period (March-May) is getting more attractive with the number 
of monthly guest nights in April growing from 4000 in 1995 to 16000 in 2015 (Eeg-Henrik-
sen & Sjømæling, 2016). Whether these tourists are looking to observe biodiversity or enjoy 
outdoor winter activities (e.g. skiing, dog-sledding, snow-mobiling), snow cover changes will 
affect their recreational activities with important economic impacts for local stakeholders.
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1.7 Snow precipitation, wind redistribution and sublimation

Meteorological observations have been conducted around Longyearbyen since 1912, pre-
sumably making this the longest record from the High Arctic (Nordli et al., 2014). The 
recorded precipitation is very low on average—about 190 mm annually—throughout the 
entire record, which suggests that this area is an Arctic desert. The an annual precipitation 
in Ny-Ålesund is slightly higher (385 mm) with most precipitation falling in August-October 
(mainly as rain) and March (mainly as snow), while May-June correspond to the lowest rates 
(Førland et al. 2011). For the entire Svalbard archipelago, annual precipitation is estimated 
to range from 190 to 525 mm (Førland, Benestad et al. 2011). The harsh weather condi-
tions (e.g., blowing and drifting snow, undercatch in precipitation gauges during snowfall, 
and high wind speeds) complicate precipitation measurements in the Arctic (Førland et 
al. 2011). Despite new techniques, such as snow depth sensors (Hanne H. Christiansen, 
2013), correct precipitation values are still difficult to obtain. The precipitation series from 
Norwegian Arctic stations share a common feature; they all show a positive trend in the 
annual precipitation through the period as a whole, even though they begin at different 
points in time (from MOSJ precipitation dataset). Furthermore, snow drift and sublimation 
could play an important role in snow accumulation and the formation of the annual snow 
strata (Pomeroy et al. 1998). In particular, wind erosion and sublimation can remove the 
snow accumulted in the coastal areas, thereby exposing the ground or the ground ice layer 
if present. Additionally, snow distribution by wind drift could produce accumulation areas 
and increase the risk of avalanches in certain areas (Eckerstorfer & Christiansen, 2011; 
Hancock et al., 2018). 

2 Current snow-related research in Svalbard

Many different research groups from several countries and scientific disciplines have been 
or are currently investigating snow or snow-related phenomena in Svalbard. At least some 
of these groups have produced multi-year datasets of snowpack properties based on in-situ 
observations (Table 1). While some of these data are published (e.g. Boike et al., 2018; 
Ivanov et al., 2014; Kępski et al., 2017) or available on-line in data repositories, most are 
not. It would be beneficial to increase their accessibility through SIOS in order to reach a 
larger community of users.
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Table 1: Lists, know to SESS authors, long-term snow related datasets. As open-data policies 
among research operators on Svalbard are still under development, most of the datasets are not yet 
accessible on-line.

Region Responsible

institution(s)

Land cover

type

Data 
coverage

Data type(s) Data access

(Time coverage may differ 
for various snow properties)

Austfonna UiO/NPI Glacier 10 
years

Snow depth, 
SWE

Data access on 
request.

Barentsburg Murmansk Man-
agement of Hy-
drometeorological 
Service (Barentsburg 
research station), 
AARI

Land Since 
1947

Snow depth 
(routine 
measurements) 
since 1947.

Snow-area 
surveys 
(surrounding 
glaciers in 
Grønfjorden 
area), since 
2002.

Data access on 
request.

Recent snow 
depth record can 
be decoded from 
Barentsburg WMO 
20107 SYNOP 
messages 

Pyramiden AARI Land, land-
fast ice

1948-
1957

Snow depth, 
snow-area 
surveys

Data access on 
request.

Central 
Spitsbergen

UU Glacier > 20 
years

Snow depth, 
SWE, ionic 
composition of 
annual snow 
cover

Data access on 
request.

