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Abstract

It has been previously shown that the ghost-cell linear immersed boundary methods (IBMs) have
two major drawbacks. Firstly, these methods tend to have a maximum stencil size larger than
1, yielding non-band matrices, and as a result they generally rely on the more generic and less
efficient solvers. Secondly, for a maximum stencil size of 2 the ghost-cell IBMs have a first-order
convergence rate for Neumann immersed boundary conditions. To address these two shortcomings
and in the pursuit of smaller total run times, smaller memory requirements, increased accuracy,
and increased order of convergence the current article proposes the linear/quadratic square shifting
methods for the ghost-cell IBM for Cartesian grids. The linear square shifting method guarantees
a maximum stencil size of 1 and also improves the accuracy and convergence while the quadratic
square shifting method improves the accuracy and convergence while maintaining the same stencil
size of 2 as the original linear method [1]. The quadratic ghost-cell method [2, 3] further improves
the accuracy and convergence whilst maintaining a maximum stencil size of 3 while the currently
proposed quadratic square shifting method makes it possible to increase the Lagrange polynomial
interpolation order whilst maintaining a maximum stencil of 2 resulting in an improved order of
convergence for Neumann immersed boundary conditions. The proposed methods are evaluated by
considering their increase in performance (CPU time speed-up), accuracy, and convergence thanks
to a comprehensive verification and validation process. Firstly, the canonical verification 2D and
3D Poisson test problems for various analytical solutions and immersed boundaries is considered
and is followed by various verification and validation test cases for the Navier-Stokes governing
equations, with and without heat transfer, in 2D and 3D.
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1 Introduction

Immersed boundary methods (IBMs) were first developed by Peskin [4] and are widely used in
numerical simulations involving complex geometries and complex fluid-structure interactions, such
as heart valves [4]. The term IBM refers to any method that solves the discretized governing
equations, such as the Navier-Stokes equations, on grids that do not conform to the boundary of the
immersed boundary [5], i.e. non-body conformal grids. As IBMs can use Cartesian and rectilinear
grids, regardless of the complexity of the geometry, some of the advantages associated with these
methods are significantly simplified grid generation, sustained grid quality (and complexity), and
stationary nondeforming grids for moving geometries (i.e. no-remeshing) [5]. These qualities become
increasingly more advantageous as the underlying physics of the problem increases.

Depending on the approach followed to implement the immersed boundary conditions (IBCs),
the IBMs are divided into either the continuous or the discrete forcing method. The continuous
forcing method implements the IBCs through a source term, denoted as forcing function, in the
non-discretized governing equations while the discrete forcing method imposes the IBCs through
modifications to the discretized governing equations [5], similar to the implementation of domain
boundary conditions. Picot and Glockner [6] showed that the stencil sizes of numerical methods
for direct ghost-cell IBMs are important as they greatly affect the linear solvers, computational
memory requirements, and accuracy of the results. Although the linear shifted method proposed
by [6] significantly reduces the stencil size for rectilinear grids these proposed improvements are not
applicable to Cartesian grids, for which the linear shifted method cannot be differentiated from the
linear method proposed by Mittal et al. [1]. This article fills the gap and focuses on improvements
to the linear method for Cartesian grids that could potentially be extended to the shifted linear
method [6] for rectilinear grids.

Although the extensively used linear method of Mittal et al. [1] uses one probe point to im-
plement the IBCs, various other IBMs that use two probe points have been proposed. Sandberg
and Jones [7] and Luo et al. [8] used two image points to evaluate the wall-normal derivatives of
the fluid variables while Das et al. [2, 3] used two fluid cell values and two image points to im-
plement the Dirichlet and Neumann IBCs, respectively. Limited information of the density flow
field at the immersed boundary led Dhamankar et al. [9] to use a different number of image points
based on the flow variables. Two image points were used for the linear extrapolation of density
whilst only one image point was used for the velocity flow field. The use of two image points to
evaluate the Dirichlet and Neumann IBCs was pursued by Chi et al. [10] and Auguste et al. [11].
It should be noted that despite the use of quadratic methods for both Dirichlet and Neumann
IBCs, to the knowledge of the authors no comprehensive analysis (stencil size, increase in accuracy,
computational performance, etc.) of these methods has been pursued.

To address the shortcomings of the linear method for Cartesian grids and the analysis of the
quadratic methods, in this article we propose two IBMs to reduce the stencil requirements for
square/cubic cells, a quadratic interpolation method with a reduced stencil size, and we perform a
comprehensive analysis of the effect of quadratic interpolations for Dirichlet and Neumann IBCs.
This article is organized as follows. Section 2 presents the canonical Poisson verification test problem
and numerical discretization methods and is followed by an overview of the linear method [1]. In
Section 3 the currently proposed linear square shift method that decreases the maximum stencil
size obtained with the linear method for Cartesian grids is presented and is followed by a discussion
on the proposed quadratic square shift method in Section 4, that further increases the accuracy
of the linear and linear square shift methods. Numerical results for the canonical 2D and 3D
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verification test problems for the linear square shift method and the various proposed improvements
are subsequently presented in Section 5. Section 6 focuses on the Navier-Stokes equations, with
and without the energy governing equation, and presents various 3D validation cases and discusses
the results obtained with various IBMs. Lastly, Section 7 presents the conclusions.

In the spirit of reproducibility, the currently proposed methods are implemented and the various
verification and validation test cases considered are in the massively parallel incompressible open-
source CFD code Notus [6, 12–14].

2 Immersed Boundary Method for the Poisson Problem

In this section the finite-difference direct forcing and numerical discretization schemes are presented.
For the sake of clarity, the discussions are focused on the canonical 2D Poisson problem as the
extensions to 3D and vector flow fields, such as velocity ~u, are straightforward.

2.1 Poisson Problem

Figure 1(a) shows an immersed boundary Γ that divides the 2D computational domain Ω ⊂ IR2

into an inner domain Ωi and an outer domain Ωo. As a result, the constant coefficient Poisson
problem for a scalar field φ with a source field f consists in

∆φ = f, in Ωi,

φ = 0, in Ωo,

φ = φD, on ∂ΩD ∪ ΓD,

∂φ

∂n
= φN , on ∂ΩN ∪ ΓN ,

(1)

where ∂Ω and Γ are split into the Dirichlet and Neumann parts, and φD and φN are the known
Dirichlet and Neumann boundary conditions, respectively.

2.2 Numerical Methods

As shown in Figure 1(b), the computational domain is discretized, with a finite volume method
approach, into a Cartesian grid of size m × n with ∆hι being the cell size in direction ι and is
constant throughout the domain. The domain boundary conditions are implemented through c
domain ghost cells at each domain boundary such that the grid size becomes (m+ 2c)× (n+ 2c).
Although the current article focuses on Cartesian grids, for sake of completeness the proposed
methods are presented for the general case of rectilinear grids.

The discretized inner domain is solely composed of inner cells while, as seen from Figure 1(b),
the discretized outer domain Ωo is further divided into ghost and outer cells. A ghost cell is a cell
Xi,j in Ωo such that at-least one of its non-diagonal neighboring cells is an inner cell while an outer
cell is a cell in Ωo whose non-diagonal neighbors are in Ωo. For 2D computational domains, a cell
Xi,j in Ωo is considered a ghost-cell if {Xi+1,j ,Xi−1,j ,Xi,j+1,Xi,j−1}∩Ωi 6=0.

The standard second-order central difference is used to discretize equation (1) over the inner
computational domain yielding

Φi+1,j − 2Φi,j + Φi−1,j

∆h2
x

+
Φi,j+1 − 2Φi,j + Φi,j−1

∆h2
y

= Fi,j +O(∆h2), (2)
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Ωi Ωo

∂Ω
Γ

~n

(a) (b)

Figure 1: (a) Inner and outer computational domains, Ωi and Ωo, respectively, for an immersed
boundary Γ with an outward pointing local surface unit normal ~n and domain boundary conditions
∂Ω. (b) Finite volume discretization of (a) and classification of cells into inner (triangle), outer
(circle), and ghost (diamond) cells.

where Φi,j=φ(Xi,j), Fi,j=f(Xi,j), and ∆h=max(∆hι). Taking into account the domain and im-
mersed boundary conditions, equation (2) is rewritten in matrix form as(

(L+ E +G+O)Φ
)
i,j

= Fi,j +Bi,j +Ri,j , (3)

where L is the coefficient matrix for the matrix form of equation (2) without boundary conditions, E
is the coefficient matrix that takes into account the boundary conditions, G and O are the coefficient
matrices that take into account the IBCs (ghost and outer-cells, respectively), Bi,j contains the
boundary condition values, and Ri,j is the truncation term for the IBCs (presented in subsequent
sections) and the spatial discretization of equation (2). It should be noted that Fi,j +Bi,j +Ri,j=0
and Φi,j is equal to the trivial solution of zero ∀(i, j) ∈ Co, where Co is the set of outer cell indices.
Removing the truncation term from equation (3) results in the closed linear system evaluated for
the numerical solution Φ̂i,j ∀(i, j) ∈ Cigo, where Cigo is the set of inner, ghost, and outer cell indices.

2.3 Linear Method

For an accurate implementation of the linear IBM at a ghost-cell Xi,j , the scalar field value at
the normal reflection of Xi,j about Γ, denoted as the image point xIP , the Euclidean distances
∆l = ||xIP −Xi,j ||2 and ∆lh = ∆l/2 = ||xBI −Xi,j ||2, the boundary condition at the boundary
intercept xBI (the intersection point of the line segment [Xi,j , xIP ] and Γ), and the local surface
unit normal ~n of Γ at xBI are needed. Figure 2 shows representative locations of these supplemental
data points relative to each other.

The linear method implements the IBCs along the linear segment [Xi,j , xIP ] using second-order
linear approximations and second-order central difference for Dirichlet and Neumann boundary
conditions, respectively. As the image point is a normal reflection of the ghost-cell about the
boundary point, the Dirichlet boundary condition follows
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Xi,j Xk,l

xIP

xBI

~n

∆lh

∆l

Figure 2: Close up view of supplemental data points and values required for the linear method for
a sample ghost-cell Xi,j . BI: Boundary intercept; IP : Image point; ~n: local surface unit normal;
∆l = ||xIP −Xi,j ||2; ∆lh = ||Xi,j − xBI ||2 = ||xIP − xBI ||2.

