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EXTRACTION ADN INTERPRETATION OF RING STRUCTURES IN IMAGES OF
BIOLOGICAL HARD TISSUES: APPLICATION TO FISH AGE AND GROWTH
ESTIMATION

Ronan Fablet

IFREMER/LASAA
BP 70, 29280 Plouzane,France

ABSTRACT

This paper presents a general framework for the automated
estimation of age and growth from images of biological ma-
terials depicting concentric ring-like structures such as tree
trunks, corals, bivalve seashells, fish scales or otoliths. This
interpretation task can be seen as a ring segmentation issue,
where growth rings are associated to image ridge and val-
ley structures. This is stated as the Bayesian selection of
a subset of partial ring curves extracted using a semi-local
template-based growth-adapted scheme. The application to
fish otolith interpretation provides a consistent and convinc-
ing validation of the proposed framework.

1. PROBLEM STATEMENT AND RELATED WORK

Age and growth data acquired from the analysis of ring-like
structures in biological hard tissues (fish otoliths, shells of
sea shells, tree trunks, corals,...) are key information for a
broad range of scientific issues such as marine stock assess-
ments, marine ecology, paleoclimatology or archeology. We
provide examples of such images involving ring-like struc-
tures in Fig.1 and in Fig.4. The deposit of ring structures
is mostly periodic (mainly seasonal or daily depending).
Counting growth rings then leads to an estimation of the
age, whereas growth increments can be estimated from the
distance between successive rings. Since large collections
of biological data are needed (typically, several thousands
of samples per year for fish stock assessment), computer-
aided tools [8] are being sought. Our work is dedicated
to the automation of age and growth estimation from the
analysis of images of biological hard tissues. The key is-
sues, as illustrated in Fig.1, lie in the use of growth informa-
tion both to design a robust ring extraction framework tak-
ing into account growth non-linearity, and to discriminate
actual growth rings from irrelevant ones. Previous work
[5, 9, 10] has mainly focused on the information extraction
step but have not tackled the actual interpretation task. The
latter is a complex issue as stressed by the the results of the
European workshop on plaice otolith interpretation held in

Fig. 1. Example of growth ring structures observed on a plaice
otolith illustrating the complexity of the interpretation of growth
rings due to the presence of false rings (eg, between the first and
second rings), and to the non-linearity of the associated growth
pattern (the last two rings tend to be closer and hard to distin-
guish). The positions of actual growth rings are depicted by the
markers set on the radial drawn from the otolith center to the edge.

2003: inter-reader agreement rates vary from 40% to 95%
depending on readers’ experience, whereas this rate is com-
prised between 85% and 95% for expert readers. As a first
step, statistical learning has been recently investigated for
automating age estimating from a training set of samples in-
terpreted by experts [4]. However, this approach is limited
to age estimation and cannot be straightforwardly extended
to growth ring extraction and growth estimation.

A two-stage approach is proposed to bring new solu-
tions to these issues. A semi-local growth-adapted template-
based scheme is first developed to robustly extract meaning-
ful partial ring curves curves. Second, exploiting a priori
growth information provided by a set of samples interpreted
by an expert, the interpretation step is viewed as a Bayesian
selection of a subset of the extracted curves. The subse-
quent is organized as follows. Sections 2 detail the semi-
local approach proposed for the segmentation of partial 2D
ring curves. The application to age and growth estimation is
discussed in Section 3. Results are presented in Section 4.

2. EXTRACTION OF PARTIAL RING CURVES

2.1. Semi-local template-based framework

The first stage of our approach relies on the extraction of
partial ring segments. As a result of the accretionary process
leading to the formation of the hard tissues, the alternated



Fig. 2. Local template-based scheme for the detection of elemen-
tary ring segments

translucent and opaque rings are rather concentric w.r.t. the
growth center, and ring shapes can often roughly be ap-
proximated (at least locally) as scaled versions of a given
template. Rather than exploring purely local techniques for
ridge and valley detection [2, 7], we then prefer investigat-
ing the use of the external shape as the parametric model of
ridge and valley structures, and we extend the global tem-
plate approach presented in [9] to a semi-local framework.

The extraction of local elementary ridge or valley seg-
ments illustrated in Fig.2 proceeds as follows. Given a set of
overlapping angular sectors defined w.r.t. the known growth
center, we aim at determining within each angular sector
the scaling factors, such that the scaled local template ap-
proximately fits the local ridge and valley segments. This
is stated as the computation of the zero crossings of the
first-order derivative of the the median intensity along the
scaled template. Let us stress that the computation of these
derivatives needs to account for the time-frequency features
of hard tissue due to the decrease in the width of the growth
rings when the hard tissue gets older. To cope with this is-
sue, we use a demodulation scheme w.r.t. a mean a priori
growth pattern learned from training samples.

