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Abstract

In this paper, we investigate the use of statistical learn-
ing techniques for fish age estimation from otolith images.
The core of this study lies in the definition of relevant image-
related features. We rely on the characterization of a 1D sig-
nal summing up the image content within a predefined area
of interest. Fish age estimation is then viewed as a multi-
class classification issue using neural networks and SVMs.
A procedure based on demodulation and remodulation of
fish growth patterns is used to improve the generalization
properties of the trained classifiers. We also investigate the
combination of additional biological and shape features to
the image-related ones. The performances are evaluated for
a database of several hundred of plaice otoliths.

1. Problem statement

Fish age-length keys are at the core of stock assess-
ment and marine ecology issues. Acquiring fish age data
is mainly performed by interpreting fish otoliths, which are
the inner ears. These calcified structures are formed through
an accretionary process, which results in alternated translu-
cent (winter) and opaque (summer) rings, as illustrated by
Fig.1 for a plaice otolith. Fish age is then determined by
counting the number of winter rings. This tedious task is
achieved by expert readers, who typically interpret several
thousand of otoliths a year. Computer-assisted tools are
then sought to help in the acquisition of age-length keys
and in the storage of otolith interpretation [5].

In this paper, we investigate the use of statistical learn-
ing techniques, namely neural networks and Support Vector
Machines (SVM), to infer fish age from otolith images. The
results obtained in [7] demonstrated the interest of neural
approaches for fish aging issues. However, it was shown
that the proposed features extracted from otolith images did
not bring significant improvement compared to using only
biological data. This is somewhat in contradiction with the
experience of expert readers, who mainly rely on otolith in-
terpretation for fish aging. Biological information is only
used for verification purposes.

Figure 1. Illustration of Plaice otolith interpretation for
a 4 year old individual. The interpretation of the winter
translucent rings is displayed by the markers set on the ra-
dial drawn on the main reading axis.

Our goal is then to define more relevant image-based fea-
tures. In addition to biological and geometrical features de-
tailed in Section 2, a new set of image-related features is
introduced in Section 3 to actually characterize the otolith
content in terms of alternation of opaque and translucent
rings. Section 4 briefly presents the application of neural
networks and SVMs to our multi-class classification issue.
In particular, a procedure targeted at increasing the general-
ization properties of the classifiers is proposed. Results are
reported in Section 5 for real Plaice otolith data.

2. Biological and geometrical features
2.1. Biological features

Biological information are usually available for fish
otolith databases. We will use fish length and sex, and
the catch date. If available, other information such as the
sexual maturity or otolith weight could also be considered.
Though relevant for aging issues [7], these features are suf-
ficient alone to provide accurate age estimates due to the
huge growth variability among fish individuals.

2.2. Geometrical features

The second category of features we use relies on the
characterization of the external shape of the otolith. We
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typically compute the perimeter, the surface, and the rate
between the length along the two principal axis.

This type of feature is obviously not sufficient alone to
infer fish age as shown in [1]. However, we aim at evaluat-
ing whether or not it can bring additional cues in combina-
tion to other feature types to improve fish age estimation.

3. Image-related features

The core of our study is the extraction of relevant fea-
tures to represent the content of otolith images, in terms of
alternation of translucent and opaque rings. We will inves-
tigate the use of two different feature sets: frequency-based
and peak-based features.

3.1. From 2p image content to 1p representation

Otolith interpretation is usually performed by experts
along a predefined reading axis, as shown by Fig.1 for a
Plaice otolith. The automatic analysis of the content of
otolith images can then be restricted to a region around the
main reading axis.

To this end, a template-based approach inspired from [9]
extracts a one-dimensional signal depicting the 2D image
content, relevant for interpretation purposes, within an an-
gular sector around the considered reading axis. More pre-
cisely, given the otolith center 0 and an angular sector S,
the following 1D signal ss is computed:

ss(a) = med(I(O + a*Ts)) 1)

where med() is the median operator, Ts is the template
model used within &, I the image intensity function, and
« a scaling factor between 0 and 1. As in [9], the template
model Ts is given by the sampled external otolith shape
within S. ss(a) is then the median intensity value along the
template T's scaled by a w.r.t. the otolith center O. Since
the scaling of the external otolith shape w.r.t. the otolith
center provides a good approximation of the shape of the
seasonal rings [9], ss depicts oscillations corresponding to
the alternation of translucent and opaque rings within S.

3.2. Growth-adapted filtering

Otolith growth is not linear but rather exponential.
Therefore, rings tend to be thiner when the fish gets older. In
terms of frequency content, the signal ss is then highly non-
stationary. In addition, the otolith is usually thiner close to
its edge, what results in a low-frequency component in sgs.
Due to these two major issues, the straightforward use of
FFT or DCT features computed from ss as in [7] does not
seem a relevant choice.