φBI =
Φi,j + φIP

2
+O(∆l2h), (4)

where φχ=φ(xχ) is the exact scalar field value of φ at xχ. The Neumann boundary condition is
given by (∂φ

∂n

)
BI

=
φIP − Φi,j

∆l
+O(∆l2h), (5)

where (∂φ/∂n)BI = ∂(φ(xBI))/∂n is the exact derivative of the scalar field at xBI . As shown in
Figure 2, the location of the IP may not coincide with Xi,j ∀(i, j) ∈ Ωi and therefore the value
at xIP is obtained through a p-th order Lagrange interpolation using the scalar field values of the
surrounding cells following

φIP =
∑

(k,l)∈IP

ρk,lΦk,l +O(∆hp), (6)

where ρk,l are the interpolation coefficients and IP is the set of interpolation indices that may
include the ghost-cell value Φi,j and excludes any outer-cells. Further discussions on the set of
interpolation indices are found in [6].

Combining equations (4) to (6) results in the following discretized numerical approximations of
the boundary conditions

φBI =
1

2

( ∑
(k,l)∈IIP

ρk,lΦk,l + Φi,j

)
+O(∆l2h) +O(∆hp),

(∂φ
∂n

)
BI

=
1

∆l

( ∑
(k,l)∈IIP

ρk,lΦk,l − Φi,j

)
+O(∆l2h) +O(∆hp−1).

(7)

One of the major drawbacks of the linear IBM is the need for a large discretization stencil, even
for cell size ratios a=∆h/∆µ=1, where ∆µ = min(∆hι). The stencil size measurement metrics
presented in [6] are also used in this article: Figure 3 shows the domains for the stencil sizes
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of 1 and 2. Picot and Glockner [6] showed that for the linear method for a cell size ratio a=1
(Cartesian grids) and a second-order Lagrange interpolation (p=2) the maximum stencil size is 2,
as shown in Figure 4, which is larger than the stencil size for second-order central difference of the
Laplacian operator. As IBMs rely heavily on Cartesian grids with adaptive mesh refinement (AMR)
to resolve flow features with large gradients, such as boundary layers, and geometrical features with
large curvatures, such as the leading and trailing edges of wings, reducing the stencil size of the
method to 1 may improve the precision and reduce the computational effort.

Xi,j
Xi+2,jXi−2,j

Xi,j−2

Xi,j+2

Figure 3: Interpolation quadrants (colored regions) and domains around Xi,j of stencil size 1 and
2. Dashed blue line: stencil size of 1; Dashed orange line: stencil size of 2; Red region: Q1
interpolation quadrant; Blue region: Q2 interpolation quadrant; Orange region: Q3 interpolation
quadrant; Green region: Q4 interpolation quadrant.

3 Linear Square Shifting Method

Despite the stencil size improvements of the shifted linear method for rectilinear grids [6], this
method reverts back to the linear method for Cartesian grids and therefore does not address the
reduction of the stencil size for square/cubic cells. A stencil size larger than 1 does not yield band
matrices with 9 or 27 points in 2D or 3D, respectively, and as a result the more efficient geometric
multi-grid algorithms, such as the SMG [15] and PFMG [16] in the hypre library [17, 18], cannot
be used. Instead the more generic, and less efficient [6, 19–23], preconditioned algebraic multi-grid
algorithms, such as BoomerAMG [19] in the hypre library, must be used.

The currently proposed square/cubic shifting method, denoted as linear square shift, with its
several variations presented in this section focus on decreasing the maximum stencil sizes for Carte-
sian grids through various methods. Modifications to the IBM result in a set of supplemental
interpolated data points needed for the proper implementation of the IBCs. For sake of clarity the
various modified supplemental data points and values required for the linear square shift method
are shown in Figure 5 and are defined, in a staggered manner, in the subsequent sections.
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Figure 4: Close up view of an image point interpolation set and stencil size for a ghost-cell for
Cartesian grids. Solid orange line: Γ; Dashed blue line: stencil size of 1; Dashed orange line: stencil
size of 2; Dashed red line: interpolation set for enclosed image point; Black diamond: ghost-cell;
Black circle: outer-cell; Black triangle: inner-cell; Black ×: image point.

xGP

xIP

xIP ′

xBI

xQIP

~n

∆l ∆l′

∆l′′1

∆l′′2

Xi,j

Xk,l+1

Xk,l

Figure 5: Close up view of the supplemental data points and values required for the linear (L) and
linear square shift methods for a sample ghost-cell Xi,j . xGP : ghost point (ghost-cell shift); xIP :
image point (L); xIP ′ : image point (ghost-cell shift); xIP ′′ (not shown): image point (image point
shift) and xIP ′′=xIP ′ in this figure; xQIP : quadrant intersection point; ∆l: ||Xi,j − xIP ||2 (L);
∆l′: ||xGP −xIP ′ ||2 (ghost-cell shift); ∆l′′1 : ||Xi,j −xBI ||2 (image point shift); ∆l′′2 : ||xBI −xIP ′′ ||2
(image point shift).
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3.1 Quadrant Intersection Point

As shown in Figure 5, for a ghost-cell with a stencil size of 2 the intersection of the line segment
[Xi,j , xIP ] and the domain of stencil size of 1 corresponds to the quadrant intersection point (QIP)
xQIP . In fact xQIP is the upper threshold for a maximum stencil size of 1 and therefore any point
located at xQIP + α′~n, for α′ >0, is at a stencil size larger than 1.

Consider the boundary intercept xBI , its local surface unit normal ~n, and the four quadrants
used to determine the set of interpolation indices for the boundary intercept IBI [6]. The four
quadrants, shown in Figure 3, are determined by ~n=(nx, ny) and are

• Quadrant 1 (Q1): nx ≥0 & ny ≥0,

• Quadrant 2 (Q2): nx <0 & ny ≥0,

• Quadrant 3 (Q3): nx <0 & ny <0,

• Quadrant 4 (Q4): nx ≥0 & ny <0.

As the relative location of xQIP , and not its absolute location, is necessary to calculate ||xBI -
xQIP ||2 for the linear square shift method, Q2 to Q4 may be subsequently transformed into Q1.
This change in coordinate direction simplifies the algorithm used to determine the xQIP . As seen
from Figure 6, in Q1 and for a local coordinate axis centered at xBI , xQIP must lay on either the
line segment [Xk,l, Xk,l+1] or the line segment [Xi,l+1, Xk,l+1].

Xk,l

xBI

Xk,l+1

x′

y′

Xi,l+1

Xi,j

~n

xQIP

xQIP

Figure 6: Close up view of possible quadrant intersection points xQIP for Q1 interpolation quadrant
for a sample boundary intercept xBI . Solid orange line: Γ; Dotted red line: Local axis (x′, y′) with
origin at xBI ; Solid green vector: sample local surface unit normal to intersect line segments
[Xi,l+1,Xk,l+1] and [Xk,l+1,Xk,l]; Black diamond: ghost-cell; Black triangle: inner-cell.

Two different approaches are currently pursued to maintain a maximum stencil size of 1, such
that

||Xi,j − xIP ||2 ≤ ||Xi,j − xQIP ||2. (8)

The first approach, denoted as ghost-cell shift (GS) shifts the ghost-cell such that the mirror image
point satisfies equation (8), while the second approach satisfies equation (8) but solely shifting the
image point and is called image point shift (IS).
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3.2 Ghost-Cell Shift (GS)

Considering the ghost-cell Xi,j , defined in Section 2.2, and the quadrant intersection point xQIP ,
a supplemental interpolated ghost point xGP is defined as

xGP = xBI − s~n, (9)

where s=min{||xBI −Xi,j ||2, α||xBI − xQIP ||2}, ||xBI −Xi,j ||2 = ∆lh as xBI is the midpoint of
the line segment [Xi,j , xIP ], and α is a constant with a value between 0 and 1, inclusive. In this
article we choose α=1.

As seen from Figure 5, equation (9) shifts the ghost point xGP towards its boundary intercept
xBI such that its image point xIP ′ is located inside Q1 with a maximum stencil size of 1. As the
ghost-cell shift of the linear square shift method maintains xBI as the midpoint of the line segment
[xGP , xIP ′ ], the general form of the discretized numerical approximations of the IBCs in equation
(7) remains the same. However, as xGP is not a cell value, an additional p-th order Lagrange
interpolation is required and results in a new set of IBCs that follow

φBI =
1

2

( ∑
(k,l)∈IIP ′

βk,lΦk,l +
∑

(k,l)∈IGP

γk,lΦk,l

)
+O(∆l′2h ) +O(∆hp),

(∂φ
∂n

)
BI

=
1

∆l′

( ∑
(k,l)∈IIP ′

βk,lΦk,l −
∑

(k,l)∈IGP

γk,lΦk,l

)
+O(∆l′2h ) +O(∆hp−1),

(10)

where ∆l′h=∆l′/2, γk,l, and βk,l are the interpolation coefficients for the xGP and xIP ′ , respectively,
and IGP and IIP ′ are the set of interpolation indices for xGP and xIP ′ , respectively. It should be
noted that based on the definition of xGP in equation (9), a maximum stencil size of 1 is guaranteed
for p=2.

Remark It is interesting to notice that as ∆l′ → 0 (α → 0), the ghost-cell shift of the linear
square shift method becomes the IBM proposed by Coco and Russo [24], hereby denoted as direct
method. Indeed, as at ∆l′=0, the interpolation coefficients of the image and ghost points are the
same and the Dirichlet IBC becomes

φBI =
∑

(k,l)∈IBI

ρk,lΦk,l +O(∆hp), (11)

which corresponds to the direct method.
For the Neumann IBC, as ∆l′ → 0 the error of the second-order central difference becomes

increasingly negligible and the finite-difference approximation approaches the analytical partial
differential equation ∂φ/∂n = φn = ∇φ · ~n. Therefore, the Neumann IBC becomes

(∂φ
∂n

)
BI

=
∑

(k,l)∈IBI

(
∂ρk,l
∂x

nx +
∂ρk,l
∂y

ny

)
Φk,l +O(∆hp−1), (12)

which corresponds to the direct method.
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3.3 Image Point Shift (IS)

Reductions to the maximum stencil size can also be achieved by solely shifting the location of the
image point such that it is located inside Q1 for a stencil size of 1. Considering the image point
xIP , defined in Section 2.3, and the quadrant intersection point xQIP a modified image point xIP ′′

is defined as

xIP ′′ = xBI + s′~n, (13)

where s′=min{||xBI −xIP ||2, α||xBI −xQIP ||2} and α is a constant with a value between 0 and 1,
inclusive. In this article we choose α=1. As seen from Figure 5, equation (9) shifts the image point
xIP towards its boundary intercept xBI such that it is located inside Q1 with a maximum stencil
size of 1 for p=2. This method differs from the ghost-cell shift method in that the ghost-cell Xi,j

is used and no supplemental ghost point xGP is required, and instead only the image point xIP is
shifted to the new image point xIP ′′ if it falls outside Q1.