Hornsund IG PAS  Glacier Since 
2005

Snow depth Data accessible 
via Polish Polar 
Station Hornsund 
monitoring 
database

https://monitoring-
hornsund.igf.edu.pl

Hornsund IG PAS Land Since 
1983

Snow depth, 
SWE

Data accessible 
via Polish Polar 
Station Hornsund 
monitoring 
database

https://monitoring-
hornsund.igf.edu.pl
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Hornsund IG PAS Land Since 
2014

Snow cover 
extent (time-
lapse camera)

Processed time-
lapse imagery for 
period 2014-2016 
accessible via 
PANGAEA: https://
doi.org/10.1594/
PANGAEA.874387

Unprocessed 
imagery accessible 
via Polish Polar 
Station Hornsund 
monitoring 
database https://
monitoring-
hornsund.igf.edu.pl

Hornsund US Glacier Since 
2008

Snow depth 
(GPR profiles)

Data accessible via 
Center for Polar 
Studies database 
http://ppdb.us.edu.
pl/geonetwork

Longyearbyen UNIS Glacier 10 
years

Snow depth, 
SWE

Data access on 
request.

Longyearbyen NVE Land Snow 
information 
related to 
avalanches (eg. 
imagery, field 
reports, snow 
profiles)

Data accessible via 
regObs data portal

https://www.regobs.
no/

Ny-Ålesund NPI Land,  
glacier

10 
years

Snow depth, 
SWE

Basal ice on 
land

Data access on 
request.

Ny-Ålesund Met.no Land 1978-
2003

Snow depth Data accessible via 
eKlima

http://eklima.met.
no/

Ny-Ålesund AWI & others Land 1998-
2017

Snow depth 
and dielectric 
properties

Data accessible via 
PANGAEA 
https://doi.pangaea.
de/10.1594/
PANGAEA.880120

Ny-Ålesund CNR-IDPA Glacier Since 
2011

Chemical 
composition of 
annual snow 
cover

Data access on 
request.
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Ny-Ålesund CNR-ISAC Snow- at-
mosphere

Since 
2009

Vertical temp 
profile, Climate 
Change Tower 
(CCT)

Data access on 
request.

Ny-Ålesund CNR-IIA Land, 
glacier

2014-
2017

Spectral albedo 
(CCT)

Data access on 
request.

Ny-Ålesund CNR-IIA Land, 
glacier

Since 
1998

Spectral albedo 
on snow 
and ice on 
Brøggerhalvøya

Data access on 
request.

Ny-Ålesund AWI-IPEV/CNRS Land Since 
2016

Snow depth Data access on 
request.

Ny-Ålesund UiO Land 2012-
2014

Snow cover 
extent (time-
lapse camera)

Processed time-
lapse imagery for 
period 2014-2016 
can be accessed via 
PANGAEA:

https://doi.pangaea.
de/10.1594/
PANGAEA.846617

Svea Met.no Land 1974-
1979; 
2009-
2018

Snow depth Data accessible via 
eKlima

http://eklima.met.
no/

Acronyms: AARI: Arctic and Antarctic Research Institute (Russia); IG PAS: Institute of Geophysics, 
Polish Academy of Sciences; US: University of Silesia; NPI: Norwegian Polar Institute; UU: Univer-
sity of Uppsala; UNIS: University Centre in Svalbard; Met.no: Norwegian Meteorological Institute; 
NVE: Norwegian Water Resources and Energy Directorate; AWI: Alfred Wegener Institute for Polar 
and Marine Research; CNR: National Research Council of Italy; which includes IDPA: Institute 
for the Dynamics of Environmental Processes, ISAC: Institute for Atmospheric Science and Cli-
mate, and IIA: Institute for Atmospheric Pollution; IPEV: Institut Polaire Paul-Émile Victor, CNRS: 
National Research Center; UiO: University of Oslo. 

