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The response spectrum method is commonly used to design multi-degree-of-freedom structures subject to random vibrations. However, the common direction combination rules (SRSS, Newmark 30-100-100, Newmark 40-100-100) consider uncorrelated excitation components. Theoretically, it is always possible to rotate the directions in order to obtain principal directions along which the excitation components are not correlated. This problem is handle by the combinations CQC3 and GCQC3. However, these rules need simplifications to be applicable in an industrial framework. For specific applications, this simplifications are not consistent (e.g. for substructures anchored to a structure subject to plane crash). This article addresses the problem of reformulating the GCQC3 rule when vibrations along each direction are correlated, spectra have different shapes and without any simplifications. This new formulation avoids lot of calculations and makes the GCQC3 method industrially applicable in its most general form. In particular, it integrates the instantaneous correlations between excitation components. Furthermore, this formulation is propagated to the elliptical response envelopealso called interaction ellipsoidmethod.

Introduction

The response spectrum method (RSM) is commonly used to design multi-degree-of-freedom structures subject to random vibrations. This method works with linear structures and it uses a modal superposition procedure where each eigenmode corresponds to a single-degree-offreedom oscillator. Then, the peak responses of modal oscillators under each excitation component are evaluated and combined. The combinations give a probable upper bound for the temporal response of the structure [START_REF] Kiureghian | On response of structures to stationary excitation[END_REF][START_REF] Kiureghian | A response spectrum method for random vibrations[END_REF][START_REF] Erlicher | Seismic design by the response spectrum method: a new interpretation of elliptical response envelopes and a novel equivalent static method based on probable linear combinations of modes[END_REF]. Both modal and direction combinations have to be performed. A well-known rule for the modal combination is the Complete Quadratic Combination (CQC) [START_REF] Kiureghian | On response of structures to stationary excitation[END_REF][START_REF] Kiureghian | A response spectrum method for random vibrations[END_REF]. It allows for taking into account the correlation between the eigenmodes. For the direction combinations, the SRSS, the 30% [START_REF] Rosenblueth | Approximate design for multicomponent earthquakes[END_REF] and the 40% [START_REF] Newmark | Seismic design criteria for structures and facilities Trans-Alaska pipeline system[END_REF] rules are the most common. They all assume that the excitation components are uncorrelated. However, this assumption is frequently not verified in practical applications [START_REF] Penzien | Characteristic of 3-dimensional earthquake ground motions[END_REF][START_REF] Chen | Definition of statistically independent time histories[END_REF][START_REF] Hadjian | On the correlation of the components of strong ground motion[END_REF][START_REF] Marsan | Local amplification effects recorded by a local strong motion network during the 1997 Umbria-Marche Earthquake[END_REF]. In that case, the excitation components can be rotated to the principal orthogonal directions along which their correlations are null [START_REF] Penzien | Characteristic of 3-dimensional earthquake ground motions[END_REF][START_REF] Clough | Dynamics of Structures[END_REF][START_REF] Erlicher | Seismic design by the response spectrum method: a new interpretation of elliptical response envelopes and a novel equivalent static method based on probable linear combinations of modes[END_REF]. Then, a question of interest for seismic design is to establish the most critical orientation of the principal axes. Since it is often convenient to work with the structure axes, many works have been investigated the generalization of the CQC rule when the principal components are rotated with respect to the structure axes [1, 8, 10, 11 13, 14, 1]. In that framework, the GCQC3 rule has been developed [START_REF] Hernandez | Response to three-component seismic motion of arbitrary direction[END_REF][START_REF] Anastassiadis | Directions sismiques défavorables et combinaisons défavorables des efforts[END_REF]. However, this methods in its most general case could be difficult to handle for practical applications. For that reason, many works deal with this problem by suggesting simplifications. For example, [START_REF] Hernandez | Response to three-component seismic motion of arbitrary direction[END_REF] suggest a simplification by imposing restriction on the maximum inclination or intensity of a principal seismic component. Furthermore, most of them consider rotations only for horizontal directions [START_REF] Wilson | Three-dimensional dynamic analysis for multicomponent[END_REF][START_REF] Wilson | A clarification of the orthogonal effects in a three-dimensional seismic analysis[END_REF][START_REF] Smeby | Modal Combination rules for multicomponent earthquake excitation[END_REF][START_REF] Lopez | The critical angle of seismic incidence and the maximum structural response[END_REF][START_REF] Menun | A replacement for the 30%, 40%, and SRSS Rules for Multicomponent Seismic Analysis[END_REF][START_REF] Lopez | Critical response of structures to multicomponent earthquake excitation[END_REF]. In particular, in the work [START_REF] Wilson | Three-dimensional dynamic analysis for multicomponent[END_REF] the horizontal spectra are supposed to be identical and the solicitation components are uncorrelated. Then, a rule where the spectra have the same shape (i.e. they are equal up to a multiplicative constant) is presented in [START_REF] Wilson | A clarification of the orthogonal effects in a three-dimensional seismic analysis[END_REF]. The correlation are taken into account in [START_REF] Smeby | Modal Combination rules for multicomponent earthquake excitation[END_REF] where the spectra are supposed to have the same shape. A general rule with different spectra shapes and considering the correlations is given in [START_REF] Lopez | The critical angle of seismic incidence and the maximum structural response[END_REF]. Finally, the equations of [START_REF] Lopez | The critical angle of seismic incidence and the maximum structural response[END_REF] are reused in [START_REF] Menun | A replacement for the 30%, 40%, and SRSS Rules for Multicomponent Seismic Analysis[END_REF] with identical spectra shapes, the resulting formulation is called CQC3. This last work has been reformulating in [START_REF] Lopez | Critical response of structures to multicomponent earthquake excitation[END_REF] in order to avoid the evaluation of the critical orientation which implies lot of calculations.