In this method the boundary intercept xBI is no longer the midpoint of the line segment [Xi,j ,
xIP ′′ ] and to take in account that ∆l′′1 6= ∆l′′2 , where ∆l′′1 =||Xi,j −xBI ||2 and ∆l′′2 =||xBI −xIP ′′ ||2,
linear interpolation is used to generalize equations (4) and (5) such that the generalized second-order
Dirichlet boundary condition follows,

φBI = ζΦi,j + ηφIP ′′ +O(∆l′′1 ∆l′′2 ), (14)

where ζ=∆l′′2/(∆l
′′
1 +∆l′′2 ) and η=∆l′′1/(∆l

′′
1 +∆l′′2 ). The generalized first-order Neumann boundary

condition follows, (∂φ
∂n

)
BI

=
φIP ′′ − Φi,j
∆l′′1 + ∆l′′2

+O(∆l′′1 |(1− r∆l)|) +O(∆l′′3), (15)

where r∆l=∆l′′2/∆l
′′
1 and has a values between 0 and 1, inclusive, and ∆l′′3 = ∆l′′1

2|(r2
∆l− r∆l+ 1)|.

Considering the generalized Dirichlet and Neumann boundary conditions, equations (14) and (15),
respectively, the discretized numerical approximations of the IBCs for the image point shift of the
linear square shift method follow

φBI = ζΦi,j +
∑

(k,l)∈IIP ′′

ηβk,lΦk,l +O(∆l′′1 ∆l′′2 ) +O(∆hp),

(∂φ
∂n

)
BI

=
1

∆l′′1 + ∆l′′2

( ∑
(k,l)∈IIP ′′

βk,lΦk,l − Φi,j

)
+O(∆l′′1 |(1− r∆l)|) +O(∆l′′3) +O(∆hp−1).

(16)
Similar to the ghost-cell shift of the linear square shift, based on the definition of the xIP ′′ in
equation (13), a maximum stencil size of 1 is guaranteed for p=2.

4 Quadratic Square Shifting Method

In this section accuracy improvements to the image and ghost square shift methods through
quadratic interpolation, denoted as the quadratic square shifting method, are presented. Although
quadratic interpolation to increase the accuracy of the ghost-cell interpolation has been previously
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implemented for Dirichlet and Neumann IBCs [2,3], as discussed in Section 1, a detailed analysis of
these benefits and its use in conjunction with the square shift methods have not yet been pursued.
Figure 7, shows representative locations for the supplemental data points, including the second
image point xIP2, for the quadratic/quadratic square shifting method.

xBI

Xi,j

xIP

xIP 2

Xk,l

~n

∆lh

Figure 7: Close up view of the supplemental data points and values required for the quadratic
methods for a sample ghost-cell Xi,j . BI: Boundary intercept; IP : Image point; IP2: Second
image point; ~n: local surface unit normal.

Considering the boundary intercept xBI , its local surface unit normal ~n, and the image point
xIP , the second image point xIP2 required for the current quadratic interpolation follows

xIP2 = xBI + 3∆lh ~n. (17)

The generalized Dirichlet, equation (14), is extended to the quadratic method and becomes

φBI = λφIP2 + ηφIP + ζΦi,j +O(∆l3h) +O(∆hp), (18)

where ζ, η, and λ are the coefficients obtained from the 1D p-th order Lagrange interpolation.
The generalized Neumann boundary condition, equation (15), is extended to the quadratic method
through the use of second-order one-sided finite-difference and 1D third-order Lagrange interpola-
tion (p=3) [3]. As the Neumann IBC at xBI are known, the second-order forward finite-difference,
which follows

(∂φ
∂n

)
BI

=
−φIP2(xIP − xBI)

2 + φIP (xIP2 − xBI)
2 − φBI [(xIP2 − xBI)

2 − (xIP − xBI)
2]

(xIP − xBI)(xIP2 − xBI)(xIP2 − xIP )
+O(∆l2h),

(19)
is used to determine the value of the scalar field value at xBI , which is subsequently used to
determine the value of the scalar field at the ghost-cell through equation (18). The discretized
numerical approximations of the Dirichlet and Neumann IBCs therefore become
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φBI =
∑

(k,l)∈IIP2

λρk,lΦk,l +
∑

(k,l)∈IIP

ηβk,lΦk,l + ζΦi,j +O(∆l3h) +O(∆hp),

(∂φ
∂n

)
BI

= σ

(
− [(xIP2 − xBI)

2 − (xIP − xBI)
2]φBI−

(xIP − xBI)
2

∑
(k,l)∈IIP2

ρk,lΦk,l + (xIP2 − xBI)
2

∑
(k,l)∈IIP

βk,lΦk,l

)
+O(∆l2h) +O(∆hp−1),

(20)
where σ=1/(xIP − xBI)(xIP2 − xBI)(xIP2 − xIP ).

As shown in Figure 8, a ghost-cell Xi,j with a stencil size of 2 with the linear method may need
a stencil size of 3 for the quadratic method. To maintain a maximum stencil size of 2, the quadratic
square shifting method is proposed. This method uses the quadratic method in conjunction with
the image point shift (solely for the second image point) such that

xIP2 = xBI + s∗~n, (21)

where s∗=min{||xBI − xIP2||2, α||xBI − xQIP2||2}, xQIP2 is the QIP for a stencil size of 2 (shown
as the dashed red region in Figure 8), and α is a constant with a value between 0 and 1, inclusive.
In this article we choose α=1.

Remark The quadratic square shifting method does not always result in a stencil size larger than
1. It is possible that the Euclidean distance between the ghost-cell and boundary-intercept ∆lh
is small enough such that ||xIP2 − Xi,j ||2 ≤ ||xQIP − Xi,j ||2 resulting in identical interpolation
indices for the first and second image points. The set of interpolation indices for the first and
second image points may differ [2,3,8], potentially increasing the accuracy of the solution [9]. This
is accomplished by again re-purposing the image point shift and using the following algorithm:

1. ||xIP −Xi,j+1||c ≤ 1 & 1 < ||xIP2 −Xi,j+1||c ≤ 2; return

2. ||xIP −Xi,j+1||c ≤ 1 & ||xIP2 −Xi,j+1||c ≤ 1

• xIP2 = xBI + s∗∗n, s∗∗=(2− α)× ||xBI − xQIP1||2; α > 0 and α < 1

3. 1 < ||xIP −Xi,j+1||c ≤ 2 & 1 < ||xIP2 −Xi,j+1||c ≤ 2

• xIP follows equation (13)

• xIP2 follows equation (21)

where the stencil norm ‖x‖c=max
{
|x|

∆x1
, |y|∆x2

}
is used to determine the stencil as ci,j = max{‖Xk,l−

Xi,j‖c | ∀(k, l) ∈ Cig, Lk,li,j 6= 0} [6].

As the definition of the second image point is based on the location of the boundary intercept,
local surface unit normal, and first image point, the quadratic square shifting method is based
on a straightforward integration of the quadratic and square shifting methods. To this end the
appropriate boundary intercepts, first image points, and local surface unit normals associated with
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Xk,lXi,j

xBI

xIP

xIP2

~n

xQIP2

x∗
IP2

xQIP1

Xi,j+1 Xk,l+1

xIP

x∗
IP2

xBI

xIP2

Xk+1,l+1

Xk+1,l+2

Xk+1,l

~n

Figure 8: Close up view of the supplemental data points and values required for the quadratic
square shift method for the sample ghost-cells Xi,j and Xi,j+1; xBI : Boundary intercept; xIP :
Image point; xIP2: Second image point; x∗IP2: Shifted second image point; xQIPΛ: quadrant
intersection point for stencil size of Λ; ~n: local surface unit normal; Dashed red region: stencil size
of 2 for Xi,j ; Dashed green region: stencil size of 2 for Xi,j+1; Solid orange line: Γ. For plotting
purposes for the ghost-cell Xi,j the distance ||xBI − xIP2||2 < 3∆lh.

the ghost point/cell in the square shift method must be used in equations (17) to (21). Henceforth,
and without any loss in comprehension, the quadratic square shifting method will be denoted as
the quadratic method.

The quadratic method can be used in conjunction with the square shift methods and results in
the QGS, QIS, and QISS1 methods. The QGS and QIS are obtained by combining the GS and
IS methods, respectively, with the quadratic method. For a second-order Lagrange interpolation
(p=2) these two methods have a maximum stencil size of 2 with a stencil size of 1 for the first image
point. The QISS1 method is based on the QIS method and also guarantees a maximum stencil size
of 1 for the second image point. Table 1 summarizes the proposed quadratic ghost-cell methods.

Method Maximum Stencil Size
Q 2
QGS 2
QGSO 2
QIS 2
QISS1 1

Table 1: Maximum stencil sizes for the proposed quadratic ghost-cell methods with a second-order
Lagrange interpolation (p=2) for the image points.
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5 Numerical Simulations for a Scalar Field

In this section the results of numerical simulations for the canonical 2D and 3D Poisson test problems
with mixed domain boundary conditions and Dirichlet or Neumann IBCs for various immersed
boundaries and IBMs are discussed. The nine IBMs used for the current verification and convergence
studies are:

• L: linear method [1] (stencil size of 2),

• LGS: ghost-cell linear square shift method (stencil size of 1),

• LIS: image point linear square shift method (stencil size of 1),

• Q: quadratic ghost point(stencil size of 2),

• QX: quadratic ghost point with X ∈ {GS, IS} (stencil size of 2),

• QYO: quadratic ghost point with Y ∈ {GS} with different interpolation indices for xIP and
xIP2 (stencil size of 2),

• QISS1: quadratic ghost point with image point shift for a maximum stencil size of 1 (stencil
size of 1).

For sake of clarity and compactness, the results for select representative methods are presented
and discussed with appropriate comments on the results of the remaining methods. The set of
representative methods depends on the analytical solution of the Poisson problem and the immersed
boundary.

As the analytical solution to equation (3) with appropriate boundary conditions and source field
can be determined, the L∞ and L2 norms of the error fields are evaluated and follow,

L∞(Φe) = max(|Φe|) ∀(i, j) ∈ Ci, L2(Φe) =

√∑
i,j

|Φe|2V– i,j ∀(i, j) ∈ Ci, (22)

where Φe=Φ̂i,j − Φi,j is the error field and V– i,j is the inner volume of an inner cell, i.e. only the
part of an inner cell that is located inside Ωi.

