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ABSTRACT

Context. While rotation has a major impact on stellar structure and evolution, its effects are not well understood. Thanks to high-
quality and long-time base photometric observations obtained with recent space missions, we are now able to study stellar rotation
more precisely.
Aims. We aim to constrain radial differential rotation profiles in γDoradus (γDor) stars, and to develop new theoretical seismic
diagnosis for such stars with rapid and potentially non-uniform rotation.
Methods. We have derived a new asymptotic description which accounts for the impact of weak differential near-core rotation on
gravity-mode period spacings. The theoretical predictions are illustrated from pulsation computations with the code GYRE and
compared with observations of γDor stars. When possible, we also derived the surface rotation rates in these stars by detecting and
analysing signatures of rotational modulation, and computed the core-to-surface rotation ratios.
Results. Stellar rotation must be strongly differential before its effects on period spacing patterns can be detected, unless multiple
period spacing patterns can be compared. Six stars in our sample exhibit a single unexplained period spacing pattern of retrograde
modes. We hypothesise that these are Yanai modes. Finally, we find signatures of rotational spot modulation in the photometric data
of eight targets.
Conclusions. If only one period spacing pattern is detected and analysed for a star, it is difficult to detect differential rotation. A
rigidly rotating model will often provide the best solution. Differential rotation can only be detected when multiple period spacing
patterns have been found for a single star or its surface rotation rate is known as well. This is the case for eight of the stars in our
sample, revealing surface-to-core rotation ratios between 0.95 and 1.05.

Key words. asteroseismology – methods: data analysis – stars: fundamental parameters – stars: variables: general – stars: oscillations
– stars: rotation

1. Introduction

Rotation is a crucial element of stellar structure and evolution
(e.g. Maeder 2009; and references therein). It induces and influ-
ences various types of angular momentum transport and chem-
ical mixing processes inside the star, such as shear mixing (e.g.
Heger et al. 2000; Mathis et al. 2004; Maeder et al. 2013),
meridional circulation (e.g. Zahn 1992; Maeder & Zahn 1998;
Mathis & Zahn 2004) and waves (e.g. Lee & Saio 1993; Talon &
Charbonnel 1998, 2005; Mathis 2009; Rogers 2015). These lead
to additional transport of fuel into the nuclear burning regions,
influencing the nucleosynthesis and extending the life of the
star (e.g. Zahn 1992; Pinsonneault 1997; Maeder & Meynet
2000). The mixing processes also have a potential impact on

the element abundances at the stellar surface (e.g. Brott et al.
2011a,b). Furthermore, stellar rotation has a strong influence on
stellar magnetism (e.g. Mestel 1999; Spruit 1999) and vice versa
(e.g. Mestel et al. 1988; Spruit 1999; Mathis & Zahn 2005).
The centrifugal acceleration distorts the shape of the star (e.g.
Roxburgh 2004, 2006; Jackson et al. 2005; MacGregor et al.
2007; Espinosa Lara & Rieutord 2013), and the distribution of
angular momentum influences the convective stability inside the
star (e.g. Maeder et al. 2013).

The full impact of stellar rotation is far from understood (e.g.
Aerts et al. 2014; Cazorla et al. 2017). While there have been
considerable efforts to carry out multi-dimensional stellar mod-
elling (e.g. Rieutord et al. 2016), these have often had a high com-
putational cost. Hence, modern stellar evolution codes typically
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use one-dimensional stellar models in which higher dimensional
processes such as stellar rotation are averaged over isobars (e.g.
Chaboyer et al. 1995; Heger et al. 2000; Eggenberger et al. 2008;
Ekström et al. 2012; Chieffi & Limongi 2013; Paxton et al. 2013;
Marques et al. 2013; Palacios et al. 2003; Charbonnel & Lagarde
2010; Amard et al. 2016). This approach is often incomplete, and
potentially numerically unstable (e.g. Lau et al. 2014; Lattanzio
et al. 2015; Rieutord et al. 2016; Edelmann et al. 2017).

Thanks to recent photometric space missions such as MOST
(Walker et al. 2003), CoRoT (Auvergne et al. 2009), Kepler
(Borucki et al. 2010; Koch et al. 2010), K2 (Howell et al.
2014), and BRITE (Weiss et al. 2014; Pablo et al. 2016), there
has been significant progress in constraining stellar rotation
using observations. These high-quality high-cadence and long
time base data have led to major advances in asteroseismol-
ogy, in other words, the study of the internal stellar structure,
dynamics and evolution by analysing non-radial stellar pulsa-
tions. This has been particularly successful for low-mass main-
sequence stars that have radiative cores and convective envelopes
(e.g. Benomar et al. 2015; van Saders et al. 2016), sub-giants
(e.g. Deheuvels et al. 2014), and red giants (e.g. Beck et al.
2012; Deheuvels et al. 2012; Ceillier et al. 2017). However,
asteroseismology is also a valuable tool to study intermediate- to
high-mass main-sequence stars with convective cores and radia-
tive envelopes.

Gamma Doradus (γDor) stars, with 1.4 M� .M∗ . 2.0 M�,
and slowly-pulsating B-type (SPB) stars, with 2.5 M� .
M∗ . 8 M�, exhibit high-order gravity-mode (g-mode) pul-
sations, gravito-inertial pulsations (Van Reeth et al. 2016), and/or
purely inertial pulsations, such as r-modes (Saio et al. 2018). The
restoring forces for gravity-modes and purely inertial pulsation
modes are buoyancy and the Coriolis force, respectively. In the
case of gravito-inertial pulsation modes, both forces contribute.
As predicted by asymptotic theory, the pulsation periods forγDor
and SPB stars were observed to form period spacing patterns (e.g.
Chapellier et al. 2012; Chapellier & Mathias 2013; Kurtz et al.
2014; Bedding et al. 2015; Saio et al. 2015; Van Reeth et al. 2015;
Ouazzani et al. 2017). The pulsation periods are equidistant in
the asymptotic regime (with radial order n� spherical degree l)
for a non-rotating chemically homogeneous star (Tassoul 1980).
Chemical gradients in the deep stellar interior cause pulsation
mode trapping, which introduces non-uniform variations in
the spacings (Miglio et al. 2008). On the other hand, the stellar
rotation leads to shifts in the observed pulsation mode frequencies
(Bouabid et al. 2013; Salmon et al. 2014; Van Reeth et al. 2015;
Moravveji et al. 2016). For slowly rotating stars, the observed
pulsation modes are split into frequency multiplets that depend on
the mode identification. For moderate to fast rotators, that is, with
rotation in the order of or more than 20% of the critical rotation
rate, the observed period spacing patterns have a clear slope (e.g.
Van Reeth et al. 2016; Ouazzani et al. 2017). Prograde (azimuthal
order m> 0) and zonal modes have a downward slope, that is,
the spacing between consecutive pulsation periods decreases
with increasing pulsation period, i.e. radial order n. The period
spacing patterns of retrograde modes (with m< 0) mostly have
an upward slope. For stars with detected period spacing patterns,
this has been exploited to derive the near-core stellar rotation
(e.g. Kurtz et al. 2014; Saio et al. 2015, 2018; Triana et al. 2015;
Murphy et al. 2016; Schmid & Aerts 2016; Van Reeth et al. 2016;
Ouazzani et al. 2017).