90 SESS Report 2018 – The State of Environmental Science in Svalbard



2.2 Snow observation platform and data exchange 

Currently several platforms exist for both researchers and the public to share and down-
load snow related data (e.g. RIS, REGOBS, MOSJ or eKlima). However, these platforms are 
usually oriented towards single disciplines or report already processed data. For example, 
REGOBS mainly focuses on precipitation related hazards, while MOSJ reports mass balance 
data calculated from snow accumulation and snow melt data, the actual snow density and 
depth data are absent. Most snow related data from Svalbard are still stored at a personal, 
network or institutional level and then only available on request (Table 1). Several research 
organizations and institutes are planning to establish data bases for this kind of data. A com-
mon SOIS driven platform for including data stored elsewhere with the possibility to upload 
and credit new data sets, would therefore be a large contribution to the snow science 
community. Such a data portal would also benefit from societal inputs. The citizen driven 
REGOBS platform is a good example on how the public can be engaged in data collection 
as it improves avalanche prognosis for the region. 

3 Knowledge trends, gaps and research needs

A bibliometric analysis was carried out to identify recent trends and possible knowledge 
gaps in snow-related research in Svalbard. The analysis was based on a survey of >205 
peer-reviewed scientific articles published since Winther et al. (2003) last presented an 
overview of snow research in Svalbard. Figure 1 shows that field studies of snow/snowpack 
properties since 2003 have mostly been carried out near Ny Ålesund or Longyearbyen. 
These sectors are disproportionally represented relative to the remainder of the archipelago. 
Glaciers and lowland tundra environments are equally represented in field studies (~37 % 
of publications each), while snowpack properties on upland plateaus (above ~750 m a.s.l.) 
and on wetlands are, by comparison poorly studied. This reflects the predominance of 
glaciological and phenological research in the surveyed publications. Since the Winther et 
al. (2003) review, several new areas of snow-related research have also emerged, notably 
on snow-atmosphere and snow-soil chemical exchanges, and on microbial communities in 
snow (up to 5 times more publications between 2003-2018, relative to 1989-2003).
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Figure 1: Spatial coverage of snow/snowpack studies in Svalbard published since 2003 (n = 205). 
Most studies were carried in one of 7 geographic sectors, the Ny Ålesund and Longyearbyen sectors 
being the most represented.

Based on this survey, and on a review of published literature, several knowledge gaps were 
identified that are recommended as priority targets for future monitoring-related activities 
in Svalbard. These gaps mainly relate to snow spatial variability on glaciers and tundra, the 
role of snow cover on terrestrial ecology, and the impacts, cycling and fate of snow contam-
inants. Although the N-ICE2015 expedition recently carried out extensive observations on 
the snow cover of sea ice north of Svalbard (e.g., Merkouriadi et al., 2017a,b), this aspect is 
not considered hereafter because sea-ice cover has been declining in Svalbard. This renders 
the development of regular snow-monitoring activities in this environment problematic 
(Hansen et al., 2013b).
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3.1 Variability of supra-glacial snow cover

Since the snow regime on Svalbard has changed markedly over the past few years (van 
Pelt et al., 2016a), the development of modelling tools for all Svalbard glaciers requires 
monitoring data sets that capture both spatial changes in transient snow cover (Rotschky 
et al., 2011) and vertical changes in snow physical properties. There are particularly critical 
knowledge gaps in snow spatial variability representing glaciers in the southern, central 
and the eastern parts of Spitsbergen, for which data are almost completely missing. By 
contrast, there is a clear bias towards monitoring in West Spitsbergen, where the majority 
of surface mass balance observation networks are situated (Hagen et al., 2003). Despite the 
development of new observation techniques like Ground Penetrating Radar (GPR; Dunse 
et al., 2009), terrestrial laser scanning (Prokop et al, 2016) or satellite remote sensing, and 
the marked improvement in the modelling tools being applied to the entire Svalbard Archi-
pelago (Aas et al., 2016; Lang et al., 2015; Østby et al., 2017; van Pelt et al., 2016b), field 
programs for monitoring the snow cover conditions on glaciers are still necessary in order 
to ground truth their outputs. Indeed, the size and location of the glaciers where regular 
field measurements are already being undertaken are not always optimal for ground truthing 
remote sensing products, and atmospheric or geomorphological corrections remain very 
challenging. Models particularly suffer from a lack of field validation for meteorological forc-
ing (Schuler et al., 2013) and snow water equivalent measurements (i.e. precipitation). When 
snow contains water and ice lenses with different densities and optical refractive indexes, 
as frequently observed in Svalbard snow packs, absorption and scattering properties of the 
snow pack are modified. This has an impact upon the information retrieved using remote 
sensing and GPR. There is an urgent need to pursue research in this field to better calibrate 
the newly developed observational techniques (Gray et al., 2015), and in so doing, greatly 
improve the quality of data representing the entire Svalbard Archipelago. 