The numerical simulations have a computational domain of Ω=[-1,1]ς and Ω=[0,1]ς , where ς
is the number of spatial dimensions, for numerical simulations with parabolic and trigonometric
analytical solutions, respectively. Dirichlet boundary conditions are used for the x-axis domain
boundaries and Neumann boundary conditions are used for the remaining domain boundaries.
Figure 9 shows the immersed boundaries Γs are the canonical circle and sphere with a radius
r=0.325Lx, where Lx is the length of the x-axis domain edge, and the more complex, with convex
and concave corners, flower-shaped geometries, denoted as flower, that follow

• 2D [6,25]: (0.02
√

5,0.02
√

5)+(0.5+0.2sin(5θ))er ∀θ ∈ [0, 2π],

• 3D:
(x2 + y2 + z2 = r2)−
((x± r)2 + y2 + z2 = r2

f )− (x2 + (y ± r)2 + z2 = r2
f )− (x2 + y2 + (z ± r)2 = r2

f ),
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where rf=r/2 and the centers of the immersed boundaries are at the centers of the computational
domains. The Cartesian grid sizes considered are (16ν)ς , where ν=2n−1 and n is the grid number
in the grid convergence studies (i.e. first grid: n = 1, second grid: n = 2, etc.).

Remark The second-order linear interpolations of the LGS and LIS methods for Dirichlet IBCs
and first-order central difference of the LIS method for Neumann IBCs limit the use of third-order
Lagrange interpolations (p=3) to the LGS method for Neumann IBCs. The stencil size requirements
of the quadratic methods also limit the use of p=3 to the QISS1 method. As a result, unless stated
otherwise second-order Lagrange interpolations (p=2) are used to determine the value at the various
image and ghost points.

(−1, −1)

(1, 1)

r

(a)

(−1, −1)

(1, 1)

(b)

(c) (d)

Figure 9: Computational domain for (a) circle, (b) 2D flower, (c) sphere, and (d) 3D flower immersed
boundaries Γs for (a,b) 2D and (c,d) 3D verification test problems with a parabolic analytical
solution. Solid orange line/surface: Γ; r: radius.
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5.1 Dirichlet IBCs

Dirichlet IBCs for parabolic and trigonometric analytical solutions are taken into account for the
current series of verification and convergence studies. Calculating and keeping the appropriate val-
ues of Ri,j in equation (3) to remove all non-IBM truncation errors, denoted as numerical correction,
is necessary for a complete analysis of the accuracy and convergence of IBMs [6], and will therefore
be pursued. For sake of clarity, the results for select representative immersed boundaries for either
a parabolic or a trigonometric analytic solution are presented and discussed in this section.

5.1.1 Parabolic Solution

One of the analytical solutions to the 3D Poisson problem follows

φ(x) = (1 + x)2, f(x) = 2, ∀(x) ∈ Ωi ∈ IR3, (23)

given that

φ(x) = (1 + x)2 ∀(x) ∈ Γ,

φ(−1, y, z) = 0, φ(1, y, z) = 4 ∀(y, z) ∈ [−1, 1],

∂φ

∂n
(x,−1, z) = 0,

∂φ

∂n
(x, 1, z) = 0 ∀(x, z) ∈ [−1, 1],

∂φ

∂n
(x, y,−1) = 0,

∂φ

∂n
(x, y, 1) = 0 ∀(x, y) ∈ [−1, 1],

(24)

where numerical corrections are applied to the x-axis domain boundary conditions [6]. The analyt-
ical solution for the corresponding 2D Poisson problem follows equation (23) with the appropriate
2D source term (e.g. f(x, y) = 2) and boundary conditions.

5.1.2 Trigonometric Solution

A second analytical solution to the Poisson problem is

φ(x) = sin(πx)cos(2πy), f(x) = −5π2sin(πx)cos(2πy) ∀(x) ∈ Ωi ∈ IR2,

φ(x) = sin(πx)cos(2πy)cos(2πz), f(x) = −9π2sin(πx)cos(2πy)cos(2πz) ∀(x) ∈ Ωi ∈ IR3,
(25)

given that
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φ(x) = sin(πx)cos(2πy) ∀(x) ∈ Γ ∈ IR2,

φ(0, y) = 0, φ(1, y) = 0 ∀(y) ∈ [0, 1],

∂φ

∂n
(x, 0) = 0,

∂φ

∂n
(x, 1) = 0 ∀(x) ∈ [0, 1],

φ(x) = sin(πx)cos(2πy)cos(2πz) ∀(x) ∈ Γ ∈ IR3,

φ(0, y, z) = 0, φ(1, y, z) = 0 ∀(y, z) ∈ [0, 1],

∂φ

∂n
(x, 0, z) = 0,

∂φ

∂n
(x, 1, z) = 0 ∀(x, z) ∈ [0, 1],

∂φ

∂n
(x, y, 0) = 0,

∂φ

∂n
(x, y, 1) = 0 ∀(x, y) ∈ [0, 1],

(26)

where numerical corrections are not needed for any of the domain boundary conditions.

5.1.3 Reduce Stencil Size to 1

Figure 10 shows the L∞ and L2 norms of Φe for various immersed boundaries for the Poisson
problem with parabolic and trigonometric analytical solutions for the LGS and LIS methods and,
as expected, they have a second-order limiting behavior. As seen from Figure 10(a), the LGS and
LIS methods are more accurate than the L method, yield a more consistent second-order limiting
behavior (especially for L∞), and may be used interchangeably (i.e. negligible differences in the
accuracy of the results). This similarity is attributed to the similar impact of the interpolation
truncation errors of the ghost point in the LGS method and Dirichlet IBCs for the LIS method.
For the LIS method Xi,j = xGP and, therefore, uses one Lagrange interpolation less than the LGS
method, but as ∆l′′1 + ∆l′′2 > ∆l′ the interpolation error associated with the Dirichlet IBCs is larger
for the LIS method than the LGS method.

As seen from Figure 10(b), for the sphere immersed boundaries the improvements in accuracy
in the L∞ and L2 norms previously seen are increased and reduced, respectively. This behavior is
not unique to the sphere immersed boundaries and is characteristic to all comparisons between 2D
and 3D verification cases as it is also observed in the comparison of the error norms between the 2D
and 3D flower immersed boundaries for a parabolic analytical solution (not shown). Despite this
slight decrease in accuracy for the L2 norm for all 3D immersed boundaries currently considered,
the LGS and LIS methods still yield results with significantly smaller maximum errors and have a
maximum stencil size of 1.

Figure 10(c) shows that for a 3D flower immersed boundary with a trigonometric analytical
solution the LGS and LIS methods only slightly improve the accuracy of the L∞ norm, yield a
L∞ norm with a more consistent second-order limiting behavior, and have little to no impact on
the L2 norm. This behavior is not unique to the 3D flower immersed boundary and is present for
all comparisons between parabolic and trigonometric analytical solutions. It should be noted that
despite the limited accuracy improvements of the LGS and LIS methods for the 3D flower immersed
boundary for a trigonometric analytical solution, these methods have a maximum stencil size of 1.

Conclusion: Although for Dirichlet IBCs the LGS and LIS methods result in, at best, signif-
icantly smaller error norms, and, at worst, negligible improvements these methods tend to yield
error norms with a more consistent second-order limiting behavior, compared to the L method, and
have a maximum stencil size of 1, whereas the L method has a maximum stencil size of 2.
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(a) (b) (c)

Figure 10: L∞ and L2 norms of Φe for various IBMs for a (a) 2D flower, (b) sphere, and (c) 3D
flower immersed boundary with Dirichlet IBC for a (a,b) parabolic and (c) trigonometric analytical
solution. Black solid line: L; Blue dashed line: LGS; Orange dotted line: LIS; N : number of cells
in the x-axis; Diamond symbols: L∞ norm; Circle symbols: L2 norm. The L2 norms are shifted
downwards by factor of 10 for ease of reading.
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5.1.4 Improved Accuracy with the Quadratic Method

In this section the improvements to the accuracy of the numerical solutions obtained with the pro-
posed square shifting methods for various immersed boundaries for Poisson problems with parabolic
and trigonometric analytical solutions are presented.

QX Methods Figure 11 shows the L∞ and L2 norms of Φe for various immersed boundaries for
a Poisson problem with parabolic and trigonometric analytical solutions for the Q, QGS, and QIS
methods (denoted as the QX methods) and, as expected, have a second-order limiting behavior.
As seen from Figure 11(a), for the same stencil size of 2 the QX methods are more accurate than
the L method, and similar to the errors norms for the LGS and LIS methods, the QGS and QIS
methods yield more consistent second-order limiting behaviors (especially for L∞) and may be used
interchangeably. As seen by comparing the QX methods in Figures 11(a) and 11(b), the Q method
is least adept at smoothing out the less consistent second-order convergence of the L method, yields
the largest errors norms, and cannot be used interchangeably with the QGS or QIS methods.

The trends observed in Figures 11(a) and 11(b) are also observed for all immersed boundaries
and for the parabolic and trigonometric analytical solutions except for the 3D flower immersed
boundary for a parabolic analytical solution, shown in Figure 11(c). For this verification case the
QX methods, which have the same stencil size of 2 as the L method, are more accurate than the L
method, yield a slightly more consistent second-order behavior, and may be used interchangeable.

Different Image Points Interpolation Sets Figure 12(a) shows the L∞ and L2 norms of Φe
for a circle immersed boundary for a Poisson problem with a parabolic analytical solution for QX
and QYO methods, where the image points have different sets of interpolation indices. As seen by
comparing the Q and QO methods, and the QGS and QGSO methods, the QYO methods do not
results in a more accurate solution and as they may be used interchangeably with the QX methods
all comparison in Section 5.1.4 are applicable to the QYO methods.

Quadratic Method with Stencil Size of 1 Figures 12(b) and 12(c) show the L∞ and L2

norms of Φe for 2D flower and sphere immersed boundaries, respectively, for a Poisson problem with
trigonometric analytical solution for the QIS and QISS1 methods. Although the QISS1 method
with a maximum stencil size of 1 is more accurate and yields a more consistent second-order limiting
behavior compared to the L method, it is marginally less accurate than the QIS method with a
maximum stencil size of 2. It should be noted that the QISS1 method is a viable alternative to the
QIS method as the slightly larger error norms of the former, compared to the latter, is accompanied
by significant performance gains associated with its stencil size of 1.