It is often assumed that these stars are (quasi-)rigidly rotat-
ing. Notable exceptions are (i) the analysis of the slowly rotat-
ing B-type star KIC 10526294 (Triana et al. 2015), whereby the

impact of differential rotation on the pulsation mode splitting
was studied, or (ii) the analysis of hybrid γDor/δSct pulsators
that exhibit both g-mode and p-mode pulsations (e.g. Kurtz et al.
2014). If the p-mode pulsation spectrum is sufficiently regu-
lar, it can be analysed to derive the surface rotation rate (e.g.
Kurtz et al. 2014; Saio et al. 2015; Schmid & Aerts 2016; Paparó
et al. 2016a,b).

In this work, we aim to constrain possible radial differential
rotation in γDor stars. We have studied the problem using two
different approaches. First, we took a closer look at the theo-
retically expected effects of differential rotation in the near-core
regions on the g-mode pulsations (Sect. 2.1 and Appendix A),
and used them to place a constraint on the differential rotation
of observed γDor stars (Sect. 2.3). Second, we determined the
core-to-surface rotation ratio for stars in the same sample using
rotational spot modulation (Sect. 3) to constrain the stellar sur-
face rotation rate. Finally, we discuss these results, and draw our
conclusions (Sect. 4).

2. Differential rotation in the near-core regions

2.1. Theoretical description of the g-modes

Computing the complete impact of stellar rotation on pulsa-
tions is computationally expensive (Dintrans & Rieutord 2000;
Ballot et al. 2010). A common method to reduce this computa-
tional cost for g-mode pulsations is to use the traditional approx-
imation of rotation (TAR), whereby (i) the horizontal component
of the stellar rotation vector in the equation of motion is ignored,
and (ii) the studied star is assumed to be spherically symmet-
ric (e.g. Eckart 1960; Friedlander 1987; Lee & Saio 1987, 1997;
Townsend 2005; Mathis 2009; and Appendix A). For slow to
moderate rotators for which the stratification restoring force
dominates the Coriolis acceleration along the radial direction,
these assumptions are reasonable. The horizontal component of
the pulsation displacement vector (and velocity) is dominant for
g-modes, which are most sensitive to the near-core regions in the
star where the deformation of the stellar structure caused by the
centrifugal force is minimal.

When the star is assumed to be rigidly rotating, the g-mode
pulsation periods in the corotating reference frame are given by

Pco =
Π0
√
λνkm

(
n + αg

)
, (1)

with

Π0 =
2π2∫ r2

r1

N
r dr

, (2)

as described by Bouabid et al. (2013). Here, N is the stable strat-
ification Brunt-Väisälä frequency defined in Appendix A, λνkm
is the eigenvalue of the Laplace tidal equation, and ν the corre-

sponding spin parameter given by ν = 2 frotPco, with frot =
Ω

2π
the rotation frequency (Ω being the rotation angular velocity).
The integers k and m provide the pulsation mode identification
as defined by Lee & Saio (1997), i.e. k = l − |m| for g-modes,
whereby l is the spherical degree of the pulsation mode, and
k < 0 for purely inertial modes; n is the integer correspond-
ing to the quantification along the radial direction. αg is a phase
term dependent on the stellar structure at the boundaries of the
pulsation mode cavity. For stars with a convective core and con-
vective envelope, αg ' 0.5. The turning points of the pulsation
mode cavity are indicated by r1 and r2.

A24, page 2 of 14



T. Van Reeth et al.: Differential rotation

Equation (1) can be generalised for purely radial differen-
tial rotation (the so-called shellular rotation), where the angu-
lar velocity is a function of r only. Using the asymptotic theory
for the propagation of low-frequency gravito-inertial modes in
differentially rotating stars developed by Mathis (2009; see also
Ogilvie & Lin 2004) and detailed in Appendix A, one can show
that

2π2
(
n + αg

)
=

∫ r2

r1

√
λνkm (r)

fin − m frot (r)
N (r)

r
dr, (3)

where fin is the frequency of the pulsation with mode identifi-
cation (n, k,m) as seen by the observer in the inertial reference
frame. Here, both the eigenvalue λνkm (r) and the rotation pro-
file frot (r) vary as a function of the radial coordinate r, and are
included within the integral.

We see from Eq. (3) that small variations in the stellar
rotation profile or in the Brunt-Väisälä frequency profile have a
comparable effect on the pulsation frequencies. This can be illus-
trated by the case of a weak radial differential rotation defined as
in Mathis et al. (2008)

frot(r) = funi + δ f (r) =
1

2π
(Ωuni + δΩ (r)) with δΩ (r) �Ωuni. (4)

In this case, Eq. (3) becomes

2π2
(
n + αg

)
=

√
λνuni km

f̂co

∫ r2

r1

N (r)
[
1 + ε̂ (r)

]
r

dr, (5)

where νuni = 2 funi/ f̂co, f̂co = fin − m funi and ε(r) =
m?δ frot(r)/ fco.

In addition, we can further explore the impact of differen-
tial rotation, by rewriting Eq. (3) using Taylor expansions for√
λνkm (r) and ( fin − m frot (r))−1 at a radial coordinate rs, where

the sensitivity of the g-modes to the stellar structure is dominant.
This leads to

Π0

(
n + αg

)
≈

√
λνkm,s

fco,s

1 +

(
λ′νkm,s

2λνkm,s
+

m f ′rot,s

fco,s

)
〈r − rs〉

+

 λ′′νkm,s

2λνkm,s
−

(
λ′νkm,s

2λνkm,s

)2

+
m f ′′rot,s

fco,s
+ 2

(m f ′rot,s

fco,s

)2 〈(r − rs)2〉

 . (6)

Here the quantity xs denotes the value of the quantity x at the
radial coordinate rs, x′ = dx

dr , and

〈x〉 ≡
(∫ r2

r1

x
N (r)

r
dr

) (∫ r2

r1

N (r)
r

dr
)−1

. (7)

The pulsation frequency in the local corotating frame is given by

fco (r) = fin − m frot (r) . (8)

Because the eigenvalue λνkm varies smoothly as a function
of the spin parameter ν for a given pulsation mode identifica-
tion (k,m), the derivatives in the right-hand side of Eq. (6) can
be rewritten using the chain rule. Hereby we consider the func-
tions λkm (ν), ν ( frot) and frot (r) for a given pulsation. Taking
into account that the pulsation period in the corotating frame
Pco,s = f −1

co,s, we find

Π0

(
n + αg

)
≈

√
λνkm,s

Pco,s +

3∑
i=1

aiGi (ν) Pi+1
co,s

 . (9)

The coefficients ai depend on the rotation profile, and are the
same for all pulsations. The functions Gi (ν) depend on the pul-
sation mode identification, and describe how the influence of

the differential rotation varies across the period spacing patterns.
The full expressions for ai and Gi (ν) are given in Appendix B.
Because the functions Gi (ν) are continuous and smooth, we can
conclude that differential rotation in the near-core regions of a g-
mode pulsator also introduces an additional continuous change
in the slope of the period spacing patterns.

