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1 Introduction  

There is a growing interest in the use of textile 
reinforcements for advanced composite applications 
[1]. Meso-scale finite element (FE) modeling of 
woven composite offers a powerful tool to 
understand the behavior of such materials and to 
study the effect of their reinforcement architecture 
on their effective properties [2]. However, the 
reliability of these approaches is influenced by the 
way the fabric geometry is approximated. Yarn 
geometry has only a modest effect on the average 
elastic modulus, but stress localization and strength, 
for examples, could be greatly affected by local 
variation of the yarn geometry [3,4]. The level of 
detail required in the description of the yarn 
geometry to accurately capture the effect of the 
architecture is still an open question. 
Idealized yarn geometry have been proposed by 
many authors to construct geometric models of 
woven fabrics, see e.g. [2,5-7]. Yarns are modeled as 
solid volumes which bound the fiber bundle. Yarn 
cross section is often described by simple geometric 
entities as ellipse or lenticular section. Moreover, it 
is generally supposed to remain constant along the 
length of the yarn. Such modeling assumptions may 
be questionable with respect to the true shape of the 
yarns cross section in actual material. Constant cross 
section also often lead to yarn intersections in all but 
the very simplest weaves. Intersections may be 
corrected by adjusting the yarn width and rotations 
at the crossover points in the weave [6], but it would 
eventually leads to some loss in yarn volume. Yarns 
interpenetrations could also be tackled by solving an 
intermediate FE problem using a “separate and 
compress” approach [2]. It requires, however, the 
experimental identification of the effective behavior 
of yarns under compaction. An alternative way to 
approach the geometry of textile reinforcement is to 

explicitly simulate the manufacturing process of 
these structures [8-10]. The step-by-step simulation 
of the whole weaving process requires large 
computational resources. Thus, Miao et al. [11] 
proposed a static relaxation approach which proved 
to give similar results to an explicit simulation of the 
weaving process, but for only a fraction of the 
computational cost. An initial guess fabric structure 
is constructed with correct topology based upon the 
fabric weave pattern ; then, a pre-tensile force is 
applied to the yarns in order to imitate the tension 
they experience during the weaving process. The 
fabric deforms until reaching a new equilibrium state 
which should correspond to the relaxed state of the 
fabric at the end of the weaving process. This 
relaxation approach has also be used in [12,13]. It 
should be noted that a similar approach has also 
been proposed by Durville based on his previous 
work on the mechanical behavior of entangled 
materials [14]: starting from an arbitrary 
configuration, where yarns interpenetrate each other, 
tows are moved gradually until their arrangement 
fulfills the chosen weaving pattern and there is no 
more interpenetration [15,16]. 
This paper proposes a simulation procedure based on 
a relaxation approach to generate realistic geometric 
models for interlock woven fabrics. An initial fabric 
geometry is constructed using an idealized solid yarn 
description. Then, yarns are  then discretized into 
fibers. Tensile forces are imposed to the yarns and 
are progressively relaxed as the fabric deforms. The 
mechanical equilibrium is solved using an explicit 
first-order scheme. Algorithmic aspects are 
discussed, as well as the effects of the initial 
geometry and yarn discretization. Finally, a first 
validation of the developed approach is proposed for 
a multilayer interlock woven fabric. 
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2 Initial fabric geometry 

2.1 Idealized geometric model 

The initial fabric geometry is constructed using an 
idealized yarn description as previously proposed by 
the authors [7]. The relative arrangement of the 
yarns is deduced from the weaving pattern of the 
fabric. The topology of the fabric is conveniently 
described by a matrix coding of the warp paths. The 
yarns are approximated as solid volumes with 
constant elliptic cross-section. Their center line is 
calculated by minimizing the yarn bending energy in 
each crimp elementary interval, i.e. interval between 
two supporting yarns. An example of a resulting 
idealized geometry is depicted in Fig. 2. 