5.1.5 Third-Order Lagrange Interpolation

As third-order Lagrange (p=3) interpolations extend the stencil size of second-order Lagrange
interpolations from 1 to 2 their use with IBMs with a stencil size of 2 is strongly discouraged,
i.e. they extend the stencil size from 2 to 3. To prevent these additional performance penalties
related to the stencil size of 3, p=3 interpolations should only be pursued with IBMs that have a
maximum stencil size of 1, such as the linear square shift method and QISS1. Although the use
of p=3 with these IBMs extends their maximum stencil size to 2 (the same as the L method),
thereby rending their performance gains null, their increased accuracy still characterizes them as
improvements of the L method.
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(a) (b) (c)

Figure 11: L∞ and L2 norms of Φe for various IBMs for a (a) circle, (b) sphere, and (c) 3D
flower immersed boundary with Dirichlet IBC for a (a,b) trigonometric and (c) parabolic analytical
solution. Black solid line: L; Red solid line: Q; Blue dotted line: QGS; Grey dashed line: QIS;
N : number of cells in the x-axis; Diamond symbols: L∞ norm; Circle symbols: L2 norm. The L2

norms are shifted downwards by factor of 10 for ease of reading. Blue dotted line and grey dashed
line are superimposed on each other in (b) and (c).
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(a) (b) (c)

Figure 12: L∞ and L2 norms of Φe for various IBMs for a (a) circle, (b) 2D flower, and (c)
sphere immersed boundary with Dirichlet IBC for a (a) parabolic and (b,c) trigonometric analytical
solution. Black solid line: L; Red solid line: Q; Grey dotted line: QO; Blue dashed line: QGS;
Green dotted line: QGSO; Blue dotted line: QIS; Purple dashed line: QISS1; N : number of cells in
the x-axis; Diamond symbols: L∞; Circle symbols: L2 norms. The L2 norms are shifted downwards
by factor of 10 for ease of reading.
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Figure 13 shows the L∞ and L2 norms of Φe for a circle and sphere immersed boundary for a
Poisson problem with a parabolic and trigonometric analytical solution for the LGS method with
p=2 and p=3. As expected, the LGS method with third-order Lagrange interpolations also results
in second-order convergence, as the truncation error on the order of max(O(∆l2h), O(∆h3)), for
both errors norms and yields more accurate results than the LGS method with p=2.

(a) (b) (c)

Figure 13: L∞ and L2 norms of Φe for various IBMs for a (a,b) circle and (c) sphere immersed
boundary with Dirichlet IBC for (a,c) parabolic and (b) trigonometric analytical solution. Black
solid line: L; Orange solid line: LGS with p=2; Red solid line: LGS with p=3; N : number of cells in
the x-axis; Diamond symbols: L∞; Circle symbols: L2 norms. The L2 norms are shifted downwards
by factor of 10 for ease of reading.

Although the L∞ and L2 norms have a second-order convergence, the numerical error field for
the parabolic analytical solution, shown in Figure 12, is not on the order of machine epsilon due
to the linear interpolation used at the domain boundary conditions and the second-order Lagrange
interpolations (p=2) used for the ghost and image points. However, for the Poisson problem with
the parabolic analytical solution, the combined used of the QISS1 method, third-order Lagrange in-
terpolations (p=3), and extending the quadratic method with second-order Lagrange interpolations
(p=2) to the domain boundaries yields error fields with values on the order of machine epsilon. By
also considering the Poisson problem with the trigonometric analytical solution, shown in Figure 14,
it can be concluded the QISS1 method and p=3 for equation (20) not only significantly increase the
accuracy regardless of the Poisson analytical solution, but also improves the order of convergence of
the IBM to third-order (appropriate numerical corrections are used to isolate the IBM truncation
errors). This behavior is expected as equation (20) now has a truncation error on the order of
max(O(∆l3h), O(∆h3)).
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(a) (b)

Figure 14: L∞ and L2 norms of Φe for a (a) circle and a (b) sphere immersed boundary with
Dirichlet IBC and trigonometric analytical solution. Black line: p=2 ; Red line: p=3; N : number
of cells in the x-axis; Diamond symbols: L∞ norm; Circle symbols: L2 norm. The L2 norms are
shifted downwards by factor of 10 for ease of reading.
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Conclusion For Dirichlet IBCs and a maximum stencil size of 1, the proposed shifted linear
methods (LGS and LIS) result in a numerical solution with the smallest L∞ and L2 norms for
all immersed boundaries and analytical solutions currently considered, except for sphere immersed
boundary with trigonometric analytical solution wherein the QISS1 method is slightly more accu-
rate. These methods are also more accurate than the standard linear method and, as they have a
smaller stencil size, yield more computationally efficient band matrices.

For Dirichlet IBCs and a maximum stencil size of 2, the proposed quadratic shifted methods
(QGS and QIS) result in a numerical solution with the smallest L∞ and L2 norms for all current
verification cases. Given that the standard linear and QX methods have the same maximum
stencil size of 2, the latter methods increase the accuracy of the solution without any significant
performance penalties. It should be noted that methods that use different interpolation sets (QYO)
have negligible differences with the QX methods. As expected the QGS and QIS methods are more
accurate than the LGS and LIS methods for all verification cases currently considered. By increasing
the maximum stencil size of the QISS1 method from 1 to 2, through the use of third-order Lagrange
interpolations (p=3), a more accurate numerical solution with an improved order of convergence of
the L∞ and L2 norms of three is obtained without any significant performance penalty.

Table 2 summarizes the maximum stencil sizes and order of convergences of the various proposed
methods for Dirichlet IBCs for parabolic and trigonometric analytical solutions for the 2D and 3D
Poisson problems.

Method Maximum Stencil Size Order of Convergence
One Image Point

L (p=2) 2 2
LGS (p=2) 1 2
LGS (p=3) 2 2
LIS (p=2) 1 2

Two Image Points
Q (p=2) 2 2
QGS (p=2) 2 2
QGSO (p=2) 2 2
QIS (p=2) 2 2
QISS1 (p=2) 1 2
QISS1 (p=3) 2 3

Table 2: Maximum stencil sizes and order of convergences for the proposed methods for Dirichlet
IBCs.

5.2 Neumann IBCs

Neumann IBCs for parabolic and trigonometric analytical solutions are also taken into account
for the current series of verification and convergence studies. Similar to Dirichlet IBCs, numerical
correction is taken into account to emphasise the accuracy of the IBMs currently considered.

5.2.1 Parabolic Solution

The analytical solution of the current 3D Poisson problem follows
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φ(x) = (1 + x)2, f(x) = 2, ∀(x) ∈ Ωi, (27)

given that

∂φ

∂n
(x) =

2x(1 + x)√
x2 + y2 + z2

∀(x) ∈ Γ,

φ(−1, y, z) = 0, φ(1, y, z) = 4 ∀(y, z) ∈ [−1, 1],

∂φ

∂n
(x,−1, z) = 0,

∂φ

∂n
(x, 1, z) = 0 ∀(x, z) ∈ [−1, 1],

∂φ

∂n
(x, y,−1) = 0,

∂φ

∂n
(x, y, 1) = 0 ∀(x, y) ∈ [−1, 1],

(28)

where numerical corrections only need to be applied to the x-axis domain boundary conditions [6].
The analytical solution for the corresponding 2D Poisson problem follows equation (28) with the

appropriate 2D source term and boundary conditions (e.g. ∂φ(x)/∂n = 2x(1 + x)/
√
x2 + y2).

5.2.2 Trigonometric Solution

A second analytical solution to the Poisson problem is

φ(x) = sin(πx)cos(2πy), f(x) = −5π2sin(πx)cos(2πy) ∀(x) ∈ Ωi ∈ IR2,

φ(x) = sin(πx)cos(2πy)cos(2πz), f(x) = −9π2sin(πx)cos(2πy)cos(2πz) ∀(x) ∈ Ωi ∈ IR3,
(29)

given that

∂φ

∂n
(x) =πcos(πx)cos(2πy)nx−

2πsin(πx)sin(2πy)ny ∀(x) ∈ Γ ∈ IR2,

φ(0, y) =0, φ(1, y) = 0 ∀(y) ∈ [0, 1],

∂φ

∂n
(x, 0) =0,

∂φ

∂n
(x, 1) = 0 ∀(x) ∈ [0, 1],

∂φ

∂n
(x) =πcos(πx)cos(2πy)cos(2πz)nx−

2πsin(πx)sin(2πy)cos(2πz)ny−
2πsin(πx)cos(2πy)sin(2πz)nz ∀(x) ∈ Γ ∈ IR3,

φ(0, y, z) =0, φ(1, y, z) = 0 ∀(y, z) ∈ [0, 1],

∂φ

∂n
(x, 0, z) =0,

∂φ

∂n
(x, 1, z) = 0 ∀(x, z) ∈ [0, 1],

∂φ

∂n
(x, y, 0) =0,

∂φ

∂n
(x, y, 1) = 0 ∀(x, y) ∈ [0, 1],

(30)

where nx, ny, and nz are the local surface unit normals in the x, y, and z-direction, respectively,
and numerical corrections are not needed for any of the domain boundary conditions.
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For an appropriate comparison with the results obtained with the first-order LIS method for
Neumann IBCs, second-order Lagrange interpolations (p=2) for the ghost and image points are
considered. As seen from equation (7), for Neumann IBCs a first-order limiting behavior is expected
for second-order Lagrange interpolations.

5.2.3 Reduce Stencil Size to 1

Figure 15 shows the L∞ and L2 norms of Φe for a circle and sphere immersed boundary for a
Poisson problem with the parabolic analytical solution for the LGS and LIS methods, and, as
expected, have a first-order limiting behavior. Similar to the results for Dirichlet IBCs, the LGS
and LIS methods may be used interchangeably (i.e. negligible differences in the accuracy of the
results). The LGS and LIS methods also yield the same L∞ norms and slightly smaller L2 norms
compared to the L method. It should be noted that although the increase in accuracy obtained
with the linear square shift methods for the parabolic analytical solution with Neumann IBCs is
smaller than those obtained with their Dirichlet IBCs counterpart, the maximum stencil size of 1
of these methods lead to better performances compared to the maximum stencil size of 2 of the L
method.

(a) (b)

Figure 15: L∞ and L2 norms of Φe for various IBMs for a (a) circle and a (b) sphere immersed
boundary with Neumann IBC. Black solid line: L; Blue dashed line: LGS; Orange dotted line: LIS;
N : number of cells in the x-axis; Diamond symbols: L∞ norm; Circle symbols: L2 norm. The L2

norms are shifted downwards by factor of 10 for ease of reading.

Figure 16 shows that for a circle and a sphere immersed boundary for a Poisson problem with
a trigonometric analytical solution the L∞ and L2 norms of Φe for the LGS and LIS methods have
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between first and second-order limiting behavior. Unlike the behavior for a parabolic analytical
solution with Neumann IBCs, for a trigonometric analytical solution the LGS and LIS methods
are more accurate than the L method, increase the order of convergence from 1 to approximately
1.5 for a circle immersed boundary, and yield a more consistent first-order limiting behavior for a
sphere immersed boundary (especially the LGS method). Although the LGS and LIS methods may
only be used interchangeably for a circle immersed boundary, the differences in the errors norms
between the two methods for a sphere immersed boundary are limited. The superconvergence seen
in Figure 16(a) is not yet explained and it is therefore more prudent to retain an overall order of
convergence of 1, as seen in the other test cases and in accordance with the truncation errors in
equations (12) and (16).