The works cited previously essentially focus on structures under seismic solicitations. This article concerns the specific application of a substructure, such as equipment, which is anchored to a main structure subject to a vibrational solicitation. This solicitation could be seismic or induced by a plane crash. This application implies that the solicitations at the anchorages have different spectra shapes along the three directions and can present significant correlations between all directions (especially for vibrations induced by plane crash). Therefore, the suggested simplification of the GCQC3 rule [START_REF] Hernandez | Response to three-component seismic motion of arbitrary direction[END_REF][START_REF] Anastassiadis | Directions sismiques défavorables et combinaisons défavorables des efforts[END_REF] are not appropriate. Another particularity of this application is that the solicitations are determined with a time-history numerical model of the main structure. This point allows for reformulating the GCQC3 rule without performing simplifications by introducing the instantaneous correlations between the pairs of directions. Indeed, in practical application, it is straightforward to obtain these correlations by post-processing. The main result of this work is the establishment of an alternative formulation of the GCQC3 rule depending only on these instantaneous correlations. As a consequence, the resulting rule is quite easy to apply which is mandatory in the nuclear industry. For example, for sizing at plane crash, several thousand tests based on RSM have to be performed on substructures anchored to the main structures. Finally, the suggested reformulation allows to easily adapt the elliptical response envelopes formulae. The reader is referred to [START_REF] Erlicher | Seismic design by the response spectrum method: a new interpretation of elliptical response envelopes and a novel equivalent static method based on probable linear combinations of modes[END_REF][START_REF] Chu | Spectral treatment of actions of three earthquake components on structures[END_REF][START_REF] Gupta | Design of column sections subjected to three components of earthquake[END_REF][START_REF] Menun | Envelopes for seismic response vectors: I. theory[END_REF][START_REF] Menun | Envelopes for seismic response vectors: I I. Application[END_REF] for more detail about this approach. It allows to work with signed simultaneous responses for the design. More precisely, under the assumptions considered for the response spectrum method, the responses of interest belong to an interaction hyper-ellipsoid which has a closed-form expression. Then, by bounding the hyper-ellipsoid with a polytope, one can deduce concomitant responses which enfolds with high probability all possible responses. As for the Square Root of Sum of Squares (SRSS), the 40% and the 30% rules, the elliptical envelopes make the assumption of uncorrelated excitation components (by using a rotation of directions if necessary). This article generalizes this method by introducing the instantaneous correlations between the components.

3.

Response to three-dimensional excitations

Temporal response of a linear structures

The equations of relative motion for a linear multi-degree-of-freedom structure subject to a three-dimensional excitation 𝑺 ̈ can be written as:

𝑴𝑼 ̈+ 𝑪𝑼 ̇+ 𝑲𝑼 = -𝑴𝑶𝑨,
where 𝑴, 𝑪 and 𝑲 respectively are the mass, damping and stiffness matrices, 𝑼 is the vector of nodal displacements, 𝑨 = (𝐴 𝑥 (𝑡) 𝐴 𝑦 (𝑡) 𝐴 𝑧 (𝑡)) 𝑇 is the vector of accelerations exciting the structure and 𝑶 = ( 𝑶 𝒙 𝑶 𝒚 𝑶 𝒛 ) 𝑇 is the matrix coupling the degrees of freedom of the structure to the excitation motion. Let us introduce the matrix 𝝓 containing the eigenmodes of the eigenvalue equation (𝑲 -𝑴𝜔 2 )𝜙 = 0 and let us suppose that (𝝓 𝑻 𝑴𝝓) -1 𝝓 𝑻 𝑲𝝓 is diagonal. Then, using the transformation 𝑼 = 𝝓𝒒, the 𝑖th uncoupled eigenmode motion equation is:

𝑞 𝑖 ̈+ 2𝜉 𝑖 𝜔 𝑖 𝑞 𝑖 ̇+ 𝜔 𝑖 2 = -𝒑 𝒊 𝑨,
where 𝒑 𝒊 = 𝝓 𝑖 𝑇 𝑴𝑶/(𝝓 𝑖 𝑇 𝑴𝝓 𝑖 ) is the vector of participation factors for mode 𝑖, 𝝓 𝑖 is the 𝑖th column of 𝝓, 𝜔 𝑖 is its natural pulsation of mode 𝑖 and 𝜉 𝑖 is its damping ratio.

Consider a response of interest 𝑅(𝑡) that can be written as a linear combination of the nodal displacements, i.e. it has the form 𝑅(𝑡) = 𝒅 𝑇 𝑼. For a linear structure, responses can be forces, strains, stresses, nodal forces or loads. Then, using a mode superposition approach, 𝑅(𝑡) can be written as:

𝑅(𝑡) = ∑ ∑ 𝑆 𝑖,𝑘 (𝑡)𝑅 𝑖,𝑘 , 𝑛 𝑖 𝑘=𝑥,𝑦,𝑧
where 𝑛 is the number of eigenmodes, 𝑅 𝑖,𝑘 = (𝝓 𝑖 𝑇 𝑴𝑶 𝒌 /(𝝓 𝑖 𝑇 𝑴𝝓 𝑖 ))𝒅 𝑇 𝝓 𝑖 is the modal response weighted by its participation factor and 𝑆 𝑖,𝑘 (𝑡) is the response of an 1dof oscillator of pulsation 𝜔 𝑖 and damping ratio 𝜉 𝑖 to the excitation 𝐴 𝑘 (𝑡).