Contrarily, we develop a growth-adapted filtering to an-
alyze ss. Given a mean a priori growth model L = ®(t),

with L the distance to the otolith center, and ¢ the time vari-
able in years, ss is initially demodulated w.r.t. &:

SgM(t) = SS(Q(t)/Lmaz)a ()

where L,,.., is the median length between the center of
the otolith and the edge within S. Though non-stationary,
the demodulated signal s2* involves a more compact fre-
quency content, what makes easier its analysis.

To remove the low-frequency component s% from s2,
s% is estimated using a convolution to a Gaussian kernel
gor With a large variance o2: sL = g,, x sZ™. High-
frequency noise can also be filtered out using a Gaussian
kernel with a low variance o, such that the growth-adapted
filtering finally comes to consider the filtered signal s§
computed as:

sg(t) = gop * [ng — s:";] 3)
3.3. Frequency-based representation

Given the demodulated and filtered signal s&, one can
use its frequency content as a descriptor of the alternation of
ridges and valleys within S. The DCT transform is then ap-
plied to s§, and the Npcr first DCT coefficients are stored
to form the frequency-based feature vector.

3.4. Peak-based representation

Otolith interpretations performed by experts do not rely
on the analysis of the image frequency content, but rather
on the detection of ridge and valley structures correspond-
ing to translucent and opaque rings. We then introduce a
second kind of image-related features defined from the ex-
trema of the signal s§. Given the positions of maxima (or
equivalently the minima) of s§ {t1,.....,t,}, we define a
new peak-based signal s£% by:

g7 (t) = min {p(t — te)heqt,....n} (4)

where p is a distance kernel.  The computation of
{t1,.....,tn } is based on the detection of the zero crossings
of the first derivative of s&, estimated by finite differences.
In practice, we use p(u) = 2atan(u) /7. The resulting sig-
nal sE'Z only depends on the extrema position. In particular,
compared to s&, s£2 is invariant to the variability of inten-
sity ranges over images.

4. Statistical learning

Fish age estimation is regarded as a pattern classification
issue. Given an otolith image n, we aim at mapping the as-
sociated feature vector z™ to an age class y™. To cope with
this multi-class classification, we consider two different sta-
tistical learning techniques: neural networks and SVM.



4.1. Neural networks

Neural networks have been widely used for pattern
recognition issues [2]. They are aimed at optimizing the
interconnection weights between neurons to minimize the
mean square error. Here, a back propagation neural network
with one hidden layer is chosen. The decision function is a
sigmoid. The number of neurons of the hidden layer has
been empirically optimized, and set to fifty. In our experi-
ments, we use the Netlab Matlab toolbox [6].

4.2. SVM

Kernel-based techniques such as SVMs [8] are among
the most efficient approaches for pattern recognition. The
key idea of SVMS, which are maximum margin classifiers,
is to map the original feature space to a higher dimensional.
The selected mapping ¥ has to verify that the dot product
between two points in the new feature space ¥ (z;) - ¥(z2)
can be rewritten as a kernel function K (1, z2). The binary
SVM classification then resorts to determine the hyperplane
separating the two classes within the feature space associ-
ated to the kernel function. We let the reader refer to [8] for
further details.

In our study, we will use a Gaussian kernel, K (z1,z2) =
exp(—(wy — x2)?/20?). The binary SVM classification is
extended to a multi-class classification using a one vs. all
strategy. We use the libSVM package [3] to test for two
different SVM techniques: C-SVM and nu-SVM [3, 8].

4.3. Training issues

Given a training set 7 of otolith images and the as-
sociated feature vectors {z*};c7 (z* possibly refers to
frequency-based, peak-based, biological or geometrical fea-
tures, or a combination of these features), we first apply
a Principal Component Analysis (PCA) to retain the first
Npc 4 components. The resulting feature set is denoted by
{z% o 4 rer. Statistical learning is then performed within
the associated feature space.

To increase the robustness of the learning stage, we virtu-
ally increase the number of elements within the training set
T as follows. Each element k& within 7 is associated to a
growth pattern L = & (¢) provided by the interpretation of
the otolith made by the expert. Given k € T, the template-
based signal s& (cf. Eq.1) is demodulated w.r.t. the growth
model L = &,(¢) and remodulated w.r.t. growth models
randomly chosen within {®,,},,c7. The image-related fea-
tures computed for these virtual signals are then combined
to the original ones to create a larger training set. The re-
modulation is typically performed with five growth models.
Thus, the size of the training is multiplied by a factor 6six.
This is expected to improve the generalization performed
by the statistical learning techniques.