(a) (b)

Figure 16: L∞ and L2 norms of Φe for various IBMs for a (a) circle and a (b) sphere immersed
boundary with Neumann IBC and trigonometric analytical solution. Black solid line: L; Blue
dashed line: LGS; Orange dotted line: LIS; N : number of cells in the x-axis; Diamond symbols:
L∞; Circle symbols: L2 norms. The L2 norms are shifted downwards by factor of 10 for ease of
reading.

5.2.4 Improved Accuracy with the Quadratic Method

In this section the improvements to the accuracy of the numerical solutions obtained with the pro-
posed square shifting methods for various immersed boundaries for Poisson problems with parabolic
and trigonometric analytical solutions are presented.
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QX Methods Similar to the linear square shift methods for Neumann IBCs, the QX methods
yield the same L∞ norm as the L method and only the QGS method yields slightly smaller values for
the L2 norm (an associated figure is not shown for conciseness purposes). As a result, the L∞ and L2

norms of Φe for the circle and sphere immersed boundaries for a Poisson problem with the parabolic
analytical solution for the QX methods with Neumann IBCs have a first-order limiting behavior.
The limited improvement in the accuracy of the results despite using the quadratic method is
attributed to the large first-order truncation error of the second-order Lagrange interpolations for
Neumann IBCs which masks any accuracy gains associated with the quadratic method. It should
be noted that as the grid size increases the QGS method yields slightly more accurate results than
the QIS method (and by extension the Q method).

Figure 17 shows the L∞ and L2 norms of Φe for a circle and a sphere immersed boundary for a
Poisson problem with a trigonometric analytical solution for the Q, QGS, and QIS methods and have
a first-order limiting behavior, except for the QGS method which increases the order of convergence
from 1 to 1.6. Unlike the behavior observed for a parabolic analytical solution with Neumann IBCs,
for a trigonometric analytical solution the QX methods may not be used interchangeably as the
QGS method is more accurate than the Q and QIS methods. The superconvergence of the QGS
method seen in Figure 17 is not yet explained.

(a) (b)

Figure 17: L∞ and L2 norms of Φe for various IBMs for a (a) circle and a (b) sphere immersed
boundary with Neumann IBC and trigonometric analytical solution. Black solid line: L; Red solid
line: Q; Blue dotted line: QGS; Grey dashed line: QIS; N : number of cells in the x-axis; Diamond
symbols: L∞; Circle symbols: L2 norms. The L2 norms are shifted downwards by factor of 10 for
ease of reading. The black and red solid line are superimposed on each other in (a) and (b).

Similar to the results for Dirichlet IBCs, for Neumann IBCs with a parabolic and trigonometric
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analytical solution the QYO methods do not yield more accurate solutions and as they may be
used interchangeably with the QX methods all comments on the latter methods are applicable to
the former methods.

Quadratic Method with Stencil Size of 1 For Neumann IBCs with a parabolic analytical
solution the QISS1 method do not results in a more accurate solution and may be used interchange-
ably with the QX and QYO methods.

5.2.5 Third-Order Lagrange Interpolation

As seen in Section 5.1.5, the use of third-order Lagrange (p=3) interpolations for IBMs with a
maximum stencil size of 1 only increases the accuracy of results for Dirichlet IBCs as the leading
term in the truncation error is related to second-order IBCs. However, as seen from equations (10),
for Neumann IBCs the leading term in the truncation errors for the IBMs with a maximum stencil
size of 1 is related to the order of interpolation used for the image points.

Figure 18 shows the L∞ and L2 norms of Φe for a circle and sphere immersed boundary for a
Poisson problem with a parabolic and trigonometric analytical solution for the LGS method with
p=2 and p=3. As expected, the LGS method with third-order Lagrange interpolations with its
maximum stencil size of 2 has a second-order convergence for both error norms and also yields
significantly more accurate results than the LGS method with p=2.

Similar to the Dirichlet IBCs, the combined use of QISS1, p=3 for equation (20), and extending
the quadratic method with second-order Lagrange interpolations to the domain boundaries yields
error fields with maximum values on the order of machine epsilon for the parabolic analytical
solution.

Figure 19 shows the L∞ and L2 norms of Φe for a circle and a sphere immersed boundary for
a Poisson problem with a trigonometric analytical solution for the QIS and QISS1 methods. The
QISS1 method with second-order Lagrange interpolations (p=2) is more accurate than the QIS
method and increases the order of convergence from 1 to 1.6. It should be noted that a more
accurate solution with the QISS1 is expected as the distances between the ghost-cell and image
points decreases, thereby decreasing the error associated with the interpolations and discretizations.
As seen from equation (20) and shown in Figure 19, by extending the maximum stencil size of QISS1
from 1 to 2, through the use of p=3, the order of convergence of the error norms also increase from
1.6 to 2 for a trigonometric analytical solution.

Conclusion For Neumann IBCs and maximum stencil sizes of 1 and 2, the improvements in the
L∞ and L2 norms of the error field Φe obtained with the proposed shifted and quadratic methods
varies with the analytical solution of the Poisson test problem.

For a maximum stencil size of 1 and a parabolic analytical solution, the proposed shifted meth-
ods (LGS, LIS, and QISS1) result in little to no improvements in the L∞ and L2 norms compared
to the L method. However, for a trigonometric analytical solution the proposed shifted methods
yield smaller L∞ and L2 norms and increase the order of convergence compared to the standard
linear method. Regardless of the similarity in numerical accuracy obtained for a parabolic ana-
lytical solution, these square shift methods have a maximum stencil size of 1 and thereby yield
computational efficient band matrices.

For a maximum stencil size of 2 and a parabolic analytical, the proposed quadratic methods
(QX and QYO) also result in little to no improvements in the L∞ and L2 norms compared to the
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(a) (b) (c)

Figure 18: L∞ and L2 norms of Φe for various IBMs for a (a,b) circle and (c) sphere immersed
boundary with Dirichlet IBC for (a,c) parabolic and (b) trigonometric analytical solution. Black
solid line: L; Orange solid line: LGS with p=2; Red solid line: LGS with p=3; N : number of cells in
the x-axis; Diamond symbols: L∞; Circle symbols: L2 norms. The L2 norms are shifted downwards
by factor of 10 for ease of reading.
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(a) (b)

Figure 19: L∞ and L2 norms of Φe for a (a) circle and a (b) sphere immersed boundary with
Neumann IBC and trigonometric analytical solution. Black line: L; Grey dotted line: QIS; Red
line: QISS1 p=2 ; Orange line: QISS1 p=3; N : number of cells in the x-axis; Diamond symbols:
L∞ norm; Circle symbols: L2 norm. The L2 norms are shifted downwards by factor of 10 for ease
of reading.
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standard linear method and may be used interchangeably. However, for a trigonometric analytical
solution the proposed quadratic methods result in smaller error norms and an increase in the order
of convergence compared to the standard linear method. As expected, the proposed QISS1 method
and third-order Lagrange interpolations result in significant decreases in the values of the L∞ and
L2 norms and leads to second-order convergence.

Table 3 summarizes the maximum stencil sizes and order of convergences of the various proposed
methods for Neumann IBCs for parabolic and trigonometric analytical solutions for the 2D and 3D
Poisson problems.

Method Maximum Stencil Size Order of Convergence
One Image Point

L (p=2) 2 1
LGS (p=2) 1 1(1.5)
LGS (p=3) 2 2
LIS (p=2) 1 1(1.5)

Two Image Points
Q (p=2) 2 1
QGS (p=2) 2 1(1.5)
QGSO (p=2) 2 1
QIS (p=2) 2 1
QISS1 (p=2) 1 1
QISS1 (p=3) 2 2

Table 3: Maximum stencil sizes and order of convergences for the proposed methods for Neumann
IBCs. The order of convergence shown in parenthesis corresponds to a superconvergence encoun-
tered for a specific test case.

6 Numerical Simulations for a Vector Flow Field

In this section the results of numerical simulations for the 3D incompressible Navier-Stokes equations
with constant density and viscosity for various verification and validation test cases are presented.
The governing equations follow

∂u

∂t
+∇ · (u⊗ u) = −∇p+ ν∆u + f, in Ωi,

∇ · u = 0, in Ωi,

u = uD, on ∂ΩD ∪ ΓD,

∇u · n = uN , on ∂ΩN ∪ ΓN ,

(31)

where Ωi ⊂ IR3, u=(u, v, w) is the velocity flow field, p is the kinematic pressure, f is a source flow
field, ν is the kinematic viscosity, uD is the Dirichlet domain boundary conditions, and uN is the
Neumann domain boundary conditions. For sake of clarity, only the results for a subset of IBMs
presented in previous sections are discussed.

The pressure-correction method of Timmermans et al. [26] on a staggered grid is used to solve the
velocity/pressure coupling of the Navier-Stokes equations. Implicit second-order central difference is
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used for the non-linear advection and stress terms. Due to the current implicit advection scheme an
additional immersed boundary extrapolation of the velocity field to the ghost-cells is required [6].
Similar to the verification cases considered in Section 5.2, second-order Lagrange interpolations
(p=2) for the ghost and image points are primarily considered. As will be shown, this yields
pressure results with a first order convergence. Using third-order Lagrange interpolations (p=3)
with the LGS or QISS1 methods yield error norms with increased order of convergence of 1.5 or 2,
respectively.

6.1 Verification Test Cases

The verification test cases currently considered are the canonical 2D annular Couette flow and 3D
pipe flow. As these flows have exact analytical solutions the following discussion focuses on both
the L∞ and L2 error norms of u and pressure and on the CPU time speed-up, henceforth referred
to as speed-up, attained with the currently proposed methods compared to the L method.

6.1.1 Annular Couette Flow

The first verification case is annular Couette flow for inner and outer cylinders with a radii of Ri
and Ro of 0.02 and 0.1, respectively. The computational domain is [−9/80, 9/80]2 with grid sizes
of (16ν)2 and with Dirichlet IBCs derived from their analytical solutions. The analytical solution
of annular Couette flow follows

~u = ~uθ~εθ,

uθ(r) =
Ar

2
+
B

r
,

p(r) = p0 −
(Ar)2

8
+AB ln(r)− 1

2

(
B

r

)2

,

(32)

where r is the distance from the center of inner cylinder, p0=0, and the constants A and B follow,

A = 2
ωoR

2
o − ωiR2

i

R2
o −R2

i

,

B = (ωi − ωo)
(RiRo)

2

R2
o −R2

i

,

(33)

where the ωi=0.5 rad and ωo=0 rad are the angular velocities for the inner and outer concentric
cylinders, respectively.