Response Power Spectral Density for correlated excitation components

Similarly to [START_REF] Kiureghian | On response of structures to stationary excitation[END_REF][START_REF] Kiureghian | A response spectrum method for random vibrations[END_REF] the excitation 𝑨 is supposed to be a zero-mean stationary random process. Nevertheless, the components of 𝑨 are not anymore considered as independent. Therefore, one cannot consider them separately as in [START_REF] Kiureghian | On response of structures to stationary excitation[END_REF][START_REF] Kiureghian | A response spectrum method for random vibrations[END_REF]. According to the multivariate Bochner's Theorem [START_REF] Gikhman | The theory of stochastic processes I[END_REF], the Power Spectral Density (PSD) of a multivariate stationary random process has the following form:

𝐺 𝑨 (𝜔) = ( 𝐺 𝐴 𝑥𝑥 (𝜔) 𝐺 𝐴 𝑥𝑦 (𝜔) 𝐺 𝐴 𝑥𝑧 (𝜔) 𝐺 𝐴 𝑥𝑦 (𝜔) 𝐺 𝐴 𝑦𝑦 (𝜔) 𝐺 𝐴 𝑦𝑧 (𝜔) 𝐺 𝐴 𝑥𝑧 (𝜔) 𝐺 𝐴 𝑦𝑧 (𝜔) 𝐺 𝐴 𝑧𝑧 (𝜔) ),
where ∀𝜔, 𝐺 𝐴 (𝜔) is nonnegative definite. In practice, this property needs to be verified a posteriori. Then, by the means of linearity, the power spectral density of the response is: where * stands for the complex conjugate and 𝐻 𝑖 (𝜔) is the complex frequency response function of a 1dof oscillator with damping ratio 𝜉 𝑖 and pulsation 𝜔 𝑖 :

𝐺 𝑅 (𝜔) = ∑ ∑ ∑ ∑
𝐻 𝑖 (𝜔) = 1 𝜔 𝑖 2 -𝜔 2 + 2𝑖𝜉 𝑖 𝜔 𝑖 𝜔 .
It can be emphasized that 𝐺 𝑅 (𝜔) is a natural generalization of the single excitation component case presented in [START_REF] Kiureghian | On response of structures to stationary excitation[END_REF][START_REF] Kiureghian | A response spectrum method for random vibrations[END_REF]. The 𝑚-order spectral moment of the response is: The term 𝜆 0,𝑖𝑗,𝑘𝑙 represents the covariance between 𝑆 𝑖,𝑘 (𝑡) and 𝑆 𝑗,𝑙 (𝑡) and 𝜆 2,𝑖𝑗,𝑘𝑙 represents the covariance between 𝑆 ̇𝑖,𝑘 (𝑡) and 𝑆 ̇𝑗,𝑙 (𝑡) [START_REF] Kiureghian | On response of structures to stationary excitation[END_REF][START_REF] Kiureghian | A response spectrum method for random vibrations[END_REF]. Therefore, the correlation between 𝑆 𝑖,𝑘 (𝑡) and 𝑆 𝑗,𝑙 (𝑡) writes:

𝜆 𝑚 = ∫ 𝜔 𝑚 𝐺 𝑅 (𝜔)𝑑𝜔 = ∑ ∑ ∑ ∑ 𝑅 𝑖,
𝜌 𝑖𝑗,𝑘𝑙 = 𝜆 0,𝑖𝑗,𝑘𝑙 √ 𝜆 0,𝑖𝑖,𝑘𝑘 𝜆 0,𝑗𝑗,𝑙𝑙 .

Then, the mean square of the response 𝑅(𝑡) can be written as follows: According to [START_REF] Kiureghian | A response spectrum method for random vibrations[END_REF] the mean of the peak response over a duration 𝜏 is given by:

𝜆 0 = ∑ ∑ ∑ ∑
𝐹 ̅ 𝑚𝑎𝑥 = 𝑝√𝜆 0 ,
where 𝑝 is a peak factor depending on the duration 𝜏, the mean zero-crossing rate and a shape factor for the response PSD [START_REF] Kiureghian | A response spectrum method for random vibrations[END_REF]. An estimate value of 𝑝 is given in Equation ( 16) in [START_REF] Kiureghian | A response spectrum method for random vibrations[END_REF]. Similarly to the response 𝑅(𝑡), the mean value of the maximum absolute response of a 1dof oscillator of pulsation 𝜔 𝑖 and damping ratio 𝜉 𝑖 to the excitation 𝐴 𝑘 (𝑡) writes:

𝑆 ̅ 𝑖,𝑘 = 𝐸 [max t |𝑆 𝑖,𝑘 (𝑡)|] = 𝑝 𝑖,𝑘 √𝜆 0,𝑖𝑖,𝑘𝑘 ,
where 𝑝 𝑖,𝑘 is given in Equation ( 16) in [START_REF] Kiureghian | A response spectrum method for random vibrations[END_REF] To obtain an estimate of 𝐹 ̅ 𝑚𝑎𝑥 , the expected maximum value of 𝑆 ̅ 𝑖,𝑘 is substituted by its observed maximal value max 𝑡 | 𝑆 𝑖,𝑘 (𝑡)|. Moreover, it is shown in [START_REF] Kiureghian | A response spectrum method for random vibrations[END_REF] that the ratio 𝑝 𝑝 𝑖,𝑘 ⁄ is around unity. Their argument is based on the slight dependency of the peak factor to the shape factor and on the fact that the response mean zero-crossing rate is a weighted root-mean-square of the mean zero-crossing rates 𝜈 𝑖,𝑘 . From these points, the mean of the peak response value can be approximated by:

𝐹 𝑚𝑎𝑥 = √ ∑ ∑ ∑ ∑ 𝐹 𝑖,𝑘 𝐹 𝑗,𝑙 𝜌 𝑖𝑗,𝑘𝑙 𝑛 𝑗=1 𝑛 𝑖=1 , 𝑙=𝑥,𝑦,𝑧 𝑘=𝑥,𝑦,𝑧
where 𝐹 𝑖,𝑘 is the peak modal response :

𝐹 𝑖,𝑘 = max 𝑡 | 𝑆 𝑖,𝑘 (𝑡)| × 𝑅 𝑖,𝑘 .
We emphasize that the approximation 𝑝 𝑝 𝑖,𝑘 ⁄ ≈ 1 can be avoided by using Equations ( 14)-( 18), ( 21) and ( 22) in [START_REF] Kiureghian | A response spectrum method for random vibrations[END_REF].

4.

Generalized CQC rule for correlated excitation components

Three-components stationary random excitation

A general closed-form expression is given in Section 3 for the response PSD of a structure enduring a multivariate stationary random excitation. By analogy with [START_REF] Kiureghian | On response of structures to stationary excitation[END_REF][START_REF] Kiureghian | A response spectrum method for random vibrations[END_REF], we suppose a particular probabilistic form for 𝑨. In particular, the following expression is considered for its PSD: ),

𝐺 𝑨 (𝜔) = 𝐺(𝜔
where 𝐺(𝜔) is the PSD a stationary random process, 𝜌 ̃𝑘,𝑙 is the instantaneous correlation between 𝐴 𝑘 (𝑡) and 𝐴 𝑙 (𝑡) and 𝛾 𝑘 2 is the second-order moment of 𝐴 𝑘 (𝑡). From a practical point of view, 𝛾 𝑘 2 is related to the magnitude of the excitation component 𝑘 and 𝜌 ̃𝑘,𝑙 has to be estimated statistically (instantaneous correlation means that no lag is introduced between the excitation components). The nonnegativity of 𝐺 𝑨 (𝜔) can be verified by evaluating the determinant of the right-hand term matrix. The response DSP is: 

𝐺 𝑅 (𝜔) = ∑ ∑ 𝜌 ̃𝑘,

Generalized CQC rule (GCQC3)

In the expression of 𝐺 𝑨 (𝜔), we consider a unique PSD 𝐺(𝜔) for all margins. It means that the excitation components have the same probabilistic form. As in [START_REF] Kiureghian | On response of structures to stationary excitation[END_REF][START_REF] Kiureghian | A response spectrum method for random vibrations[END_REF], we consider a white noise excitation. It corresponds to the following DSP:

𝐺(𝜔) = 𝐺 0 ,
where 𝐺 0 is a constant. Since the magnitude of the DSP is already taken into account through the coefficient 𝛾 𝑘 , we set 𝐺 0 = 1. In this framework, the covariance between 𝑆 𝑖,𝑘 (𝑡) and 𝑆 𝑗,𝑙 (𝑡) has the following expression [START_REF] Kiureghian | On response of structures to stationary excitation[END_REF][START_REF] Kiureghian | A response spectrum method for random vibrations[END_REF]: ). The expression of 𝐹 𝑚𝑎𝑥 provides a generalization of the CQC ruledenoted GCQC3 -when excitation components are correlated.

𝜆 0,

Discussions about the GCQC3 rule

As presented in Subsection 4.2, one can obtain the peak response value of a quantity of interest by considering the following combination rule:

√ ∑ ∑ ∑ 𝜌 𝑖,𝑗 𝜌 ̃𝑘,𝑙 𝐹 𝑖,𝑘 𝐹 𝑗,𝑙 𝑛 𝑖,𝑗=1
.

𝑙=𝑥,𝑦,𝑧 𝑘=𝑥,𝑦,𝑧 Contrary to the SRSS, the Newmark 30-100-100 and the Newmark 40-100-100 rules, it requires to perform the modal and the direction combinations simultaneously. However, the peak modal responses (𝐹 𝑖,𝑘 ) 𝑘=𝑥,𝑦,𝑧 𝑖=1,…,𝑛 are those already evaluated when using classical modal and direction combinations. Therefore, this generalized rule only requires in addition the evaluation of the correlation coefficients 𝜌 ̃𝑘,𝑙 . Moreover, the independent case corresponds to 𝜌 ̃𝑘,𝑙 = 𝛿 𝑘=𝑙 where 𝛿 is the delta of Kroenecker. This assumption leads to the following rule: Then, using the triangle inequality the following inequality holds: 𝐹 𝑚𝑎𝑥 ≤ √𝐹 𝑥,𝑥 + 𝐹 𝑦,𝑦 + 𝐹 𝑧,𝑧 + 2|𝜌 ̃𝑥,𝑦 |√𝐹 𝑥,𝑥 √𝐹 𝑦,𝑦 + 2|𝜌 ̃𝑦,𝑧 |√𝐹 𝑦,𝑦 √𝐹 𝑧,𝑧 + 2|𝜌 ̃𝑥,𝑧 |√𝐹 𝑥,𝑥 √𝐹 𝑧,𝑧 .