2.2. MESA and GYRE models

We illustrate the theoretical results from Sect. 2.1 by com-
puting pulsation periods for stellar evolution models including
a differential rotation profile. The input models are computed
with the one-dimensional stellar evolution code MESA v10108
(Paxton et al. 2011, 2013, 2015, 2018), for a non-rotating
1.7 M� star with solar metallicity, assuming the chemical mix-
ture described by Asplund et al. (2009) and using OPAL opacity
tables (Rogers & Nayfonov 2002). Convection is treated using
the mixing length theory, with an αMLT value of 1.8, exponen-
tial convective core overshooting of 0.015 Hp, and extra diffu-
sive mixing in the radiative region of 1 cm2 s−1. These values
were chosen to match the ones used in studies of g-mode pul-
sators observed with space photometry (e.g. Moravveji et al.
2015, 2016; Schmid & Aerts 2016; Zwintz et al. 2017). The dif-
ferential rotation profile is added a posteriori to the model. It is
defined as

frot (r) = frot,s

1 + δ f
(∫ rs

r

N2 (r)
r

dr
) (∫ rs

0

N2 (r)
r

dr
)−1 , (10)

where rs = 〈r〉, and frot,s and δ f are free parameters, providing
the rotation frequency at radius rs and the relative difference in
rotation frequency between r = 0 and r = rs, respectively. This
prescription is based on the differential rotation profile derived
by Rieutord (2006) and Hypolite & Rieutord (2014) for the ther-
mal wind balance in rapidly rotating stars, taking into account
the effects of rotation and stable stratification in the Boussinesq
approximation.

We evaluated the asymptotic relation in Eq. (3) for differ-
ent theoretical stellar models, and compared our results with full
numerical pulsation frequencies computed for the same input
models. For the evaluation of Eq. (3), we have relied on the
numerical Brunt-Väisälä frequency profiles. The pulsations of
the stellar models were calculated at multiple points during the
main-sequence evolution (with a core mass hydrogen fraction Xc
of 0.7, 0.5, 0.3, and 0.1, respectively), for several rotation rates
( frot,s = 0.1 d−1, 1 d−1, 1.5 d−1, and 2 d−1) with varying degrees
of differential rotation. The numerical pulsation frequencies of
the stellar models were computed using the adiabatic version of
the stellar pulsation code GYRE v5.1 (Townsend & Teitler 2013;
Townsend et al. 2018), since stability or excitation rate computa-
tions (see, e.g. Bouabid et al. 2013) are beyond the scope of the
present work. This version of the GYRE code adopts the TAR
to model gravito-inertial and purely inertial modes. The imple-
mentation of the TAR in GYRE, which was undertaken indepen-
dently of the present work, is similar to the approach described
by Townsend (2005), with the allowance for differential rotation
as derived by Mathis (2009).

In most cases, our test results were qualitatively similar.
A representative case is shown in Fig. 1. While the asymp-
totic relation in Eq. (3) does not account for mode trapping, it
describes the changes in the mean pulsation period and the slope
of the period spacing patterns, caused by differential rotation.
The results from Eq. (3) and those obtained numerically with
the GYRE code are in agreement.
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Fig. 1. 1.7 M� stellar model at Xc = 0.7 with frot,s = 2 d−1 and δ f = 0.0 (light grey), 0.1 (grey), and 0.2 (black). Top left: the Brunt-Väisälä
frequency profile. Top right: the considered stellar rotation profiles. Left panels: the corresponding gravito-inertial mode pulsations with (k,m) =
(+0,+1), computed from Eq. (3) (middle) and with GYRE v5.1 (bottom). Right panels: the corresponding gravito-inertial mode pulsations with
(k,m) = (−2,−1), computed from Eq. (3) (middle) and with GYRE v5.1 (bottom).

The impact of the differential rotation on the pulsation modes
depends on the pulsation mode identification. For retrograde
gravito-inertial modes, such as r-modes with (k,m) = (−2,−1),
the local pulsation frequency in the co-rotating frame is lower
when the local rotation frequency is lower, and vice versa, as
we can see from Eq. (8). For prograde modes, the local pulsa-
tion frequency in the co-rotating frame decreases when the local
rotation frequency increases. The relative contribution of the
Coriolis force to the total restoring force increases when the local
pulsation frequency in the co-rotating reference frame decreases.
Hence, retrograde (prograde) modes become more sensitive to
the slower (faster) rotating layers in a differentially rotating
star. Thus, if the stellar core rotates sufficiently faster than the
outer layers, as illustrated in Fig. 1, the retrograde r-modes are
more sensitive to the outer layers of the star, whereas the pro-
grade gravito-inertial modes are more sensitive to the near-core
regions, as illustrated in Fig. 2. Finally, as we can see in Fig. 1,
changes in the rotation profile cause the dips in the period spac-
ing patterns to shift in period. This is also indicative of changes
in the pulsation mode cavities. Other illustrative examples of the
impact of differential rotation on g-mode period spacing patterns
can be found in Figs. C.1 and C.2.

2.3. Revisiting the γDor sample analysis

Next, we reanalysed the period spacing patterns of γDor stars
reported by Van Reeth et al. (2015), and consider the possibil-
ity of radial differential rotation. These stars have been studied
in an ensemble modelling analysis by Van Reeth et al. (2016),
assuming rigid rotation. This was successful for 40 of the 50
stars with observed period spacings, and led to the identifi-
cation of r-mode pulsations in ten stars in the sample. These
results were recently confirmed in further analyses by Saio et al.
(2018).

In a first step, we fitted the observed period spacing patterns
using Eq. (9), whereby we optimised the parameters Π0, frot, and
ai. From this analysis we find that the observed period spacing
patterns often do not allow to detect differential rotation. This
is illustrated in Fig. 3 for the γDor star KIC 11721304, where
we show the observed pattern, the best fitting model assuming
rigid rotation, and a model that includes differential rotation.
The quality of the fit is similar for both types of rotation pro-
files, but when differential rotation is included, the uncertainties
on the derived near-core rotation rate and the asymptotic spac-
ing become larger. Hence, the model assuming rigid rotation
is statistically favourable, but we cannot disprove differential
rotation.

To properly establish the extent of this degeneracy, we sim-
ulated period spacing patterns for varying degrees of differen-
tial rotation, and analyse them using rigidly rotating models.
The simulated period of the pulsation with mode identification
(n, k,m) in the inertial reference frame, is given by

Pnkm = Pth,nkm + δPnkm. (11)

Here, Pth,nkm is the theoretical pulsation period for the mode
(n, k,m) in the asymptotic regime, computed with Eq. (3). We
used the 1.7 M� MESA model discussed in Sect. 2.2 at Xc =
0.5 as input, combined with rotation profiles that were con-
structed following Eq. (10) for increasing differential rotation
rates (0≤ δ f · frot,s ≤ 0.3). The offsets δPnkm in Eq. (11) account
for the effects of mode trapping and observational errors that
were included in our simulated data. The latter were taken to
be the residuals after modelling an observed period spacing
pattern. These simulated period spacing patterns were subse-
quently fitted with a rigid rotation model, as described by
Eq. (1), and the quality of the fits were evaluated using reduced
χ2-values.
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Fig. 3. Observed period spacing pattern of KIC 11721304 (grey squares)
with the best model assuming rigid rotation (red; frot = 0.46 ± 0.02 d−1,
Π0 = 4320 ± 230 s), and allowing for differential rotation (blue;
frot = 0.51 d−1, Π0 = 4430 s, a1 = − 0.04).