Figure 20 shows the L∞ and L2 error norms of u and pressure for various grid sizes and IBMs
for annular Couette flow, wherein, as expected, all proposed methods yield more accurate results.
The unexpected convergence (i.e. stair-like behavior) seen for the L∞ error norm of u for the LGS,
Q, and QGS methods is consistent with [6] and is characteristic to many of the methods based on
the linear method for the current test case. The LGS, Q, and QGS methods also locally increase
the order of convergence of the L∞ error norm of pressure between grids N2=64 and N2=256. The
reduced stencil size of the LGS also results in a speed-up of 1.7 for a grid size N2 = 1282.

The QISS1 method with third-order Lagrange interpolations both improves the convergence
behavior (i.e. smooths out the previously seen stair-like behavior) and increase the order of con-
vergence of for the L∞ error norms of pressure and velocity to second order whilst maintaining the
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same stencil size of 2 as the L method. Extending the use of third-order Lagrange interpolations to
the LGS method also yields improved convergence behaviors for the L∞ error norm for both u and
pressure (compared to the LGS method with p=2 - blue dashed line), whilst maintaining a stencil
size of 2.

(a) (b)

Figure 20: L∞ and L2 norms of (a) u and (b) pressure for various IBMs for annular Couette flow.
Black solid line: L; Red solid line: LGS; Blue dashed line: Q; Orange dotted line: QGS; Grey
dotted line: LGS with third-order Lagrange interpolations (p=3); Green dotted line: QISS1 with
p=3; N : number of cells in the x-axis; Diamond symbols: L∞ norm; Circle symbols: L2 norm. The
L2 norms are shifted downwards by a factor of 10 for ease of reading.

6.1.2 Pipe Flow

The second verification case is laminar pipe flow parallel to the x-axis with a Reynolds number
Re=2Rum/ν=20 and a radius R=3/4. The computational domain is [−1, 1]3 with grid sizes of
(16ν)3 and with Dirichlet IBCs derived from their analytical solutions. The analytical solution of
pipe Poiseuille flow follows

~u = ~ui~εi,

ux(y, z) = um

(
1− r2

R2

)
,

px(x) = p0 −
∂p

∂x
x,

∂p

∂x
= −4um

ν

R2
,

(34)

where p0=0 is the initial pressure, um=1/(2R) is the maximum velocity, ν=1/Re is the dynamic
viscosity, and r2=(y − yc)2+(z − zc)2 is the distance to the axis of the pipe (x-axis).
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Figure 21 shows the L∞ and L2 error norms of u and pressure for various grid sizes and IBMs
for laminar pipe flow and as expected the L method has a second and first-order limiting behavior,
respectively. It should be noted that the first-order convergence for the L∞ norm of pressure is
expected as it is also encountered for the canonical validation case of 2D channel Poiseuille flow
without immersed boundaries. Also as expected, the LIS and QIS methods are more accurate than
the L method and the L∞ error norm of pressure has a slightly better order of convergence.

Remark As the analytical solution is parabolic, the combined used of QISS1, third-order Lagrange
interpolations (p=3), and extending the quadratic method with second-order Lagrange interpola-
tions (p=2) to the domain boundaries yields error fields with values close to machine epsilon whilst
maintaining a stencil size of 2 as the L method.

(a) (b)

Figure 21: L∞ and L2 norms of (a) u and (b) pressure for various IBMs for laminar pipe flow at
Re=20. Black solid line: L; Blue dashed line: LIS; Orange dotted line: QIS; N : number of cells
in the x-axis; Diamond symbols: L∞ norm; Circle symbols: L2 norm. The L2 norms are shifted
downwards by a factor of 10 for ease of reading.

Table 4 shows the total run times for the various IBMs considered for a grid size N3=643 and,
as expected, the methods with a maximum stencil size of 1 (LGS, LIS, and QISS1) are faster than
those methods with a maximum stencil size of 2 (L and QIS). The significance of a maximum stencil
size of 1 for computational performance can be best seen by comparing the total run times of the
various methods in Table 4 for the less efficient AMG preconditioner BoomerAMG of hypre library,
wherein the IBMs with a maximum stencil size of 1 are at least 4 times faster than the L method.
It should be noted that while QIS and L have the same stencil size of 2 and yield similar total wall
clock times, the former method is more accurate than the latter.
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IBM Stencil Size Total Wall Clock time (×102)[s] Speed-up (vs. L method)
L 2 5.02 —
LGS 1 1.18 4.25
LIS 1 1.21 4.15
QIS 2 4.12 1.22
QISS1 1 1.18 4.25

Table 4: Total wall clock time, stencil size, and speed-up with respect to the L method for various
IBMs for laminar pipe flow at Re=20 with a grid size N3=643.

6.2 Validation Test Cases

The validation test cases currently considered are the lid-driven cavity with an immersed cylinder,
flow past a circular cylinder, flow past an isothermal and an isoflux heated circular cylinder, and flow
past a sphere. As these flows do not have analytical solutions the following discussions primarily
focus on the increased computational efficiency of the proposed methods for flows with more complex
flow features.

6.2.1 Lid-Driven Cavity with an Immersed Cylinder

The first validation case is the lid-driven cavity with a stationary immersed cylinder case proposed
by Cai et al. [27]. A circular cylinder at Re=1000 with a diameter D=0.4L is placed in the
middle of a square cavity with side length L=1 and a grid size N2=2562. The boundary conditions
for the domain boundaries for velocity are uniform flow u=(1.0,0.0) for the top wall and no-slip
boundary conditions for the remaining boundary, while pressure increment has zero normal gradient
for all domain boundaries. Appropriate Dirichlet and Neumann IBCs for u and pressure increment,
respectively, for no slip condition at the immersed boundaries are chosen. Figure 22 shows the
good agreement between the current u and v-velocity profiles along the y and x-direction centerline,
respectively, for the LIS method with those of Cai et al. [27].

A lid-driven cavity with a rotating immersed boundary is also considered as part of the current
validation test case. The numerical setup is identical to that for a stationary immersed boundary
except for the angular velocity ω=1 rad of the circular cylinder and Re=5. Figure 23(a) shows the
current u and v-velocity profiles along the y and x-direction centerline, respectively, and Figure 23(b)
shows the distribution of the coefficient of pressure, as a function of θ, along the surface of the
circular cylinder for the L and QISS1 with third-order Lagrange interpolation (p=3) methods. It
should be noted that the reduced stencil size of 1 of LIS methods, compared to the stencil size of
2 of the L method, results in similar results as those presented in Figure 23 and a speed-up of 1.7
for a grid size N2=2562.

To further highlight the improvements in accuracy and convergence order of the proposed LGS
and QISS1 with p=3 whilst maintaining the same stencil size of 2 as the L method, the L∞ and
L2 error norms of pressure are considered. As the current validation test case does not have an
exact solution, the results obtained on a highly resolved grid N2=5122 are used as the baseline
when computing the error norms. The errors norms of velocity u are not currently considered as
the Dirichlet IBCs guarantee a second order convergence as seen in Section 6.1. Figure 24 shows
L∞ and L2 error norms of pressure for the L method and, as expected, display first and in-between
first and second order convergence, respectively. The results of the currently proposed LGS and
QISS1 with p=3 display an improved order of convergence and are significantly more accurate than
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(a) (b)

Figure 22: (a) Streamlines and (b) profiles of u and v-velocity along the y and x-direction centerline,
respectively, for lid-driven cavity with a stationary immersed boundary at Re=1000. Blue line: u-
velocity; Red line: v-velocity; Black +: Cai et al. [27]. y and x in (b) correspond to r/L, where r
is the Euclidean distance from (-0.5,0.0) or (0.0,-0.5) and L=1 is the side length.

(a) (b)

Figure 23: Profiles of (a) u and v-velocity along the y and x-direction centerline and (b) the
distribution of the coefficient of pressure along the surface of the immersed boundary for lid-driven
cavity with a rotating immersed boundary with an angular velocity ω=1 rad and a Re=5. (a)
Blue line: u-velocity; Red line: v-velocity. (b) Blue line: L method; Red line: QISS1 method with
third-order Lagrange interpolation (p=3).
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those obtained with the L method. The LGS method with p=3 has a 1.5 and 2nd order convergence
for the L∞ and L2 error norms, respectively, while the QISS1 with p=3 displays a second order
convergence for both error norms.

(a) (b)

Figure 24: (a)L∞ and (b)L2 norms of pressure for the L method, the LGS method with p=3, and
the QISS1 method with p=3 for lid-driven cavity with a rotating immersed boundary with ω=1
rad at Re=5. Blue solid line: L method; Green solid solid: LGS method with p=3; Red solid line:
QISS1 method with p=3; Blue dashed line: O(h); Red dashed line: O(h2);N : number of cells in
the x-axis.

6.2.2 Laminar Flow past a Circular Cylinder

The second validation case is steady laminar flow past a circular cylinder at Re=40 with a diameter
D=1.0 placed at (x,y)=(15,11)D of a computational domain Ω=[37.5D, 22D]. A non-uniform
rectilinear grid of size 1320×720 with a uniform Cartesian grid of size 960×480 for the region
around the circular cylinder enclosed by [−1.0,−1.0] and [3.0, 1.0] is used. Appropriate Dirichlet
and Neumann IBCs for u and pressure increment, respectively, for no slip condition at the immersed
boundaries are chosen. The boundary conditions for the domain boundaries for velocity are a
uniform flow u=(1.0,0.0) at the inlet, zero-gradient at the outlet, and slip boundary condition for
the remaining domain boundaries, while pressure increment has Dirichlet boundary conditions of
zero for the outlet and zero normal gradient for the remaining domain boundaries. Table 5 shows
the good agreement in the coefficient of drag and the non-dimensional wake bubble length Lw/D,
where Lw is the dimensional wake bubble length, while Figure 25 shows the good agreement of
the distribution of the coefficient of pressure, as a function of θ, along the surface of the circular
cylinder for steady flow at Re=40. It should also be noted that the reduced stencil size of 1 of the
LIS method yields a speed-up of 1.7 compared to the linear method.