√ ∑ ∑ ∑ 𝜌 𝑖,
As a consequence, when the instantaneous correlations are unknown, an upper bound for the response can be provided.

5.

GCQC3 method for elliptical response envelopes

As for the SRSS, Newmark 30-100-100 and Newmark 40-100-100 rules, the GCQC3 is valid for a single response [START_REF] Nie | On the correct application of the 100-40-40 rule for combining responses due to three directions of earthquake loading[END_REF]. As state in [START_REF] Nie | On the correct application of the 100-40-40 rule for combining responses due to three directions of earthquake loading[END_REF], to deal with multiple response, SRSS, 30%, 40% and GCQC3 rules can be performed for each response and then all combinations of maximum responses have to be considered. This can lead to strong overestimates. The elliptical response envelopes method can be used to avoid them. It allows to work with concomitant responses by considering their cross-correlation [START_REF] Erlicher | Seismic design by the response spectrum method: a new interpretation of elliptical response envelopes and a novel equivalent static method based on probable linear combinations of modes[END_REF]. Like the classical rules, it considers uncorrelated excitation components by arguing that there are principal directions leading to un-correlation. However, it could be difficult in practice to work with rotated directions. To address this issue, the elliptical response envelopes is re-written by integrating excitation component correlations.

First of all, let us consider a multiple-response 𝑹(𝑡) = (𝑅 1 (𝑡) ⋯ 𝑅 𝑝 (𝑡)) 𝑇 with 𝑝 components and 𝑅 𝑚 (𝑡) = 𝒅 𝒎 𝑇 𝑼. It can be written [START_REF] Erlicher | Seismic design by the response spectrum method: a new interpretation of elliptical response envelopes and a novel equivalent static method based on probable linear combinations of modes[END_REF]: For 𝑝 = 1, this is equivalent to the equation of 𝑅(𝑡) in Subsection 3.1. From the GCQC3 method, we have the flowing inequality: As demonstrated in [START_REF] Erlicher | Seismic design by the response spectrum method: a new interpretation of elliptical response envelopes and a novel equivalent static method based on probable linear combinations of modes[END_REF], 𝜶(𝒕) must fulfills the following inequality:

𝑹(𝑡) = ∑ ∑ 𝛼 𝑖,𝑘 ( 
|𝑅 𝑚 (𝑡)| = |𝑭 𝑚 𝑇 𝜶(𝑡)| ≤ 𝐹 𝑚 𝑚𝑎𝑥 = √ ∑ ∑ ∑ 𝜌 𝑖,
𝜶(𝑡) 𝑇 𝑯 -1 𝜶(𝑡) ≤ 1,
which means that 𝜶(𝒕) belong to an hyper-ellipsoid of dimension 3𝑛. Therefore, 𝛼(𝑡) verifies:

{ 𝑹(𝑡) = 𝑭 𝑇 𝜶(𝑡) 𝜶(𝑡) 𝑇 𝑯 -1 𝜶(𝑡) ≤ 1 .

To obtain a unique value for 𝜶(𝒕), the one minimizing the quadratic form 𝜶(𝒕) 𝑻 𝑯 -1 𝜶(𝒕) is considered [START_REF] Erlicher | Seismic design by the response spectrum method: a new interpretation of elliptical response envelopes and a novel equivalent static method based on probable linear combinations of modes[END_REF]. It leads to the following closed-form expression:

𝜶 𝑚𝑖𝑛 (𝑡) = 𝑯𝑭(𝑭 𝑇 𝑯𝑭) -1 𝑹(𝑡).

Integrating the value of 𝜶 𝑚𝑖𝑛 (𝑡) into 𝜶(𝑡) 𝑇 𝑯 -1 𝜶(𝑡) ≤ 1, we obtain the inequality:

𝑹 𝑇 (𝑡)(𝑭 𝑇 𝑯𝑭) -1 𝑹(𝑡) ≤ 1,
which implies that the multiple response 𝑹(𝑡) belongs to an hyper-ellipsoid of dimension 𝑝. It is so-called the elliptical response envelopes. From it, we can deduce a set of concomitant responses. In practice, they are deduced from the vertices of a polytope bounding the elliptical response envelopes.

GCQC3 with rigid mode

To take into account the missing mass due to the projection 𝑼 = 𝝓𝒒, an additional mode called "rigid mode" or "pseudo-mode" is often considered. It assumes that the dynamic amplification of the modes with frequency larger than the one of the Zero-Period Acceleration 𝜉 𝑍𝑃𝐴 is negligible. Then, the response becomes: 

Example

Let us consider an embedded structure composed of three beams and four nodes. The structure and its eigenmodes are illustrated in Figure 1. The node N3 in Figure 1 has a punctual mass of 10kg and the masses of the others nodes and beams are null. The structure is embedded at node N0, the beam lengths equal 1m and they have square sections with length 3cm and thickness 5mm. The Young's modulus of the beams is 200GPa and their Poisson coefficient is 0.3. Furthermore, the degrees of freedom along the Y axis are blocked as well as the rotations around the X and Z axes. The structure has two modes presented in Figure 1 that take into account the whole mass. The frequencies, the participation factors and the modal masses are presented in Table 1.