The results of two selected simulations, with offsets δPnkm
based on the observations of the γDor star KIC 11721304, are
shown in Fig. 4 and listed in Table 1. As the differential rota-
tion δ f in the simulated data increases, the quality of the rigidly
rotating model fit decreases. However, this is hard to observe.
Indeed, differences in the slope of the simulated pattern caused
by the differential rotation are accounted for by slight changes
in the near-core rotation rate frot,i and asymptotic spacing Π0 of
the rigidly rotating model. The changes in the model value of
Π0 are related to the interaction between the differential rotation
profile and the Brunt-Väisälä frequency profile, as we derived
from Eq. (3) and illustrated in Fig. 2. For all simulated differ-
ential rotation profiles, the values for frot,i and Π0 of the best
model are as typically detected for a γDor star. Any remaining
differences between the differentially rotating simulation Pth,nkm
and the best-fitting model are negligible compared to the off-
sets δPnkm. As a result, we cannot properly detect the differential
rotation in these simulated data, even for δ f ≈ 0.9.
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Fig. 4. Simulated period spacing patterns based on the observations for
KIC 11721304 (black dots). The input parameters for the simulations
(with non-rigid rotation) are shown in black, while the χ2

red of the best
model with rigid rotation (full red line) is also given.

The degeneracy between rigid and differential rotation is
lifted when multiple period spacing patterns are observed for the
same star. This is illustrated in Fig. 5. In this figure we show
simulations of a prograde dipole mode series and a retrograde r-
mode series, with offsets δPnkm based on the observations of the
γDor star KIC 12066947. The parameter values of the simulated
patterns and the best (rigidly rotating) models are again listed
in Table 1. Because a differential rotation profile has a different
effect on both patterns (as discussed in Sect. 2.2), its presence
is revealed when models assuming uniform rotation are fitted
simultaneously to the data. We can see that for the simulations in
the bottom panels of Fig. 5, with δ f = 0.15, the rigidly rotating
model fails to match the slope of the patterns. Since we did not
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Table 1. Parameter values of the simulations shown for KIC 11721304
and KIC 12066947 in Figs. 4 and 5, compared with the parameter values
of the best model assuming rigid rotation.

Π0,sim frot,s,sim δ fsim Π0,model frot,i,model χ2
red

(s) (d−1) (s) (d−1)

KIC 11721304
4328 0.458 0.0 4350(230) 0.459(13) 13.1
4105 0.339 0.88 4800(330) 0.483(16) 22.8

KIC 12066947
4180 2.16 0.0 4180(60) 2.161(4) 155.4
4152 2.14 0.04 4110(50) 2.153(4) 114.8
3965 2.04 0.15 3590(120) 2.093(12) 1052

observe such significant shortcomings when modelling the real
observed period spacing patterns for this star, we estimate that its
differential rotation rate is δ f . 0.15. Similar model-dependent
upper limits for δ f have been estimated for the other stars with
detected r-mode patterns, and are listed in Table 3.

In addition, the simulations illustrate another property when
dealing with non-rigid rotation. The uniformly rotating model
provides a better fit to the simulated data with a differential rota-
tion rate δ f = 0.04, than to the simulated data for a rigid rota-
tor (δ f = 0.0), as evidenced by their respective χ2

red values. For
δ f = 0.04, the observational signatures of pulsation mode trap-
ping by a chemical gradient and the differential rotation partially
cancel each other. Modelling of the patterns in Fig. 5 individ-
ually confirms these results and is in line with the discussion
in Sect. 2.2. As the differential rotation increases, the prograde
gravito-inertial modes become more sensitive to the faster rotat-
ing near-core regions, and the r-modes become more sensitive
to the slower rotating outer layers of the star. At the differential
rotation rate δ f = 0.15, the results from modelling both pat-
terns individually no longer agree within their respective errors.
In addition, the r-modes have become sufficiently sensitive to
the outer layers of the star that the derived asymptotic spacing
Π0 from the modelling, as computed in Eq. (2), is no longer
reliable.

2.4. Discovery of Yanai modes

For ten stars in the sample, Van Reeth et al. (2016) could not find
a unique pulsation mode identification for the detected period
spacing patterns. For some, there were multiple mode identifica-
tions that yielded equally good results. However, for six of them,
no suitable interpretation could be found at all. Interestingly, all
of these stars have a few characteristics in common. They have
low to moderate values for the spectroscopic rotation velocity
v sin i (see Table 2). For each of them Van Reeth et al. (2015)
detected a single period spacing pattern with an upward slope,
i.e. of retrograde pulsation modes, with period spacing values
typically ranging from a few hundred to a few thousand seconds.
Qualitatively, these characteristics agree with what is expected
for Yanai modes, a type of purely inertial pulsation modes with
k = −1, otherwise known as odd r-modes (Townsend 2003b;
Saio et al. 2018). The observed period spacing values are far
larger than the spacings of r-modes with k = −2, while the spac-
ings of normal retrograde g-modes with k ≥ 0 are not expected
to be much smaller than the asymptotic spacing Π0/

√
l(l + 1).

However, Van Reeth et al. (2016) could not compute a satisfac-
tory theoretical model for Yanai modes, and were limited to the
asymptotic expressions given by Townsend (2003b).

In this work, we have been able to compute adequate theo-
retical models for Yanai modes, using GYRE v5.1. The period
spacing pattern of the γDor star KIC 11668783 is shown in
Fig. 6 as an example. The best fitting model, included in the
figure, corresponds to Yanai modes with (k,m) = (−1,−1) in a
rigidly rotating star. While we can obtain pulsation periods in
the observed range, the slope of the model pattern differs from
the slope of the observations, and the asymptotic spacing Π0 and
near-core rotation frequency frot of our best model have unre-
alistic values, i.e. 2300+790

−0 s and 1.99+0.05
−0.15 d−1 respectively. The

inclusion of radial differential rotation in the models was insuf-
ficient to resolve this issue.

However, the observations are qualitatively consistent with
Yanai modes with (k,m) = (−1,−1). If we assume that the star is
a solid-body rotator, we can use the mode identification to derive
a lower limit for the stellar rotation frequency frot. As explained
in detail by Saio et al. (2018), an r-mode pulsation frequency in
the inertial reference frame fin,s < |m| frot, so that for m = −1,
we have (|m|Pmin)−1 < frot, where Pmin is the shortest pulsation
period of the detected period spacing pattern. Combined with
the spectroscopic values for the projected surface rotation veloc-
ity v sin i, we find that these are moderate to fast rotating stars
seen close to pole-on. These results, shown in Figs. 7 and 8, are
generally consistent with the theoretical expectations for Yanai
modes (Saio et al. 2018).