2.2 Yarn discretization 

Following the concept of “digital chain” previously 
introduced by Wang et al. [8], each yarn is 
decomposed into an assembly of macro-fibers, The 
number of macro-fibers used to represent a yarn is 
far smaller than the actual amount of real fibers 
contained in a yarn. It is assumed that each macro-
fiber represents a bundle of real fibers. Macro-fibers 
are further divided into frictionless pin-connected 
truss elements along their length (cf. Fig. 1). Only 
tensile deformation in their axial direction is 
considered, and it is assumed that no deformation 
exists in the macro-fiber transverse direction. The 
macro-fibers are initially densely packed inside the 
yarn cross-section. The truss element length L is 
chosen to be the same order than the diameter d of 
the corresponding macro-fiber.  

3 Relaxation algorithm 

To simulate the tension the yarns experience during 
the weaving process, an external force fe is imposed 
to the each truss element as: 
 

fe = −E.A.α  (1)  
 
where E is the Young modulus of the fibers, A their 
cross section area, and α is a load parameter. The 
reaction force of a truss element is simply given by: 
 

fi = E.A.
L − L0
L0

 (2)  

 
where L0 is its initial length, and L its current length. 
The applied load fe will force the macro-fibers to 
shrink and cause the yarns to straighten. The macro-
fibers will eventually enter into contact and 
rearrange themselves, modifying the initial shape of 
the yarns. The applied load is gradually relaxed as 
the truss elements are deformed, until a mechanical 
equilibrium is reached when  
 

fe∑ = fi∑  (3)  

 

3.1 Contact handling 

Contact between macro-fibers is detected using the 
NBS algorithm [18] which proved to give an optimal 
linear contact detection time. When a contact is 

 
Fig.1. Illustration of the discretization of a yarn into macro-fibers, and macro-fibers into truss elements. 
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detected, i.e. when the distance between two truss 
elements is smaller than the diameter of the 
corresponding macro-fibers, contact elements are 
introduced between the nodes of the interpenetrated 
truss elements. Contact element constitutive law has 
the form of a penalty law linking the normal reaction 
fc to the penetration depth δ 
 

fc = K(δ).δ  (4)  
 

where K(δ) is the normal stiffness of the contact 
element. K is initially set equal to p.E, where p is a 
penalty coefficient. For very small penetration 
however, the penalty coefficient is adjusted using a 
quadratic regularization law [15] in order to stabilize 
the contact algorithm and avoid spurious oscillations 
during the relaxation process. Only normal contact is 
considered, i.e. no friction is taken into account. 
Contact detection is performed at every step of the 
relaxation process. Upon separation of two 

 
Fig.2. Idealized woven fabric geometric model (top) and corresponding initial discretized model with 32 

macro-fibers per yarn (bottom) 



contacting macro-fibers, the existing contact 
elements are removed. 

4.2 Boundary conditions 

Truss nodes of the warp (resp. weft) ends are only 
allowed to move in the yz-plane (resp. xz-plane), i.e. 
the x- and y- dimensions of the unit cell remain fixed. 
Boundary conditions could be imposed on each end 
of individual macro-fibers, or only in a weak manner 
by prescribing the displacement of the barycenter of 
the yarn ends [16]. In addition, when the fabric 
exhibit a periodic weaving pattern, periodic 
conditions could be prescribed on the x- and y-
boundaries of the unit cell.  
The preform could also be compacted is the z-
direction by the means of two rigid moving tools to 
ensure the final thickness of the relaxed fabric. 
Contact detection between the compacting plates 
and the macro-fibers is performed by checking the z-
coordinates of their corresponding truss element 
nodes. The non-penetration condition is ensured by 
imposing the same penalty law than for the contact 
between macro-fibers. 