For the participation factors, the eigenmodes are normalized such that the largest translation value equals one. Moreover, the modal dumping is the same for the two modes and equals 𝜉 = 5%. The excitations along the X and Z directions have the following form:

𝐴(𝑡) = Γ(𝑡)𝑌(𝑡),
where Γ(𝑡) is the Gamma modulation function defined by:

Γ(𝑡) = 𝛼 𝑡 𝛽-1 exp(𝛾𝑡),
and 𝑌(𝑡) is a zero-mean stationary Gaussian process with an exponential covariance function:

𝑘(ℎ) = σ 2 exp (- |ℎ| 𝜃 ).
The coefficients of the excitation model are given in Table 2.

Table 2. Model coefficients for the excitation. 

8.

Conclusion

This article presents a reformulation of the GCQC3 rule when vibrations along each direction are correlated, spectra have different shapes and without any simplifications. Such a rule is necessary in the nuclear industry, for example to size substructures subject to vibrations induced by a plane crash. Furthermore, the reformulation is also required since the general GCQC3 rule without simplifications implies lot of calculations which are difficult to achieve in an industrial context. The obtained GCQC3 rule only requires the evaluation of the instantaneous correlations between excitation components and the peak modal responses. Therefore, its implementation is as easy as the one of the classic rules (SRSS, 40%, 30%). Furthermore, this rule can be adapted for the elliptical response envelopes method which allows to consider concomitant responses. Finally, the efficiency of the GCQC3 rule has been illustrated in a numerical example. It emphasizes that it allows to fit the maximum responses of a time-history analysis even in presence of correlations. Furthermore, a good consistency between the time-history responses and the elliptical response envelopes is also observed.

9.

  𝑘 𝑅 𝑗,𝑙 𝜆 𝑚,𝑖𝑗,𝜆 𝑚,𝑖𝑗,𝑘𝑙 = 𝑅𝑒 [∫ 𝜔 𝑚 𝐺 𝐴 𝑘𝑙 (𝜔) ∞ 0 𝐻 𝑖 (𝜔)𝐻 𝑗 * (𝜔)𝑑𝜔].

  𝑗 𝛿 𝑘=𝑙 𝐹 𝑖,𝑘 𝐹 𝑗,𝑙 𝑛 𝑖,𝑗=1 𝑙=𝑥,𝑦,𝑧 𝑘=𝑥,𝑦,𝑧 = √ ∑ ∑ 𝜌 𝑖,𝑗 𝐹 𝑖,𝑘 𝐹 𝑗,𝑙 𝑛 𝑖,𝑗=1 𝑘=𝑥,𝑦,𝑧 , which is exactly the classical SRSS rule. Introducing the notation: 𝐹 𝑘,𝑙 = ∑ 𝜌 𝑖,𝑗 𝐹 𝑖,𝑘 𝐹 𝑗,𝑙 𝑛 𝑖,𝑗=1 , we can explicit the GCQC3: (𝐹 𝑚𝑎𝑥 ) 2 = ∑ ∑ 𝜌 ̃𝑘,𝑙 𝐹 𝑘,𝑙 𝑙=𝑥,𝑦,𝑧 𝑘=𝑥,𝑦,𝑧 = ∑ 𝐹 𝑘,𝑘 𝑘=𝑥,𝑦,𝑧 + 2𝜌 ̃𝑥,𝑦 𝐹 𝑥,𝑦 + 2𝜌 ̃𝑦,𝑧 𝐹 𝑦,𝑧 + 2𝜌 ̃𝑥,𝑧 𝐹 𝑥,𝑧 , where 𝐹 𝑘,𝑘 is the square of the classical direction response deduced from a CQC rule. Finally, if only the classical CQC responses are available, one can deduce an upper bound to 𝐹 𝑚𝑎𝑥 . Indeed, the Cauchy-Schwarz inequality implies: ∑ ∑ |𝜌 ̃𝑘,𝑙 𝐹 𝑘,𝑙 | 𝑙=𝑥,𝑦,𝑧 𝑘=𝑥,𝑦,𝑧 ≤ ∑ ∑ |𝜌 ̃𝑘,𝑙 |√ ∑ 𝜌 𝑖,𝑗 𝐹 𝑖,𝑘 𝐹 𝑗,𝑘 𝑛 𝑖,𝑗=1 𝑙=𝑥,𝑦,𝑧 𝑘=𝑥,𝑦,𝑧 √ ∑ 𝜌 𝑖,𝑗 𝐹 𝑖,𝑙 𝐹 𝑗,𝑙 𝑛 𝑖,𝑗=1.

  𝑡)𝑭 𝑖,𝑘 𝑛 𝑖 , 𝑘=𝑥,𝑦,𝑧 where -1 ≤ 𝛼 𝑖,𝑘 (𝑡) ≤ 1, 𝑭 𝑖,𝑘 = ( 𝐹 1,𝑖,𝑘 = max 𝑡 | 𝑆 𝑖,𝑘 (𝑡)| × 𝑅 1,𝑖,𝑘 ⋮ 𝐹 𝑝,𝑖,𝑘 = max 𝑡 | 𝑆 𝑖,𝑘 (𝑡)| × 𝑅 𝑝,𝑖,𝑘 ), and 𝑅 𝑚,𝑖,𝑘 = (𝝓 𝑖 𝑇 𝑴𝑶 𝒌 /(𝝓 𝑖 𝑇 𝑴𝝓 𝑖 ))𝒅 𝒎 𝑇 𝝓 𝑖 . The multiple-response can be written in the following form: 𝑹(𝑡) = 𝑭 𝑇 𝜶(𝑡), with 𝑭 = (𝑭 1 ⋯ 𝑭 𝑝 ), 𝑭 𝑚 = ([𝐹 𝑚,𝑖,𝑥 ] 𝑇 𝑖=1,…,𝑛 [𝐹 𝑚,𝑖,𝑦 ] 𝑇 𝑖=1,…,𝑛 [𝐹 𝑚,𝑖,𝑧 ] 𝑇 𝑖=1,…,𝑛 ) 𝑇 , and 𝜶(𝑡) = ([𝛼 𝑖,𝑥 (𝑡)] 𝑇 𝑖=1,…,𝑛 [𝛼 𝑖,𝑦 (𝑡)] 𝑇 𝑖=1,…,𝑛 [𝛼 𝑖,𝑧 (𝑡)] 𝑇 𝑖=1,…,𝑛 ) 𝑇 .