Two actions that will improve the state of the science mentioned above include: i) under-
taking repeat traverses to measure snow properties across larger, remote glaciers with a 
significant altitudinal range, and ii) the establishment of a denser network of meteorological 
data collection sites that better represent local conditions and can thus be used to validate 
or correct the data products used for larger-scale glacier modelling. Automatic weather 
stations should be deployed at remote targeted glaciers and measurements during the tra-
verses should be sufficient for all important ground truthing purposes, as well as describing 
the critical physical and chemical properties beneath the snow surface. Defining the exact 
location is however slightly premature at present, as this should be coordinated with glaci-
ological studies and other relevant groups interested in working in these areas.
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3.2 Seasonal snow cover and terrestrial ecology

Observations of snow on bare ground and tundra ecosystems on Svalbard are even more 
scarce than on glaciers (see Table 1 above), and the spatial distribution of snow is hard 
to model (Liston, 2004). Consistent observations and simulations of temporal and spatial 
patterns of snow accumulation (Aalstad et al., 2018; Gisnås et al., 2014, Kępski et al., 2017) 
and possibly later melt water production are needed to assess climate change influences 
on terrestrial flora and fauna, as well as permafrost thermal regime. This also involves pre-
cipitation sampling (for which procedures are needed with respect to calibration, routines 
and timing). Melt water penetration in the snow pack and internal refreezing also needs 
to be improved due to the complexity of the processes involved and also the lack of field 
data (D’Amboise et al., 2017). The seasonal variability of snow also needs to be assessed, 
in terms of properties and duration because this sets the length of the potential growing 
season. Extreme warming events have been observed more frequently in the Arctic recently 
(Graham et al., 2017; Rinke et al., 2017, Vikhamar-Schuler et al. 2016), with observable 
effects on the snow pack (Gallet et al., 2017; Merkouriadi et al., 2017a,b), but observations 
are still limited. Basic snow properties (temperature, density, ice quantity) should be more 
consistently measured and recorded in standardised formats suitable for modellers. Wet 
snow processes are very complex and not fully understood, so development of a snow 
dedicated super-site network should be undertaken. 

The variation among species and even among ecotypes as a function of snow amount and 
type is still poorly understood. For instance, intermittent mild periods and snowmelt during 
winter may be beneficial for some aspects, like the enhancement of heterotrophic processes 
and increased nutrient availability (e.g. Morgner et al., 2010), and detrimental for others, like 
damage and mortality of soil fauna and vegetation (Bokhorst et al., 2011a, b). The extent of 
wintertime microbial biomass production both within and under the snow pack as well as 
effect of snow change on the Arctic food chain and nutrient resources are topics that have 
rarely been studied. Ecosystem changes in the Arctic can be rapid and can directly affect 
life quality, in the same manner as the amount of contaminants in the snow (Forsström et 
al., 2009, Stohl 2006, Kühnel et al., 2011), which can also be transferred to the ecosystem 
(Björkman et al., 2014, Kozak et al., 2015) and the local population.