There are differences between the models and the observa-
tions for these six stars. These stars are fast rotators, seen close
to pole-on as indicated by the low v sin i values. Hence, the tra-
ditional approximation may not be applicable to Yanai modes
in these stars. The behaviour of Yanai modes becomes simi-
lar to that of retrograde gravity-modes at high spin parameter
values (Townsend 2003b; Saio et al. 2018). Recently, Ouazzani
et al. (2017) compared the traditional approximation with a gen-
eral two-dimensional treatment of stellar pulsations and found
that it is reasonably appropriate for g-mode period spacing pat-
terns with various mode identifications, except for retrograde g-
modes in moderate to fast rotating stars. In this case, general
two-dimensional models are needed.

3. Rotational modulation

A common approach to observationally detect or disprove dif-
ferential rotation is to determine the ratio between the rotation
frequency in the near-core regions and close to or at the stellar
surface. While g-mode pulsations are the only reliable way to
probe the stellar properties near the convective core, the rota-
tion rate in the outer stellar envelope can be determined by
analysing p-mode pulsations (e.g. Kurtz et al. 2014; Saio et al.
2015; Schmid & Aerts 2016) and/or rotational spot modulation
(e.g. Degroote et al. 2011; Escorza et al. 2016; Saio et al. 2018)
in the light curve, if either are present. In this section, we focus
on detecting rotational modulation and distinguishing it from
g-mode pulsations. To avoid confusion, the rotation frequency
in the deep stellar interior and in the outer layers are denoted by
frot,i and frot,o, respectively.

When we look for observational signatures of rotational spot
modulation in the Fourier spectrum of space-based photometry
of a star, we expect to find low-frequency peaks for which the
first harmonic frequency is also present. These frequencies are
often part of a group of two or more closely spaced frequencies
which are not always resolved. Such signal is common for low-
mass stars with convective envelopes, but has been observed for
A- and B-type stars as well (e.g. Degroote et al. 2011; Escorza
et al. 2016; Bowman 2017; Saio et al. 2018).
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Fig. 5. Simulated period spacing patterns for different rotation profiles (top, middle, bottom) based on the observations for KIC 12066947 (black
dots). The input parameters for the simulations (with non-rigid rotation) are shown in black on the right, while the χ2

red of the best model with rigid
rotation (full red line) is also given. Both the prograde dipole modes (with (k,m) = (0,1); left) and the r-modes (with (k,m) = (−2,−1); right) are
shown.

Table 2. The six stars with single retrograde period spacing patterns,
which we suspect correspond to Yanai modes.

KIC v sin i fdom Pmin Pmax

(km s−1) (d−1) (days) (days)

4757184 36(3) 1.26725(2) 0.64993(4) 1.00612(7)
5350598 28(2) 2.158490(4) 0.58249(2) 1.36381(8)
6185513 83(6) 2.245965(7) 0.50812(2) 1.3940(1)
6425437 50(3) 0.89681(1) 0.69305(6) 1.2640(2)
7867348 17(1) 1.16998(1) 1.14962(2) 1.8273(2)

11668783 34(3) 0.627995(7) 1.12644(4) 1.65470(8)

Notes. The listed parameters include the spectroscopic rotation veloc-
ity, the dominant pulsation frequency, and the minimum and maximum
pulsation periods for the pulsations in the detected period spacing pat-
terns.

For non-radial g-mode pulsators, the detection of rotational
modulation signal is not straightforward. These pulsation modes
are known to have combination frequencies in the observations,
and, for main-sequence stars, they occur in the same frequency
range as the stellar rotation frequency. Furthermore, we may
expect similar amplitudes for rotational modulation and g-mode
pulsations in photometric data, and both types of signal are fre-
quently non-sinusoidal. However, contrary to g-mode pulsations,
which have lifetimes longer than the total observation time of
the Kepler space mission, rotational spot modulation can vary in
amplitude on much shorter timescales. In addition, whereas g-
mode pulsations have very stable frequencies on long timescales,
rotational spot modulation frequencies often exhibit small varia-
tions dependent on the latitude of the stellar spots. Consequently,
rotational modulation signal ofttimes consists of isolated
closely spaced frequency groups, clustered around harmonic
frequencies.

Hence, we evaluated the frequencies extracted from the
Kepler photometry by Van Reeth et al. (2015) to look for
rotational modulation signal. To properly distinguish g-mode
pulsations from rotational modulation, we require that

– the signal-to-noise ratio S/N ≥ 4, and the value of the ampli-
tude is at least five times as large as its error, to ensure that
the detected signal is significant;
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Fig. 6. Top panel: log χ2-distribution for the parameters of the model
pattern evaluated for KIC 11668783. The red contour indicates the
boundary of the 1σ confidence interval. Bottom panel: observed period
spacing pattern of KIC 11668783 (black squares) reported by Van Reeth
et al. (2015), with the best model (red line; frot = 1.99+0.05

−0.15 d−1, Π0 =

2300+790
−0 s).

– the first harmonic of the selected frequencies is detectable in
the data, whereby we use the Rayleigh frequency resolution
fres as a limit to find harmonics;

– the selected frequency is part of a closely spaced group of
frequencies, whereby | fi − f j| < 1.5 fres;

– both the selected frequencies and their first harmonics are
located outside of the frequency ranges of the g-mode pulsa-
tion frequencies and their combinations;

– the selected frequencies are larger than half the derived near-
core rotation frequency frot,i and any detected r-mode fre-
quencies;

– the selected frequencies are smaller than one-and-a-half
times the derived near-core rotation frequency frot,i and any
detected prograde pulsation mode frequencies;
With these criteria, the main limitation is that stellar spots

must have a shorter lifetime than the total observation time of
the original Kepler space mission. This implies that we cannot
detect rotational modulation in g-mode pulsators with long-lived
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Fig. 7. Spectroscopic rotation velocities of the single stars in our sam-
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stars in this figure, the stars with Yanai modes (with (k,m) = (−1,−1))
have not been successfully modelled. For these stars, the plotted rotation
frequency is a lower limit, assuming the proposed mode identification is
correct. The arrows indicate how the graph changes when frot is higher.
This figure is an update of Fig. 14 by Van Reeth et al. (2016).
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Fig. 8. Inclination angle i of the observed stars, derived from the infor-
mation shown in Fig. 7, assuming the stars are spherically symmetric
with a stellar radius R∗ = 2.0 ± 0.5 R�, which is typical for a γDor star.
The symbols and colours are the same as in Fig. 7. For the stars with
Yanai modes (with (k,m) = (−1,−1)), the plotted rotation frequency is
again a lower limit. The arrows indicate how the graph changes when
frot is higher.

stellar spots. A second limitation of our approach is that we
require the surface rotation rate and the near-core rotation rate
to agree within 50%. This assumption would be unjustified in
(very) slowly rotating stars, such as KIC 8197761 (Sowicka et
al. 2017). However, the stars in our sample rotate significantly
faster (Van Reeth et al. 2016).

Our analysis is illustrated in Fig. 9 for the γDor star
KIC 11294808. The frequencies marked in red are the only peaks
that fulfil the first three criteria, and any frequencies within the
grey area fulfil the last two criteria. There is only one peak, at
0.788 ± 0.001 d−1, that satisfies all of our criteria, and is reason-
ably isolated within the frequency spectrum. Thus, this signal is
caused by rotational modulation, and its frequency is the surface

rotation rate frot,o. Consequently, frot,o and frot,i are equal within
1σ, indicating that KIC 11294808 is a rigid rotator.