  𝑅(𝑡) = ∑ 𝐴 𝑘 (𝑡)𝑅 𝑛+1,𝑘 + ∑ 𝑆 𝑖,𝑘 (𝑡)𝑅 𝑖,𝑘 𝑛 𝑖 𝑘=𝑥,𝑦,𝑧 = ∑ 𝑆 𝑖,𝑘 (𝑡)𝑅 𝑖,𝑘 𝑛+1 𝑖 , where 𝑅 𝑛+1,𝑘 = 𝑲 -1 𝑴𝝓 𝑅,𝑘 , 𝝓 𝑅,𝑘 = 𝑶 𝒌 -∑ 𝑅 𝑖,𝑘 𝑛 𝑖=1is the rigid mode and 𝑆 𝑛+1,𝑘 (𝑡) = 𝐴 𝑘 (𝑡) is the ground acceleration for direction 𝑘. Then, considering the following correlations: 𝑐𝑜𝑟 (𝑆 𝑛+1,𝑘 (𝑡), 𝑆 𝑗,𝑘 (𝑡)) = 𝛿 𝑗=𝑛+1 , 𝑐𝑜𝑟 (𝑆 𝑛+1,𝑘 (𝑡), 𝑆 𝑛+1,𝑙 (𝑡)) = 𝜌 ̃𝑘,𝑙 , and using the notation 𝜌 𝑛+1,𝑗 = 𝛿 𝑗=𝑛+1 , taking into account the rigid mode is straightforward : 𝐹 𝑚𝑎𝑥 = √ ∑ ∑ ∑ 𝜌 𝑖,𝑗 𝜌 ̃𝑘,𝑙 𝐹 𝑖,𝑘 𝐹 𝑗,

Figure 1 .

 1 Figure 1. Eigenmodes of the structure.

Table 1 .

 1 Modal frequencies, participation factors and masses.

𝛼 1/ 6 Figure 3 .

 63 Figure 3. Maximum displacements with respect to the excitation component correlations.Finally, we present in the series of figures in Figure4, the results of the elliptical response envelopes method with the GCQC3 rule for displacements along the X and Z directions. The black points in Figure4represent the values of the time-history simulations. For each correlation value, the solid lines represent the elliptical envelopes for the 200 excitations and the dashed line is the mean of these envelopes. Figure4highlights the good behavior of the GCQC3 rule since the elliptical envelopes fit the cloud of concomitant responses obtained with the time-history analysis.

Figure 4 .

 4 Figure 4. GCQC3 elliptical response envelopes for different component correlations.

  

  

  

  𝐺 𝐴 𝑘𝑙 (𝜔)𝑅 𝑖,𝑘 𝑅 𝑗,𝑙

			𝑛	𝑛
				𝐻 𝑖 (𝜔)𝐻 𝑗 * (𝜔),
	𝑘=𝑥,𝑦,𝑧	𝑙=𝑥,𝑦,𝑧	𝑖=1	𝑗=1

  𝑅 𝑖,𝑘 𝑅 𝑗,𝑙 𝜌 𝑖𝑗,𝑘𝑙 √𝜆 0,𝑖𝑖,𝑘𝑘 𝜆 0,𝑗𝑗,𝑙𝑙

			𝑛	𝑛
				,
	𝑘=𝑥,𝑦,𝑧	𝑙=𝑥,𝑦,𝑧	𝑖=1	𝑗=1

  with the mean zero-crossing rate 𝜈 𝑖,𝑘 = √

				𝜆 2,𝑖𝑖,𝑘𝑘
				𝜆 0,𝑖𝑖,𝑘𝑘
	𝐹 ̅ 𝑚𝑎𝑥 = √ ∑ ∑ ∑ ∑ 𝑛 𝑛 𝑗=1 𝑖=1 𝑙=𝑥,𝑦,𝑧 𝑘=𝑥,𝑦,𝑧	𝑝 2 𝑝 𝑖,𝑘 𝑝 𝑗,𝑙	𝑅 𝑖,𝑘 𝑅 𝑗,𝑙 𝜌 𝑖𝑗,𝑘𝑙 𝑆 ̅ 𝑖,𝑘 𝑆 ̅ 𝑗,𝑙	.