Actions to be undertaken are to determine the amount of snow and ice on the ground, 
in addition to basic parameters on the internal structure of the snow (snow hardness for 
example) in areas where observation of ecosystem parameters are being carried out. Linking 
the spatial and temporal scale between climate and ecosystem research is a very challenging 
question. We have to use the existing data, and engage discussion with ecologists in order 
to determine the best suitable field measuring protocols, and be in cooperation with proj-
ects such as COAT (http://www.coat.no/) in Svalbard, which is a part of SIOS. 
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Determining transfer functions between atmosphere and snow surfaces of aerosols and 
micro-organisms is a complex task for which field work is essential. Understanding the 
transfer of aerosols and micro-organisms from the atmosphere to the snow surface requires 
information on their atmospheric content, their properties, their interactions with clouds, 
deposition processes as well as post-depositional evolution once deposited on the snow 
pack. Developing a program to combine these various fields of research is essential and 
requires that atmospheric and snow bio-physical and chemical researchers collaborate. This 
is something that can be facilitated through SIOS. A strong atmospheric group is working 
and developing platforms in Svalbard, especially in Ny-Ålesund. Communication is essential 
in order to be able to link all research fields, especially in terms of area where the work would 
be developed, or the potential creation of a super-site where larger group will work together 
and develop a larger interdisciplinary program. A common platform to better describe and 
understand the process is necessary, but bearing in mind that protocols, background data, 
manpower, research facilities (laboratories) and large international expertise is needed.

3.3 Cycling, fate and impacts of contaminants in snow

Because of its relative proximity to the continental land mass, Svalbard is a receptor for 
long-range contaminants emitted from mid- to high-latitude source regions of Eurasia (Stock 
et al., 2014; Winiger et al., 2015; Dekhtyareva et al., 2016; Hung et al., 2016; Nawrot et al. 
2016). These contaminants include BC, secondary aerosols derived from acidifying gases 
(SOx, NOx), trace metals and also complex, persistent organic pollutants (POPs) sourced from 
human activities. Emissions of some impurities from natural sources, such as forest fires, 
are also indirectly affected by anthropogenic climate warming, leading to potential future 
increases (Stohl et al., 2007; Yittri et al., 2014). Some air contaminants reaching Svalbard, 
such as BC, are in particulate form which, when deposited in the snowpack, affect its 
radiative properties (Warren, 1984). Others, such as toxic metals (e.g., Hg) and POPs, are 
bio-accumulative and can adversely affect the local fauna (e.g, Fenstad et al., 2014; Ander-
sen et al., 2015; Goutte et al., 2015). Local sources of snow cover contamination include 
dust dispersion from mining activities, fuel and waste incineration, or transport (Eckhart 
et al., 2013; Abramova et al., 2016; Granberg et al., 2017; Kahn et al., 2017). Presently, 
many contaminants in air and precipitation are monitored by research installations in Ny 
Ålesund. There are, however, comparatively few systematic observations elsewhere across 
the Svalbard Archipelago. 

The seasonal snow cover (on land or glaciers) is a convenient sampling medium for air con-
taminants where air or precipitation sampling is impractical. Knowledge of concentrations 
in late winter/spring snow is essential to assess the surface radiative impact of BC. For 
other contaminants, it is the total burden of contaminants in the snow pack prior to spring 
snowmelt that matters, because this is what can enter soils and waterways upon release by 
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snowmelt. Several studies point to the existence of gradients of contaminant deposition in 
snow across the Svalbard Archipelago, either due to spatial heterogeneity of air transport 
patterns, and/or to precipitation gradients and orographic effects (e.g., Beaudon et al., 2013, 
Vega et al., 2015). Hence for some contaminants, fluxes measured at Ny-Ålesund may not 
be representative of deposition across the rest of the Archipelago. Also, while some POPs 
have been measured in snow (e.g,. Kallenborn et al., 2011, Xie et al., 2015, Abramova et al., 
2016, Vecciato et al., 2018), the data have been disseminated piecewise, some in journal 
articles, other in government reports, such that an ensemble view is difficult to grasp. Fur-
thermore, with the exception of a few case studies (e.g. Dommergue et al., 2010, Björkman 
et al., 2014), the fate of contaminants, once deposited in snow, remains poorly known. 
Finally, there is a growing recognition that biogeochemical transformations in the snow 
pack itself can impact the fate of contaminants deposited in snow, but the nature of these 
interactions is under-studied (e.g. Hodson et al, 2010; Larose et al., 2013a,b).