2.2. Extraction of 2D ridge and valley curves

Given the set of extracted elementary ridge and valley seg-
ments, we aim at merging these elementary segments to
form meaningful curves. Numerous perceptual grouping al-
gorithms have been developed to extract curves from candi-
date points or elementary segments [1, 6]. These techniques
rely on general geometric criteria such as good continua-
tions [1] or curve smoothness [6]. When dealing with the
analysis of growth rings within hard tissue images, three
geometric features are of key interest: the growth rings are
concentric; there is an alternation of opaque and translucent
rings; opaque and translucent rings never cross each other.

The proposed grouping procedure exploits these features.

More precisely, it proceeds as follows for elementary ridge
segments (and, conversely for valley ring structures). For
a given pair of elementary ridge segments associated to two
neighboring angular sectors, the decision rule used to merge
this pair of segments evaluates whether or not elementary
valley segments within the neighboring angular sectors lie

a) validated merging

b) rejected merging
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Fig. 3. Decision rule for merging a pair of neighboring elemen-
tary ridge segments: a) validated merging, b) rejected merging.
The pair of tested segments is displayed by a solid line, and neigh-
boring elementary valley segments by dashed lines.

between the pair of tested segments in terms of distance to
the growth center. Fig.3 illustrates this decision rule for two
cases: one where the merging is validated and the other one
where it is rejected. A ridge curve is finally formed by the
set of elementary ridge segments which can be linked by a
path going through merged segments.

3. IMAGE INTERPRETATION FOR AGE AND
GROWTH ESTIMATION

From a set of partial ring curves, the actual interpretation
of the image content in terms of age and growth estima-
tion comes to the selection of a curve subset correspond-
ing to the actual growth rings. One should point out that
several curve subsets might correspond to the correct inter-
pretation, since an actual growth ring might be covered by
several partial curves. Besides, some detected curves might
not correspond to actual rings, but to false rings or might be
due to noise patterns. To achieve this interpretation task, we
rely on the protocols followed by expert readers. Mainly, it
involves three different aspects: first, the detection of can-
didate ring-like structures; second, the evaluation of the sig-
nificativity of any possible rings w.r.t. length and contrast
information; third, the analysis of the spacial arrangement
of the validated ring structures, which needs both to corre-
spond to an alternation of translucent and opaque rings, and
to conform to some a priori growth features.

To take off these protocols, the selection of a relevant
curve subset is stated as a Bayesian labeling issue, where
a binary label, “selected” or “rejected” is assigned to each
extracted ridge or valley curve. Let us denote by C the set
of extracted ridge and valley curves as described in the pre-
vious section. This set is sorted w.r.t. the distance between
ring curves and the growth center (the computation of this
distance needs to be direction-invariant ans is normalized
w.rt. the distance along the main reading axis). Let us
also define £ the binary label set {“selected”, “rejected”},
ec the set of labels {e.}.cc for a given labeling configu-
ration, oc = {0c}cec the features computed for all ring
curves ¢ € C to evaluate their significativity. The selec-
tion of the relevant curve subset then comes to retrieve the
best labeling configuration é; maximizing the MAP crite-



rion: éc = arg max P(oclec)P(ec), where P(oc|ec) is
ecceclcl

the data-driven term and P (e¢ ) integrates an a priori knowl-
edge on growth variability.

The data-driven likelihood P(o¢|ec) is intended to eval-
uate the significativity of each ring curve given a labeling
configuration ec: P(oclec) = [[.cc Ploclec). As pre-
viously mentioned, experts mainly rely on the perception
of contrast and ring continuity. Since contrast information
is already implicitly used to extract ring curves, the likeli-
hood P(o|e.) is defined from the angular length L. of the
curve c. Using an energy setting, P(o.|e.) is expressed as:
P(ocle.) < exp[—Ui(Le,ec)]. The energy function Uy is
designed to favor the selection of ridge and valley curves
with a large length value:

Up(Leyee) =1—s1(Le — 1), ife. = “selected”
Ui(Leyec) = s1(Le — 1), if e, = “rejected” ’

where s1 () is a smooth step function rescaled between 0 and
1 and v the length threshold. This parameter value is easy
to set since it simply expresses from which length value a
ring curve is regarded as visually significant.

In order to explicitly define the a priori term P(ec), we
further introduce g.. the growth pattern associated to the la-
bel configuration ec (i.e., the growth pattern computed for
the selected ring curves S(ec){c* € C/e.~ = selected}).
P(ec) is then evaluated as the likelihood that the growth
pattern g.. is relevant w.r.t. a priori growth information:
P(ec) = P(ge. is relevant). This probabilistic model is
learned from training samples using kernel logistic regres-
sion as presented in [3].