To avoid false detections, the criteria we employed to detect
rotational modulation are rather strict. However, when one of the
criteria is not met for a star, it can still exhibit rotational modula-
tion. As an example, we show the Fourier spectrum of the γDor
star KIC 8375138 in Fig. 10. There is a small-amplitude peak
in the spectrum at a frequency of 1.641 ± 0.001 d−1 that com-
plies with all but one of our criteria, in other words, it is not
part of a closely spaced group of frequencies, but an isolated
frequency. Nevertheless, this is very likely also rotational mod-
ulation signal. Thanks to the detection of both prograde dipole
modes and r-modes in this star, the near-core rotation rate frot,i
is exceptionally well-constrained, and the detected frequency
agrees with frot,i within a fraction of 1σ. The probability that
this is a pulsation frequency, is very small. As shown in Fig. 10,
we numerically calculated the cumulative distribution function
of the detected significant frequencies of this star, that have a
first-order harmonic. By drawing random frequency values from
the computed distribution function, taking into account the total
number of such detected frequencies, we find that there is a 2.1%
chance that a significant pulsation frequency with a first-order
harmonic in the data, is located within 1σ of frot,i. The probabil-
ity of detecting a random significant pulsation frequency with a
first-order harmonic within 3σ of frot,i, is 7.1%. All stars with
derived values for the surface rotation rate frot,o are listed in
Table 3.

4. Discussion and conclusions

The aim of this work was to provide observational constraints of
differential rotation in a sample of γDor stars. We approached
this issue using two separate methodologies.

First, we considered the impact of differential rotation on the
observational properties of g-mode period spacing patterns. We
used a theoretical formalism that allows us to study the properties
of low-frequency gravito-inertial modes propagating in differen-
tially rotating stars developed in Mathis (2009) and an extended
observation sample of γDor stars. In a uniformly rotating star, the
slope of an observed period spacing pattern provides information
on the stellar rotation rate, while the non-uniform structure of the
pattern is a signature of the pulsation mode trapping caused by
chemical gradients and discontinuities in the near-core regions.
Differential rotation modifies these diagnostics. It changes the
sensitivity of pulsation modes to different depths within the inte-
rior structure, which in turn leads to changes in the pulsation
mode trapping. This translates into changes of the morphology
of the period spacing patterns. A high differential rotation rate
will also change the slope of the observed period spacing pattern.
Here, we have developed a new theoretical seismic diagnostic for
the case of radial differential rotation.

In the case where only one period spacing pattern is detected
for a star, it is difficult to detect the signature of differential rota-
tion in the pattern. Indeed, other physical processes, such as the
mode trapping by chemical gradients, can have similar obser-
vational characteristics in the pulsation period spectrum. On the
other hand, a period spacing pattern of a differentially rotating
star can often be fitted by a rigidly rotating model, where the
uniform rotation rate and asymptotic period spacing parameters
of the model are tweaked to compensate for the offset. In many
cases the rigidly rotating model is statistically favourable over
a model with differential rotation. We demonstrate this for the
γDor star KIC 11721304, and were unable to detect differential
rotation rates below δ f < 0.9.
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Fig. 9. Fourier spectrum of KIC 11294808. Frequencies that fulfil our detection criterion, are indicated in black, whereas frequencies marked in red
fulfil the detection criterion, have the first-order harmonic within the extracted frequency list, and are part of a closely spaced group of frequencies.
The derived near-core rotation frequency and its harmonic are indicated with the dashed and dotted lines, respectively. Signatures of rotational
modulation occur within the shaded grey frequency range.
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Fig. 10. Fourier spectrum of KIC 8375138. Frequencies that fulfil our detection criterion, are indicated in black, whereas frequencies marked in
red fulfil the detection criterion, and have the first-order harmonic within the extracted frequency list. The derived near-core rotation frequency
and its harmonic are indicated with the dashed and dotted lines, respectively, while the cumulative distribution function of the red frequency peaks
is shown by the blue curve. Signatures of rotational modulation occur within the shaded grey frequency range. Inset: a close-up of the Fourier
spectrum around the near-core rotation rate frot,i (dashed line). The 1σ (dotted lines) and 3σ (grey area) uncertainties on frot,i are indicated. The
ten highest-amplitude pulsation frequencies have been prewhitened for clarity.

When multiple period spacing patterns have been detected, the
period spacing patterns can be compared to infer the presence of,
or an upper limit for, differential rotation. We demonstrate this
for the γDor star KIC 12066947, and found δ f . 0.15. Similar
model-dependent upper limits for δ f have been estimated for our
other stars with detected r-mode patterns, and are listed in Table 3.

Second, we determine surface rotation rates for eight stars
in our sample, using detected signal of rotational modulation.
From these, we then derived the surface-to-core rotation ratio.
Such values have already been computed for other stars in the
literature, albeit for more slowly rotating stars. An overview of
these stars is shown in Fig. 11. As we can see, most stars are
seemingly uniformly rotating within 1σ or 2σ error margins, and
the differential rotation grows larger when (i) the near-core rota-
tion rate is low, or (ii) the star is in a binary system, and sensitive
to tidal effects.

When both methods for the detection and constraining
of differential rotation in γDor stars are combined, we find
that the observations are in agreement with (quasi-)rigid rota-
tion throughout most of the radiative region, but that we
cannot exclude differential rotation in the near-core regions.
The precise location where such differential rotation may
be present and the steepness of the gradient can strongly
vary, and has to be considered for each studied star indi-
vidually. When the stellar surface rotation rate is known as
well, this can be included as a strong constraint in seismic
modelling.

Finally, six of the stars in the sample exhibit a single retro-
grade period spacing pattern in qualitative agreement with Yanai
modes, for (k,m) = (−1,−1) (Saio et al. 2018). Considering
the high rotation frequencies and the associated low inclination
angles that this mode identification implies, two-dimensional
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Table 3. Overview of the stars with derived constraints on differential
rotation.

KIC frot,i (d−1) δ f frot,o (d−1) frot,o/ frot,i

2710594 0.995(8) 0.13 – –
3448365 1.079(3) 0.11 – –
5114382 1.140(6) 0.15 – –
5708550 0.82(2) – 0.7955(10) 0.97(2)
6468987 1.546(6) 0.13 – –
7365537 2.253(3) – 2.242(5) 0.995(3)
7380501 0.64(1) – 0.6394(10) 1.00(2)
7583663 1.162(5) 0.16 – –
8364249 1.519(8) – 1.517(5) 0.999(6)
8375138 1.640(5) 0.12 1.641(1) 1.001(3)
9210943 1.705(11) 0.07 1.702(15) 0.998(7)
9480469 1.541(4) 0.09 – –
11294808 0.77(2) – 0.788(1) 1.02(3)
11456474 1.05(2) – 1.0495(10) 1.00(2)
11907454 1.341(3) 0.12 – –
12066947 2.159(4) 0.15 – –

Notes. The listed values are the near-core rotation rate frot,i, estimated
model-dependent upper limits on the near-core differential rotation δ f ,
the surface rotation rate frot,o, and the ratio frot,o/ frot,i.
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Fig. 11. Overview of BAF-type main-sequence stars with derived values
for the near-core rotation rate frot,i and the surface rotation rate frot,o. The
bottom figure is a zoom-in of the top figure. For most stars, the values
are consistent with rigid rotation within 1σ. The observational signature
of differential surface-to-core rotation becomes stronger when the star
is slowly rotating, and/or in a binary system. The stars with values from
the literature were taken from (Kurtz et al. 2014; Saio et al. 2015; Triana
et al. 2015; Moravveji et al. 2016; Murphy et al. 2016; Schmid & Aerts
2016; Guo et al. 2017; Kallinger et al. 2017; Sowicka et al. 2017).

models that do not assume the traditional approximation, are
required to treat these pulsations properly.