In view of the above, a set of research goals to be pursued in future snow research on 
Svalbard are: (1) better define and quantify regional gradients of contaminant deposition 
and accumulation in seasonal snow packs across the Svalbard archipelago; (2) identify the 
meteorological conditions (and other factors) that account for inter annual variations in 
contaminant accumulation in snow in different geographical parts of the archipelago; (3) 
determine the fate of contaminants in the seasonal snow pack by quantifying the fractions 
that actually enter soils and waterways upon snowmelt; (4) establish how future changes 
in snow cover phenology (e.g., rate of accumulation, frequency of winter thaws, timing of 
spring melt) will impact the release of contaminants from melting snow; and (5) investigate 
interactions between particulate organic matter, microbial communities, and contaminants 
(such as nitrates, BC or metals) within the snow pack thaw are relevant to the fate of these 
contaminants.
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3.4 Snow, as a constituent in natural hazards and hydrology 

Changes in snow temporal and spatial variability have a number of societal impacts on 
the economy (Bokhurst et al. 2016) including the cost of snow removal (Hanbali, 1994), 
maintenance and prevention costs of freezing damage infrastructure (Bjerke et al. 2015) and 
road and structure maintenance costs (Sosnovsky et al. 2014). Changes in the magnitude 
and timing of spring runoff also impact flood and reservoir management (Popova, 2011, 
Semenov, 2013). The landscape in Svalbard is high relief, largely without vegetation, with 
continuous snow cover for most of the year and wide plateaus with deep valleys that allow 
for snow drifting (Eckerstorfer & Christiansen, 2012). This makes it especially at risk for 
avalanches with detrimental costs for inhabitants. 

 Snow avalanche activity, which is often spontaneous but also caused by external loading, 
is linked to snow variability and weather conditions and their interactions with topography 
(McClung & Schaerer, 2006). The frequency, magnitude, seasonality, and typology of ava-
lanche events are also variable, which makes them difficult to predict (Schweizer, 1999). 
Snow avalanches are defined as masses of snow or ice that move rapidly down a sloping 
surface. To understand their dynamics it is important to understand the processes resulting 
in the formation, growth, and degradation of snow crystals and how these processes affect 
the snowpack throughout the winter season (Schweizer et al. 2003). For example, powder 
snow avalanches generally occur after intense snow precipitation during cold winter condi-
tions (Baggi & Schweizer 2009), while wet and dense flows often coincide with warm spells 
(Ancey & Bain 2015). The increasingly wetter and milder Arctic climate will likely increase 
the frequency of avalanches (Eckerstorfer & Christiansen 2012, Qiu, 2014). Increasing air 
temperature increases the shear deformation rate of snowpacks due to a rise in liquid 
water content, which favors increased strain at the interface of slab and/or weak layers, and 
ultimately, the release of wet snow avalanches (Ancey & Bain, 2015). The increase in the 
liquid water content of snow can also, in some cases, reduce friction once it begins moving, 
increasing avalanche runout distances (Naaim et al., 2013).

 Although relationships between climate and snow avalanches remain unclear due to the 
general lack of long-term observations (Ballesteros-Cánovas et al., 2018), the ongoing 
warming and changes in precipitation will likely impact snow avalanche activity. Several 
actions will improve the state of the science and risk mitigation for hazards related to 
changes in snow regime: i) the establishment of a denser network of snow monitoring sites 
near infrastructure that are equipped with seismic sensors and infrasound arrays; ii) the 
use of radar (e.g. Radarsat-2, TerraSAR-X, and Cosmo-Skymed) to help predict and quantify 
avalanche events around Svalbard (Caduff et al. 2015); and iii) the establishment of coor-
dinated actions to improve risk management of snow avalanches and disaster risk policies. 
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4 Summary and other suggestions

With respect to the above-mentioned gaps, we collected the crucial missing information 
regarding snow research in Svalbard and provide some recommendations on how to improve 
it in the frame of SIOS. The recommendations are listed in three main research thematic 
areas: snow on glaciers, snow on land and snow-atmosphere interactions, plus a last section 
regarding other strategic topics. Certainly more themes could be listed but these are the 
ones where current data have already been collected and monitoring programs are ongoing.