4.3 Numerical resolution 

The mechanical equilibrium is solved iteratively 
using an in-house explicit dynamic finite element 
algorithm implemented in ANSI C. Compared to the 
original static relaxation approach [11] or the 
Durville’s method [14-16] that utilize an implicit 
static solver, using an explicit dynamic relaxation 

procedure greatly minimizes computer memory 
resource since it doesn’t require to assemble any 
stiffness matrix.  
A first-order central difference scheme is employed: 
 

fe + fi + fc( )k∑ =m.(ak −ζ.vk )

vk+12 = vk−12 + ak.Δt

uk+1 = uk + vk+12 .Δt

 (5)  

 
where m is the mass of a truss element, a, v, and u 
are respectively the acceleration, speed and position 
of the truss nodes, Δt a the pseudo time step. A 
viscous parameter ζ  is introduced to dampen the 
high frequency oscillations and to ensure a quasi-
static solution. The time step is chosen as a small 
fraction (typically < 0.05) of the critical time step 
given by the CFL condition to guarantee the 
convergence of the algorithm. 

5 Numerical analysis and verification 

5.1 Effect of the relaxation parameters 

Besides the physical properties of the fibers, i.e. 
their Young’s modulus E and their density ρ, the 
relaxation process is mainly governed by the load 
parameter α (Eq. 1) and the damping parameter ζ 
(Eq. 5). In this work, we focus on the relaxed 
geometry of the fabric, and not on quantifying the 
mechanics of the weaving process. Therfore, the 

 
Fig.3. Comparison of the final relaxed geometry for a plain weave fabric with an increasing number of 

macro-fiber per yarns, respectively 33, 86 and 157 from top to bottom. 
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load parameter α could be chosen artificially larger 
than the actual load applied to the fabric in order to 
speed-up the relaxation process. It was checked that, 
for the same targeted thickness, final geometry 

remains consistent for different values of α. The 
only difference is that a lower α value would require 
more iterations to converge. However, α should not 
be chosen too large as, when α is increased, ζ should 

 
Fig.4 X-ray CT of the woven fabric used for the validation of the relaxation procedure  

 
Fig.5 Discretized model after relaxation and compaction to a thickness of 1.5 mm. 



be increased accordingly to ensure that the solution 
remains quasi-static. In the meantime, the time step 
should be diminished to guarantee convergence, thus 
increasing the number of iterations. In the following, 
α is typically chosen between 5 and 10, and ζ 
around 1.5, which were empirically found to be the 
optimal values for our calculations. 

5.2 Effect of the initial conditions 

The effect of the initial shape of the yarns and the  
number of macro-fibers per yarn on the relaxed 
geometry of the fabric have been studied for a plain 
weave and a multilayer twill fabric Relaxation 
results show that the number of macro-fibers used to 
discretize the yarns cross section barely affect the 
final shape of the yarn (cf. Fig. 3), as long as it is 
sufficient to describe  the topology of the yarn cross 
section. Similar results were already mentioned by 
Miao et al [11] who stated that 19 macro-fibers per 
yarns provide sufficient accuracy for 3D braided 
fabric. The same observations can be made 
concerning the effect of the initial shape of the 
yarns: the same final shape is obtained either by 
starting from a circle or an elliptic yarn cross section 
for example. However, it is advantageous to choose 
an initial cross section close to the expected final 
shape of the yarn: the number of iteration required to 
attain the requested thickness is reduce in a large 
extent.  

6 Validation 

The relaxation procedure has been applied to a real 
multilayer interlock woven. X-ray computed 
tomography (CT) data of the studied preform were 