Solving for the MAP criterion:

éc = arg max P(oclec)P(gec is relevant) (1)
eceLlcl

cannot be achieved by testing over all possible configura-
tions (since C typically involves about 50 curves, there are
2I€I possible configurations). Therefore, this minimizarion
is carried out in a causal manner by introducing one-by-one
ring curves ¢ € C. At step k, provided the current set of
labeling configurations, we evaluate the likelihood of the
configurations generated by adding the k*" ring curve in C
once with the label “selected” and once with the label “re-
jected” to each configuration of the current configuration
set. We then only retain the N,,,, best configurations w.r.t.
likelihood values P(e.|o.). Typicaly, Ny is set to 50.

4. EXPERIMENTS

For all the experiments reported in this Section, we use the
same parameter setting. The external shape of the hard tis-
sue is represented by N = 500 points, and smoothed by
a Gaussian kernel of variance 0.01. The extraction of el-
ementary ring segments is performed for Ng; = 75 local

age distribution aging error rate

50

o
1 Age
08 o
1 Age
07 jo class 6
@ 1
08 1
] T os 1
204 1
2
03
02
10
i | Hil
o . . P S PHR S S
t 2 8 4 6§ 0§ 3

4 3 2 1 0 1 2
age class age estimation error

number of elements
classification rate

Fig. 6. Age estimation errors for the test set of 200 images of
Plaice otoliths.

axis uniformly sampled. The angular sector used for each
local template is Afgy, = w/90. Concerning the Bayesian
labeling of the set of extracted ring curves, the threshold v
is set to 7w/8 and 3 to 10.

4.1. Extraction and interpretation examples

We first report in Fig.4 three examples of the extraction of
meaningful ring curves within images of biological hard tis-
sues: a plaice otolith, the shell of a bivalve seashell, and
the section of a tree trunk. All these images share com-
mon characteristics in terms of rather concentric ridge and
valley structures associated to a growth-based modulation.
As expected, the proposed template-based growth-adapted
scheme extracts meaningful ring curves mainly correspond-
ing to the actual growth rings.

For validation purposes, the emphasis is given to fish
otoliths. Among the different kinds of biological hard tis-
sues, they provide representative examples in terms of com-
plexity of the interpretation task. This will also enable the
quantitative comparison to previous work [5, 9, 10]. Our
evaluation set is formed by 400 hundred plaice otoliths from
the fourth quarter collected by Ifremer at the fish-market of
Boulogne/Mer in 1993 and 2000. Half of the dataset is used
to train the a priori growth, whereas the other half is used
for the evaluation of our approach.

To illustrate the behavior of the different stages of our
approach, we provide in Fig.5 the results for a six year old
plaice otolith (seven translucent rings). Relevant ridge curves
are extracted, and the selected interpretation is the same as
the expert one. This example was chosen to illustrate the
ability of our approach to extract ridge and valley structures
close to the otolith edge thanks to the growth-adapted filter-
ing used within the semi-local template framework.

Concerning computational time, our approach runs un-
der Matlab 7. The extraction of 2D ring curves runs in about
30 seconds on a 2.4GHz Pentium IV, whereas the Bayesian
labeling needs a few seconds.



Fig. 4. Examples of extraction of meaningful ring structures within images of biological hard tissues depicting growth ring structures. The
first image displays an application to a fish otolith, the second one to the shell of a bivalve seashell and the third one to the section of a tree

trunk.
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Fig. 5. Interpretation of an image of a 6-year-old plaice otolith: the first image depicts the otolith images and the associated expert
interpretations, the second one the extracted ridge curves, the third one the curve subsets selected for age and growth estimation and
the fourth one the estimated growth patterns compared to the ground truth ones. For each example, the ground truth is provided by the

interpretation of an expert in Plaice otolith reading.

4.2. Quantitative evaluation

Using the second half of the collected set of plaice otoliths
(i.e., a database of 200 otoliths), we have carried out a quan-
titative evaluation of the proposed approach. The age distri-
bution of this database is reported in Fig.6. This is represen-
tative of the age distributions estimated from commercial
landings, where samples of age group six and less usually
represent more than 90% of the total. Otoliths older than
six can also be found. However, the number of samples for
age groups greater than six is not sufficient to learn a rele-
vant growth model. Consequently, they were not considered
during our evaluation.

The whole set of otoliths was interpreted by an expert
in plaice age readings. We use these interpretations as the
ground-truth to compute the class-by-class and overall age
estimation errors. These results are given in Fig.6. The
agreement rate is comprised between 84% for age group
five and 94% for age group two. The overall agreement rate
of 89% shows that the proposed approach outperforms pre-
vious work, since the maximum overall agreement rate for
the different 2D methods evaluated in [5] was below 80%
for a similar test set. These results stress the need for the
Bayesian interpretation stage combined to the extraction of
candidate ring curves. Besides, for the whole set of 200
otoliths, the estimation error is never greater than one. In
addition, the obtained results are in the range of the inter-
expert agreement rates, what validates the interest of the
proposed approach as an operational aging tool.
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