Supra-glacial snow coverage
1.	 Improve the spatial resolution of glaciers being monitored to include glaciers from cen-

tral and eastern Svalbard. Set up glacier monitoring programs that engage with future 
and early career snow scientists (e.g. at Slakbreen).

2.	 Based on the traverse organized in Spring 2018, we can use existing infrastructure 
(e.g. Pyramiden, Barentsburg as science polygons of Russian Science Centre on Sval-
bard - RSCS) as a base to carry out glacier measurements, store and prepare samples 
to be sent to Longyearbyen or Barentsburg (chemical-analytic laboratory of RSCS) for 
analysis. The advantage is better safety, shorter field days and access to the central 
part of Svalbard.

3.	 Focus more on snow melt (including inside layer radiation melting), even during winter, 
and better quantify the ice amount in snow packs.

4.	 Utilize/develop new tools to better quantify wet snow properties, with a focus on 
remote sensing and model validation.

Seasonal snow on land
1.	 Promote scientific exchange among users of different research infrastructures.
2.	 Promote interdisciplinarity that links soil, snow and atmospheric research, and the effect 

of snow on biodiversity.
3.	 Funding for year-round monitoring commitments.
4.	 Using common and merged protocols to simplify field sampling but able to fulfil the 

goals.
5.	 Establish 2 to 3 super-sites with a holistic approach with measurements from the 

ground to the atmosphere throughout the year. This is logistically only possible on land, 
but would be more than interesting in bringing knowledge on winter snow conditions 
in Svalbard. Only permanently and annually functioning sites can then be concerned.
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Impacts, cycling and fate of contaminants in snow
1.	 Need for coordinated studies of snow cover contamination at multiple sites across 

Svalbard, using standardized protocols and laboratory facilities.
2.	 SIOS can assist by being a central repository and clearing house for relevant data on 

snow properties measured across the archipelago.
3.	 Develop improved logistical solutions for transporting field samples to Longyearbyen 

or Barentsburg when specialized measurements cannot be performed in the field or at 
local field stations.

4.	 Promote catchment-scale studies (where feasible) that address the issue of the fate of 
contaminants released by snow melt.

5.	 Foster a closer cooperation and integration between the aerosol research community 
(largely focused Ny Ålesund) and the broader snow research community across Sval-
bard.

Other suggestions

Networking: in order to improve long term monitoring and also coverage, more nations work-
ing in Svalbard should be part of SIOS. SIOS could be a tool for improving communication 
among researchers by facilitating and organizing interdisciplinary snow workshops and by 
establishing working groups and programs. By focusing on programs with specific research 
focus in targeted areas, SIOS could enrol institutes and nations that have not been working 
much or at all together before, and create a synergy.

Snow data exchange platform: should be facilitated through SIOS and this is one of the 
main goals. However, beforehand discussion on data sharing and format would be recom-
mended due to the different timing, type, geographical location and vertical structure of the 
snow data sets that could exist. Suggestions should be provided by SIOS. Data sets should 
include at least the type of the temporal resolution of the data of the most vital interest 
for a start for the SIOS project (depth, density, SWE and temperature). The data present in 
the exchange platforms, which is to be used by the entire research community, should be 
accessible in English.

Improve involvement: Involve UNIS and students from Norwegians Universities (as well from 
Europe and Russia) in basic snow and glacier monitoring programs (ex. April glaciology 
course with GPR and SWE, chemistry, microbiology, winter or summer field school on base 
of RSCS): SIOS would help in transferring knowledge, form the next generation of polar 
researchers, and make good use of the collected data for master and PhD students at UNIS, 
and by also helping researchers to use and publish the collected data.
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