5. Experiments
5.1. Training and test sets

The experiments are carried out for a database of 300
images of plaice otoliths from age group 1 to 6. Due to the
lower number of samples in age groups 5 and 6, we merge
both groups to end up with a five-class issue: 1 to 4 and
5+. This grouping can also be motivated by the fact that
age groups 4 and less usually represent more than 85% of
the commercial landings. The ground truth for fish age es-
timation was provided by the interpretation of an expert in
plaice otolith readings. The training set is formed by select-
ing the three fourth of the images of each age class, while
the remaining images are used for the test set. For each
image, image-related features are extracted for five non-
overlapping angular sectors of width 7 /50 around the main
reading axis. Angular sectors, for which information re-
quired to interpret the otolith is missing due to ring disconti-
nuities or local artifacts, are discarded from the training set,
but no such checking is carried out over the test set. We re-
sort to training and test sets including respectively 1500 and
600 elements. Using the virtual growth-based signal gener-
ation, the training set finally comprises 8000 elements.

5.2. Classification results over the test set

We evaluate the performances of the proposed approach
using different feature sets and classifiers. The perfor-
mances, reported in Fig.2 are analyzed in terms of mean
correct classification rate w.r.t. the five age groups over the
test set. The overall evaluation shows that the best results
(86%) are obtained by C-SVMs [8] combined to the peak-
based features and the remodulation procedure within the
training set. Thus, this configuration is used as the refer-
ence in the subsequent.

Fig.2.a highlights the need for non-linear techniques to
cope with the considered classification task, and shows that
C-SVMs outperform the neural nets and nu-SVMs [2, 8].

In Fig.2.b, we compare different feature types: peak-
based features, peak-based features (PB), frequency-based
features combined to the remodulation procedure (FB),
DCT coefficients of the signal sg as used in [7] (DCT), bi-
ological features (B) and geometrical features (G). We also
analyze the relevance of the remodulation process (Rem)
to synthesize new examples within the training set. Fig.2.b
first indicates that biological and geometrical features are
far too simple to provide alone relevant cues to infer fish
age. The influence of the growth-adapted filtering is also
demonstrated by the rather low performance achieved using
the DCT features from the raw signal. Besides, it proves the
superiority of PB features over FB features and validates the
interest of the remodulation procedure, which brings a sig-
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Figure 2. Overall evaluation of fish age estimation for the plaice test set in terms of rate of correct classification. a) Given the
peak-based feature vectors, we compare four different classifiers: C-SVMs, nu-SVMs, neural nets (NN) and linear SVMs. b) using
C-SVM, we evaluate the relevance of four feature vectors: peak-based features (PB), frequency-based features (FB), biological
features (B) and geometrical features (G). c) Using C-SVM, we compare combinations of peak-based, biological and geometrical
features: PB, PB+B, PB+G, PB+B+G. In all cases, we use the remodulation procedure over the training set.

1 2 3 4 5+ errorin[-1,+1]
1 91.6 8.3 100
2 91.1 5.8 2.9 97
3 4.1 91.6 4.1 100
4 4.3 13 78.2 4.3 95.5
5+ 5.8 58 88.2 94.1

Table 1. Confusion matrix of the results of fish aging for
each image of the test set by combining the classifications
of individuals angular sectors.

nificant improvement from 82.8% to 86% of mean correct
classification rate when using PB features.

We also manage to combine biological and geometrical
features to PB features. Surprisingly as reported in Fig.2.c,
this does not bring any improvement compared to PB fea-
tures alone. This combination indeed tends to decrease the
mean correct classification rate, while the mean-square er-
ror is slightly lowered. This is certainly due to the high
overlapping in terms of length and shape features between
the different age groups, which decreases the discriminant
power of these features.

5.3 Extension to image classification

From this overall evaluation over the test set, the best
configuration is to combine C-SVMs to PB features and to
exploit the remodulation procedure. Besides, we can supply
a more robust image classification by combining the classes
assigned to several angular sectors. To this end, we use a
voting procedure: given the age groups assigned to five an-
gular sectors of the tested image around the main reading
axis, this image is classified as belonging to the age group
with the maximum number of votes. Tab.1 reports the con-
fusion matrix of the resulting image-based classification.
The mean correct classification rate is 88%, and only age
group 4 has a classification rate just below 80%. These re-
sults are very promising for an application to routine aging,
since they are in the range of the levels of agreement ob-
served between expert readers.

Compared to previous work using statistical learning for

fish aging [5], the reported classification rates are much
greater due to the definition of more relevant image-based
features. Besides, as reported in [4], previously proposed
1D and 2D techniques are both outperformed by the pro-
posed statistical learning scheme with respectively 50% and
80% of correct classification. Besides, compared to 2D ap-
proaches which require about one minute per image, the
SVM classification from PB features just needs a few sec-
onds on a 2.4GHz PC in a Matlab implementation.
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