This work provides us with a new observational window into
the angular momentum transport that takes place in the interiors
of intermediate- and high-mass stars with convective cores and
radiative envelopes. We derived observational constraints for the
rotation profiles in moderate to fast rotating stars, whereas avail-
able studies in the literature were mostly limited to slowly rotat-
ing stars. Consequently, the results of this work allow us to build
a more complete picture of the stellar rotation. This is required
to understand which angular momentum transport processes take
place inside a star, resulting in the observed dramatic changes in

stellar rotation rate during stellar evolution (Aerts et al. 2017;
Ouazzani et al. 2018).
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Appendix A: Gravito-inertial modes and seismic
diagnosis in differentially rotating stars

A.1. The dynamics of low-frequency gravito-inertial modes
within TAR

To treat the dynamics of gravito-inertial modes in a differentially
rotating star, we solve the inviscid system formed by the momen-
tum equation

(
∂t +Ω∂ϕ

)
u+2Ω êz×u+r sin θ (u · ∇Ω) êϕ=−

1
ρ
∇P̃−∇Φ̃+

ρ̃

ρ2∇P,

(A.1)

the continuity equation
(
∂t +Ω∂ϕ

)
ρ̃ + ∇ · (ρu) = 0, the energy

transport equation in the adiabatic limit(
∂t +Ω∂ϕ

)  P̃

Γ1P
−
ρ̃

ρ

 +
N2 (r)

g
ur = 0, (A.2)

and the Poisson’s equation ∇2Φ̃ = 4πGρ̃ (Unno et al.
1989). ρ, Φ, P are respectively the fluid density, gravific
potential and pressure. Each of them has been expanded
as: X (r, θ, ϕ, t) = X (r) + X̃ (r, θ, ϕ, t), where X is the mean
hydrostatic value of X on the isobar and X̃ the wave’s
associated linear fluctuation. We introduce the angular veloc-
ity Ω (r, θ) = 2π frot (r, θ) and the Brunt-Väisälä frequency
N2 = g

(
1
Γ1

d ln P
dr −

d ln ρ
dr

)
, where Γ1 = (∂ ln P/∂ ln ρ)S (S being

the macroscopic entropy) is the adiabatic exponent. u is the
wave velocity field. Finally, (r, θ, ϕ) are the usual spherical
coordinates with their unit vector basis

{̂
e j

}
j={r,θ,ϕ}

while

êz = cos θ êr− sin θ êθ is the one along the rotation axis. t is the
time and G the universal gravity constant.

To solve this system for low-frequency gravito-inertial
modes, four main approximations can be assumed:

– the Cowling approximation: following Cowling (1941),
the fluctuation of the gravitational potential (Φ̃) can be
neglected.

– the anelastic approximation: we filter out the high-frequency
acoustic modes by simplifying the continuity equation that
becomes ∇ · (ρu) ≈ 0.

– the JWKB approximation: low-frequency modes are
such that σ << N (σ = 2π fin is the wave frequency
in an inertial reference frame). Therefore, we are
studying modes which are rapidly oscillating along
the radial direction and the JWKB approximation can
be adopted. Each oscillating quantity is expanded as
X̃ (r, θ, ϕ, t) ≡ X̂ (r, θ) exp

[
i
∫ r

kV (r′) dr′
]

exp
[
i (σt − mϕ)

]
(Ogilvie & Lin 2004; Mathis 2009).

– the Traditional Approximation for Rotation (TAR): stellar
radiative zones are strongly stably stratified regions. In the
case in which the angular velocity (Ω) is reasonably weak
compared to the break-up angular velocity, ΩK =

√
G M/R3,

where M and R are the stellar mass and radius respec-
tively, we can neglect the centrifugal acceleration at the first
order. Moreover, if the stratification restoring force dom-
inates the Coriolis acceleration along the radial direction
(i.e. 2Ω << N), this allows us to adopt the TAR where
the latitudinal component (along êθ) of the rotation vector
Ω= Ω êz = Ω cos θ êr−Ω sin θ êθ can be neglected for all lat-
itudes while ur<<

{
uθ, uϕ

}
. We refer the reader to Friedlander

(1987), Ogilvie & Lin (2004) and Mathis (2009) for detailed
demonstrations.

Under those approximations, Mathis (2009) derived the wave
velocity field:

u (r, t) =
∑

j={r,θ,ϕ}

∑
σkm

u j;σkm (r, t)
 ê j, (A.3)

where

ur;σkm(r, t) =
σ̂

N

λ̃1/2
ν̂km (r)

r
wν̂km (r, θ)sin

[
Ψν̂km (r, ϕ, t)

]
, (A.4)

uθ;σkm(r, t) = −
σ̂

r
Gθν̂km (r, θ) cos

[
Ψν̂km (r, ϕ, t)

]
, (A.5)

uϕ;σkm(r, t) =
σ̂

r
G
ϕ

ν̂km (r, θ) sin
[
Ψν̂km (r, ϕ, t)

]
, (A.6)

with the Doppler-shifted local frequency (σ̂) and the spin param-
eter (see Lee & Saio 1997):

σ̂ (r, θ) = σ − mΩ (r, θ) and ν̂ (r, θ) =
2Ω (r, θ)
σ̂ (r, θ)

. (A.7)

Unlike the case of uniform rotation, variables do not separate
neatly anymore within TAR in the case of general differential
rotations Ω (r, θ), even for shellular rotation laws Ω (r) (Mathis
2009). The velocity components are thus expressed in terms of
the 2D dynamical pressure (P/ρ) eigenfunctions wν̂km which are
solutions of the following eigenvalue equation:

Oν̂m [wν̂km (r, x)] = −λ̃ν̂km (r)wν̂km (r, x) , (A.8)

where we have introduced the general Laplace operator (GLO)

Oν̂m =
1
σ̂

d
dx


(
1 − x2

)
σ̂Dν̂ (r, x)

d
dx

 − m
σ̂2Dν̂ (r, x)

(
1 − x2

) ∂xΩ

σ̂

d
dx

−
1
σ̂

[
m2

σ̂Dν̂ (r, x)
(
1 − x2) + m

d
dx

(
ν̂x

σ̂Dν̂ (r, x)

)]
(A.9)

with

Dν̂ (r, x) = 1 − ν̂2x2 + ν̂
(
∂xΩ/σ̂

)
x
(
1 − x2

)
(A.10)

and x = cos θ. The GLO is a differential operator in x only with
a parametric dependence on r and the wν̂km form a complete
orthogonal basis∫ 1