obtained while the fabric being compacted to a 
thickness of 1.5 mm (Fig. 4). The corresponding 
initial idealized geometric model is depicted in Fig. 
2 alongside the initial discretized model. Due to the 
inherent restrictions of the idealized geometric 
approach, the initial model could not have a 
thickness inferior to 1.8 mm to avoid yarn 
interpenetration. Thus, the thickness of the idealized 
model was initially set to 2 mm. The area of the yarn 
cross section was chosen so that it corresponds to the 
final fiber volume fraction in the actual fabric.  
The modeled unit cell contains 20 warp yarns and 27 
weft yarns. Each yarn is discretized into 32 macro-
fibers, i.e. a total of 1405 macro-fibers and 
approximately 450,000 truss elements. The 
discretized model was compacted and relaxed using 
the method described in Section 3. Best result was 
found by applying first a low external load (α=1) 
without compaction for a moderate number of 
iterations (<1000). This pre-relaxation step would 
correct any initial small interpenetration which 
would have occurred during the discretization 
process. Then, a larger external load (α=7) is applied 
with compaction being active ; the rigid compacting 
plates are displaced gradually while keeping the 
external load constant. A slow compaction speed 
was chosen to keep the relaxation process quasi-
static. Once the targeted thickness was attained 
(t=1.5mm), a small number of post-relaxation steps 
was performed. The whole relaxation/compaction 
process required 150,000 iterations and a total CPU 
time of 5 hours using a 3GHz Intel Core2 Q9650 
single core.  

 
Fig.6. Discretized model before (left) and after (right) relaxation and compaction. Top view. 
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The resulting model is shown in Fig. 5. It is visually 
close to the actual fabric. There is an evident 
improvement over the idealized geometry when 
compared with the initial model shown in Fig. 2. 
The effect of the relaxation and compaction process 
is illustrated in Fig. 6. Clearly, the yarns spread as 
the fabric is compacted. After compaction, outer 
surfaces of the model don’t exhibit porosity 
anymore, which is consistent with observations on 
the real fabric. The model is also able to reproduce 
the variation of the cross section of the yarns along 
the length of the unit cell. 
A qualitative comparison of the initial and relaxed 
discretized models and the actual fabric is given in 
Fig. 7. The locations and shape of the porosity 
compare favorably with the X-ray CT data. The 
relative position of the yarns is also in good 
agreement, even if small differences could still be 
observed. Some deviations could be explained by 
the fact that the relaxation process starts from an 
idealized model which doesn’t include the geometric 
variability of the actual fabric (e.g. deviation of the 
yarn paths from the weft or warp direction, or 
misalignment of weft columns) Still, the main 
features of the fabric architecture, like crimp angles 
or contacting yarns, are well reproduced by the 
relaxed model. A first comparison between yarns 

shape and size of both the final discretized model 
and the X-ray CT data was performed by manually 
fitting ellipses to yarns cross sections on 
corresponding slices. The cross section areas 
compare favorably with a maximum relative 
difference of 1.5%. A deviation inferior to 10% was 
observed for the length of the ellipses axes. Yarns in 
the relaxed model tend to be a little larger (and 
thinner) than in the real material. These 
measurements, however,  could be influenced by the 
manual contouring process, and a more systematic 
procedure is being developed based on active 
contour models [19]. 

7 Conclusion 

We proposed a numerical procedure to generate 
realistic geometric models of woven fabrics It is 
based on the representation of yarns as bundle of 
fibers. The final model is obtained through a  
relaxation process of an initial idealized geometric 
model, and takes into account the contact interaction 
between fibers. The developed approach was applied 
to the simulation of a multilayer interlock woven 
fabric. Preliminary results demonstrate this approach 
is able to capture the main features of a real woven 
architecture with only very few numerical 
parameters. Even if some small discrepancies could 

 
Fig.7. Discretized model before (top) and after (middle) relaxation and compaction, and corresponding slice 

from the X-ray tomography of the real fabric (bottom). Side view normal to weft direction. 



still be observed, the final relaxed model is visually 
close to the real material, and represents a major 
improvement when compared to the initial idealized 
geometric model.  
Current work focuses on validating the relaxation 
approach on various woven and braided preforms. 
More quantitative comparisons of yarns paths and 
cross section will be carried out using dedicated 
morphological analysis tools [20]. The geometric 
variability of the real material will be addressed 
through the incorporation of suitable statistical 
models. Finally, this approach would be eventually 
integrated into our virtual material modeling toolbox 
for ceramic matrix composites [17]. 
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