/𝜋 and the response PSD shape factor 𝛿 𝑖,𝑘 = √1 -

𝜆 1,𝑖𝑖,𝑘𝑘 2 𝜆 2,𝑖𝑖,𝑘𝑘 𝜆 0,𝑖𝑖,𝑘𝑘

. Using the expression of the expected maximum value 𝑆 ̅ 𝑖,𝑘 , the mean of the peak response can be expressed as follows:

  𝑙 𝛾 𝑘 𝛾 𝑙 ∑ ∑ 𝐺(𝜔)𝑅 𝑖,𝑘 𝑅 𝑗,𝑙 the covariance between 𝑆 𝑖,𝑘 (𝑡) and 𝑆 𝑗,𝑙 (𝑡) writes: 𝜆 0,𝑖𝑗,𝑘𝑙 = 𝛾 𝑘 𝛾 𝑙 𝜌 ̃𝑘,𝑙 𝑅𝑒 [∫ 𝐺(𝜔) 

			𝑛	𝑛
				𝐻 𝑖 (𝜔)𝐻 𝑗 * (𝜔),
	𝑘=𝑥,𝑦,𝑧	𝑙=𝑥,𝑦,𝑧	𝑖=1	𝑗=1
			∞ 0	𝐻 𝑖 (𝜔)𝐻 𝑗

and * (𝜔)𝑑𝜔].

  𝜉 𝑗 𝜉 𝑖 𝜔 𝑖 𝜔 𝑗 (𝜉 𝑖 𝜔 𝑖 + 𝜉 𝑗 𝜔 𝑗 )𝜔 𝑖 𝜔 𝑗

		𝑖𝑗,𝑘𝑙 = 𝛾 𝑘 𝛾 𝑙 𝜌 ̃𝑘,𝑙	2𝜋 2 + 𝜔 𝑗 2 + 4𝜉 𝑖 𝜉 𝑗 (𝜔 𝑖 2 ) 2 -𝜔 𝑗 (𝜔 𝑖 2 ) + 4(𝜉 𝑖 2 + 𝜉 𝑗 2 )𝜔 𝑖 2 𝜔 𝑗 2	(𝜉 𝑖 𝜔 𝑖 + 𝜉 𝑗 𝜔 𝑗 ),
	and their correlation is:	
		𝜌 𝑖𝑗,𝑘𝑙 = 𝜌 ̃𝑘,𝑙	8 √ (𝜔 𝑖 2 -𝜔 𝑗 2 ) 2 + 4𝜉 𝑖 𝜉 𝑗 (𝜔 𝑖 2 + 𝜔 𝑗 2 ) + 4(𝜉 𝑖 2 + 𝜉 𝑗 2 )𝜔 𝑖 2 𝜔 𝑗 2	= 𝜌 ̃𝑘,𝑙 𝜌 𝑖𝑗 .
	According to Subsection 3.2, the mean of the peak response value is:
				𝑛
				𝐹 𝑚𝑎𝑥 = √ ∑ ∑ ∑ 𝜌 𝑖,𝑗 𝜌 ̃𝑘,𝑙 𝐹 𝑖,𝑘 𝐹 𝑗,𝑙	,
				𝑘=𝑥,𝑦,𝑧	𝑙=𝑥,𝑦,𝑧	𝑖,𝑗=1
	For the single component case, we retrieve the classical CQC given in [4,5] (i.e. 𝐹 𝑚𝑎𝑥 =
	√ ∑ 𝑛 𝑖,𝑗=1	𝜌 𝑖,𝑗 𝐹 𝑖,𝑘 𝐹 𝑗,𝑘	

  𝑗 𝜌 ̃𝑘,𝑙 𝐹 𝑚,𝑖,𝑘 𝐹 𝑚,𝑗,𝑙

					𝑛
						= √𝑭 𝑚 𝑇 𝑯𝑭 𝑚 ,
		𝑘=𝑥,𝑦,𝑧	𝑙=𝑥,𝑦,𝑧	𝑖,𝑗=1
	Where:				
		[𝜌 𝑖,𝑗 ] 𝑖,𝑗=1,…,𝑛	[𝜌 ̃𝑥,𝑦 𝜌 𝑖,𝑗 ] 𝑖,𝑗=1,…,𝑛 [𝜌 ̃𝑥,𝑧 𝜌 𝑖,𝑗 ] 𝑖,𝑗=1,…,𝑛
	𝑯 =	[𝜌 ̃𝑥,𝑦 𝜌 𝑖,𝑗 ] 𝑖,𝑗=1,…,𝑛	[𝜌 𝑖,𝑗 ] 𝑖,𝑗=1,…,𝑛	[𝜌 ̃𝑦,𝑧 𝜌 𝑖,𝑗 ] 𝑖,𝑗=1,…,𝑛	.
	(	[𝜌 ̃𝑥,𝑧 𝜌 𝑖,𝑗 ] 𝑖,𝑗=1,…,𝑛 [𝜌 ̃𝑦,𝑧 𝜌 𝑖,𝑗 ] 𝑖,𝑗=1,…,𝑛	[𝜌 𝑖,𝑗 ] 𝑖,𝑗=1,…,𝑛 )

The correlation between the excitation components is driven by the correlation between the Gaussian processes 𝑌(𝑡) for each direction X and Z. Examples of excitations for instantaneous correlations of 0.8 and -0.6 are presented in Figure 2. Then, the displacements obtained with the response spectrum analysis are compared to the ones obtained with a time-history simulation. To perform the comparison, 200 couples of excitations along the X and Z directions have been generated for each correlation 𝜌 ̃𝑥,𝑧 between -1 and 1. The mean of the maximum displacements with respect to the solicitation correlation is presented in Figure 3. The results in Figure 3 show that the response spectrum method with the GCQC3 rule fits very well the time-history simulation. This emphasizes the efficiency of this rule for taking into account the correlations between the excitation components. Furthermore, Figure 3 confirms that the classical SRSS rule behaves very badly. Indeed, its relative error can be greater than 50%. It is worth to highlight that the SRSS and the GCQC3 rules are equivalent when the correlation coefficient is zero.