−1
w∗ν̂k1m (r, x)wν̂k2m (r, x) dx = Ck1mδk1k2 , (A.11)

where Ck1m is the normalisation factor and δk1k2 is the usual Kro-
necker symbol. The use of the JWKB approximation allows us to
reduce the problem of solving a 2D Partial Differential Equation
to a Sturm-Liouville problem on co-latitude (x) for each radius
(r). The GLO is the generalisation of the classical Laplace tidal
operator (Laplace 1799), its eigenfunctions wν̂km being thus a
generalisation of the Hough functions (Hough 1898; Ogilvie &
Lin 2004)1. The λ̃ν̂km (r) are its eigenvalues. The positive ones

1 In the case of differential rotation, the possible latitudinal trapping
of waves obtained for sub-inertial gravito-inertial waves in uniformly
rotating stars will become more complex. We refer the reader to Mathis
(2009), Mirouh et al. (2016) and Prat et al. (2018) for a detailed
discussion.
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correspond to propagative modes for which the dispersion rela-
tion is given by

k2
V;̂νkm (r) =

λ̃ν̂kmN2

r2 , (A.12)

where kV;̂νkm is the vertical component of the wave vector. That
leads to the following expressions for the JWKB phase function

Ψν̂km (r, ϕ, t) = σt +

∫ r

kV;̂νkm dr′ + mϕ. (A.13)

Finally, the latitudinal and azimuthal eigenfunctions are defined
by

Gθν̂km (r, x) =
1
σ̂2

1

Dν̂ (r, x)
√

1 − x2

[
−

(
1 − x2

) d
dx

+ m̂νx
]
wν̂km

(A.14)

G
ϕ

ν̂km (r, x) =
1
σ̂2

1

Dν̂ (r, x)
√

1 − x2

×

[
−

(̂
νx −

(
1 − x2

) ∂xΩ

σ̂

) (
1 − x2

) d
dx

+m
]
wν̂km.

(A.15)

A.2. The case of a radial differential rotation: Main properties
and period spacing

We now examine the case of a purely radial differential
rotation

Ω (r) = 2π frot (r) . (A.16)

In this case, the local frequency and the local spin parameter
become:

σ̂ (r) = σ − mΩ (r) and ν̂ (r) =
2Ω (r)
σ̂ (r)

, (A.17)

where we recall that σ = 2π fin.
The GLO,Oν̂m, then simplifies to the classical Laplace’s tidal

operator Lν̂m:

Oν̂m =
1

σ̂ 2 (r)
Lν̂m

=
1

σ̂ 2 (r)

[
d
dx

(
1 − x2

1 − ν̂ 2 (r) x2

d
dx

)
−

1
1 − ν̂ 2 (r) x2

(
m2

1 − x2 + m̂ν 2 (r)
1 + ν̂ 2 (r) x2

1 − ν̂ 2 (r) x2

)]
.

(A.18)

Its eigenfunctions are the usual Hough’s functions Θν̂km (r, x)
(Hough 1898) that depend both on x and r in the case of a radial
differential rotation through the spin parameter (̂ν) because it
varies along the radius. In other words, we solve the classical
Laplace tidal equation for each radius and corresponding val-
ues of the rotation angular velocity and spin parameter. In the
particular case of a uniform rotation, ν̂ is independent of r and
x. The Laplace’s tidal operator thus becomes a linear differen-
tial operator in x only with the corresponding purely latitudinal
eigenfunctions (e.g. Lee & Saio 1997; Townsend 2003a).

The asymptotic expression of the radial component of the
velocity field of low-frequency gravito-inertial modes becomes
following Eq. (A.4)

ur;km(r, t) = A
1
N

λ1/2
ν̂km (r)

r
1

k1/2
V;̂νkm (r)

sin
[
Ψν̂km (r, ϕ, t)

]
× Θν̂km (r, x) (A.19)

with

k2
V;̂νkm (r) =

N2

σ̂2

λν̂km (r)
r2 where λν̂km (r) = σ̂λ̃ν̂km (r) . (A.20)

The eigenvalues for the Laplace’s tidal operator (λν̂km) have been
related to those of the GLO

(̃
λν̂km

)
. From now on, ν̂ becomes ν

in the equations to lighten the notations. We refer the reader to
Mathis (2009) for details of the properties of the latitudinal and
longitudinal components of the velocity field. The last step is to
write the radial quantification

2π2
(
n + αg

)
=

∫ r2

r1

√
λνkm (r)

fin − m frot (r)
N (r)

r
dr, (A.21)

where n is the radial quantum number, that provides the asymp-
totic frequencies and the period spacing.

Appendix B: Gravito-inertial modes in the
asymptotic regime: Taylor expansion

As discussed in Sect. 2.1, we can describe the pulsation periods
of the gravito-inertial modes in a differentially rotating star as

Π0

(
n + αg

)
≈

√
λs

Pco,s +

3∑
i=1

aiGi (ν) Pi+1
co,s

 ,
The coefficients ai in this expression are given by

a1 = f ′rot,s〈r − rs〉,

a2 = f ′′rot,s〈(r − rs)2〉,

a3 =
(

f ′rot,s

)2
〈(r − rs)2〉.

The functions Gi are given by

G1 =
1
λs

(
dλ
dν

)
s

(
1 +

mνs

2

)
+ m,

G2 =
1
λs

(
dλ
dν

)
s

(
1 +

mνs

2

)
+ 4m,

G3 =

 2
λs

(
d2λ

dν2

)
s
−

1
λ2

s

(
dλ
dν

)2

s

 (1 +
mνs

2

)2

+
2m
λs

(
dλ
dν

)
s

(
1 +

mνs

2

)
+ 2m2.

Appendix C: Simulated period spacing patterns

Here, we provide few additional stellar models for which we
have evaluated the impact of differential rotation on period spac-
ing pattern to complete those already discussed in Sect. 2.2.
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Fig. C.1. 1.7 M� stellar model at Xc = 0.5 with frot,s = 1 d−1 and δ f = 0.0 (light grey), 0.4 (grey), and 0.8 (black), and the corresponding pulsations
with (k,m) = (−1,−1). Top left panel: Brunt-Väisälä frequency profile. Middle left panel: considered stellar rotation profiles. Bottom left panel:
period spacing patterns computed with GYRE v5.1 for the different rotation profiles. Right panel: the integrand of Eq. (3) (top) and the rotation
kernel (bottom) for the pulsation mode with (n, k,m) = (−35,−1,−1).
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Fig. C.2. 1.7 M� stellar model at Xc = 0.1 with frot,s = 0.1 d−1 and δ f = 0.0 (light grey), 0.4 (grey), and 0.8 (black), and the corresponding
pulsations with (k,m) = (+0,−1). Top left panel: Brunt-Väisälä frequency profile. Middle left panel: considered stellar rotation profiles. Bottom
left panel: period spacing patterns computed with GYRE v5.1 for the different rotation profiles. Right panel: integrand of Eq. (3) (top) and the
rotation kernel (bottom) for the pulsation mode with (n, k,m) = (−35,+0,−1).
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