6.2.3 Laminar Flow past a Heated Circular Cylinder

The third validation case is steady laminar flow past an isothermal and an isoflux heated circular
cylinder at Re=20 and Prandtl number Pr=0.70 with a diameter D=1.0 placed at (x,y)=(15,11)D
of a computational domain Ω=[37.5D, 22D]. Non-uniform rectilinear grids of sizes 880×480 with
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CD Lw/D
Russel and Wang [28] 1.60 2.25
Taira and Colonius [29] 1.54 2.30
Matsumura and Jackson [30] 1.55 2.31
Calhoun [31] 1.62 2.18
Xu and Wang [32] 1.66 2.21
Berthelsen and Faltinsen [33] 1.59 2.29
Current(LIS) 1.585 2.253

Table 5: Coefficient of drag CD and non-dimensional wake bubble length Lw/D for steady flow
past a circle at Re=40.

(a) (b)

Figure 25: (a) Pressure contour lines and (b) normalized coefficient of pressure Cp distribution along
the surface of a circular cylinder for steady flow at Re=40. Solid black line: Current results with
the LIS method; Blue +: Dennis and Chang [34]; Orange square: Berthelsen and Faltinsen [33];
Purple diamond: Grove et al. [35]; Green o: Tseng and Ferziger [36].
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uniform Cartesian grid of sizes 640×320 for the region around the circular cylinder enclosed by
[−1.0,−1.0] and [3.0, 1.0] are used. The boundary conditions for u and pressure increment are
the same as those presented in Section 6.2.2. The boundary conditions for temperature at the
immersed boundary is uniform temperature T=1 and uniform heat flux ∂T/∂n=1 for the isothermal
and isoflux cases, respectively, while a uniform temperature T=0 is applied at the inlet and zero-
gradient ∂T/∂n is used for the remaining domain boundaries. Table 6 shows the good agreement
in the average Nusselt number while Figure 27 shows the good agreement in the distribution of the
local Nusselt number along the surface of the heated circular cylinder.

Isothermal Isoflux
Luo et al. [8] 2.4336 2.7850
Zhang et al. [37] 2.47 2.75
Bharti et al. [38] 2.4653 2.7788
Dennis et al. [39] 2.5216 —
Lange et al. [40] 2.4087 —
Soares et al. [41] 2.4300 —
Ahmad and Qureshi [42] — 2.6620
Current(LIS) 2.4272 2.7916

Table 6: Average Nusselt number Nu for forced convection steady laminar flow past an isothermal
and an isoflux circle at Re=20 and Pr=0.70.

(a)

(b)

Figure 26: Temperature contour lines for forced convection steady laminar flow past an (a) isother-
mal and (b) isoflux at Re=20.
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(a) (b)

Figure 27: Local Nusselt number for forced convection steady laminar flow past an (a) isothermal
and an (b) isoflux circle at Re=20 and Pr=0.70. Blue +: Bharti et al. [38]; Orange line: Zhang et
al. [37]; Black line: Current results.

6.2.4 Laminar Flow past a Sphere

The fourth validation case, shown in Figure 28, is steady laminar flow past a sphere at Re=50,
100, and 150 with a diameter D=1.0 placed at (x,y,z)=(12.5,8.5,8.5)D of a computational domain
Ω=[31.25D, 17D, 17D]. A non-uniform rectilinear grid of size 275×1502 with a uniform Cartesian
grid of size 160×802 for the region around the sphere enclosed by [−1.0,−1.0,−1.0] and [3.0, 1.0, 1.0]
is used for all Reynolds numbers considered. Appropriate Dirichlet and Neumann IBCs for u and
pressure increment, respectively, for no slip condition at the immersed boundaries are chosen. The
boundary conditions for the domain boundaries for velocity are a uniform flow u=(1.0,0.0,0.0) at the
inlet, zero-gradient at the outlet and slip boundary condition for the remaining domain boundaries,
while pressure increment has Dirichlet boundary conditions of zero for the outlet and zero normal
gradient for the remaining domain boundaries. Table 7 shows the good agreement in the coefficient
of drag CD and the non-dimensional wake bubble length Lw/D, where Lw is the wake bubble
length. The need for a maximum stencil size of 1 is indeed important given that the LIS method is
3.1 times faster than the L method for steady flow at Re=50. Although the results in Table 7 are
for the LIS method, similar results are obtained with the L method.

Reynolds Number 50 100 150
CD Lw/D CD Lw/D CD Lw/D

Mittal [43] 1.57 0.44 1.09 0.87 — —
Johnson and Patel et al. [44] 1.57 0.40 1.08 0.86 0.90 1.20
Marella et al. [45] 1.56 0.39 1.06 0.90 0.85 1.19
Current(LIS) 1.59 0.40 1.09 0.86 0.89 1.18

Table 7: Coefficient of drag CD and non-dimensional wake bubble length Lw/D for steady flow
past a sphere at Re=50, 100, and 150.
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Figure 28: Streamlines coloured by velocity magnitude for steady laminar flow past a sphere im-
mersed boundary at Re=150.

7 Conclusion

Although IBMs with a stencil size of 2 for Cartesian grids, such as the linear method [1], are
widely used, they pose significant constraints in the pursuit of smaller total run times, smaller
memory requirements, increased accuracy, and increase order of convergence. To address these
shortcomings the linear square shifting and the quadratic square shifting ghost-cell methods, and
their various combinations are proposed. The proposed linear square shifting methods consistently
yield a maximum stencil size of 1 by shifting the ghost point and, consequently, the image point, or
solely the image point, towards the immersed boundary, whilst the quadratic square shifting ghost-
cell methods derived from [3] increases the accuracy of the results through quadratic interpolations
for the ghost point/cell values whilst maintaining a maximum stencil size of 2. The ghost-cell
and image point linear square shift methods (LGS and LIS, respectively), with a maximum stencil
size of 1, result in smaller total run times, smaller memory requirements, increased accuracy, and
improved convergence, while the quadratic square shifting methods with ghost or image point shifts,
with a maximum stencil size of 2, are proposed to further increase the accuracy and improve the
convergence of the results. Lastly, the quadratic square shifting method with the first image point
shift and with a maximum stencil size artificially increased from 1 to 2 through third-order Lagrange
interpolations is also proposed to increase the order of convergence of Neumann immersed boundary
conditions from first to second-order.

Numerical simulations of the canonical Poisson test problem with parabolic and trigonometric
analytical solutions for various 2D and 3D immersed boundaries with Dirichlet and Neumann IBCs
for nine combinations of the square shift and quadratic square shifting methods further emphasises
the need for a maximum stencil size of 1 and more accurate interpolation methods for the ghost
point/cells. For Dirichlet IBCs the reduced stencil size of the linear square shift methods tends to
yield more accurate results and improved second-order convergence when compared with the linear
method. The accuracy of the results is further increased when the quadratic method is used in
conjunction with the square shifting methods (i.e. QGS, QIS, etc.).

Although for Neumann IBCs the proposed methods yield smaller improvements in accuracy
and negligible improvements in the first-order convergence of the linear method for the parabolic
analytical solution to the Poisson test problem, the reduced stencil size results in smaller run times.
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However, the combined use of the QISS1 method and third-order Lagrange interpolations for the
image and ghost points yields more accurate results and error norms with second-order convergence
while maintaining the same maximum stencil size of 2 as the linear method, which results in first-
order convergence.

The numerical accuracy and computational improvements of the square shifting methods, quadratic
square shifting methods, and the combinations of these methods are also observed for the velocity
and pressure variables for various verification and validation test cases for the Navier-Stokes govern-
ing equations. For the verification test cases, the proposed methods yield more accurate results and
either improve the convergence behavior or increase the order of convergence of the error norms.
For methods with a maximum stencil size of 1 (e.g. LIS) these improvements are accompanied by
significant speed-ups. As seen from the various validation cases, the proposed methods are able to
accurately capture the velocity, pressure, and temperature flow fields. In addition the combined use
of the QISS1 method and third-order Lagrange interpolations for the image and ghost points results
in second-order convergence for the pressure field with Neumann IBCs for a lid driven cavity with
a rotating immersed cylinder. Similar to the verification test cases, the proposed methods with a
maximum stencil size of 1 also yield speed-ups of at least 3 for 3D flows.

Acknowledgements

We acknowledge the French National Research Agency for its support (ANR-17-CE07-0029-SUPERFON)
and the MCIA (Mésocentre de Calcul Intensif Aquitaine) for the HPC resources.

References

[1] R. Mittal, H. Dong, M. Bozkurttas, F. Najjar, A. Vargas, and A. Von Loebbecke, “A versatile
sharp interface immersed boundary method for incompressible flows with complex boundaries,”
Journal of computational physics, vol. 227, no. 10, pp. 4825–4852, 2008.

[2] S. Das, N. G. Deen, and J. Kuipers, “Direct numerical simulation for flow and heat transfer
through random open-cell solid foams: Development of an ibm based cfd model,” Catalysis
Today, vol. 273, pp. 140–150, 2016.

[3] S. Das, A. Panda, N. Deen, and J. Kuipers, “A sharp-interface immersed boundary method
to simulate convective and conjugate heat transfer through highly complex periodic porous
structures,” Chemical Engineering Science, vol. 191, pp. 1–18, 2018.

[4] C. S. Peskin, “Flow patterns around heart valves: a numerical method,” Journal of computa-
tional physics, vol. 10, no. 2, pp. 252–271, 1972.

[5] R. Mittal and G. Iaccarino, “Immersed boundary methods,” Annu. Rev. Fluid Mech., vol. 37,
pp. 239–261, 2005.

[6] J. Picot and S. Glockner, “Reduction of the discretization stencil of direct forcing immersed
boundary methods on rectangular cells: The ghost node shifting method,” Journal of Compu-
tational Physics, vol. 364, pp. 18–48, 2018.

43



[7] R. Sandberg and L. Jones, “Direct numerical simulations of low reynolds number flow over air-
foils with trailing-edge serrations,” Journal of Sound and Vibration, vol. 330, no. 16, pp. 3818–
3831, 2011.

[8] K. Luo, Z. Zhuang, J. Fan, and N. E. L. Haugen, “A ghost-cell immersed boundary method
for simulations of heat transfer in compressible flows under different boundary conditions,”
International Journal of Heat and Mass Transfer, vol. 92, pp. 708–717, 2016.

[9] N. S. Dhamankar, G. A. Blaisdell, and A. S. Lyrintzis, “Implementation of a sharp immersed
boundary method in a 3-d multi-block large eddy simulation tool for jet aeroacoustics,” in 53rd
AIAA Aerospace Sciences Meeting, p. 0504, 2015.

[10] C. Chi, B. J. Lee, and H. G. Im, “An improved ghost-cell immersed boundary method for
compressible flow simulations,” International Journal for Numerical Methods in Fluids, vol. 83,
no. 2, pp. 132–148, 2017.
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