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This paper presents an original approach to extract regions of interest in image sequences according to motion information. It relies on motion activity analysis from non-parametric probabilistic models of local motion information. It can handle a wide range of dynamic scenes from rigid motion situations to non-rigid motion types such as articulated motions or temporal deformable entities.

Introduction and related work

The extraction of entities of interest within images w.r.t. motion information is of key interest in applications such as video surveillance [START_REF] Haritaoglu | W ) : Real-time surveillance of people and their activities[END_REF], obstacle detection for vehicle navigation, or contentbased video indexing and retrieval [START_REF] Brunelli | A survey on the automatic indexing of video data[END_REF]. Proposed approaches can be roughly classified into motion detection schemes [START_REF] Irani | Detecting and tracking multiple moving objects using temporal integration[END_REF][START_REF] Odobez | Separation of moving regions from background in an image sequence acquired with a mobile camera[END_REF][START_REF] Paragios | Geodesic active contours and level sets for the detection and tracking of moving objects[END_REF] and motionbased segmentation algorithms [START_REF] Altunbasak | Region-based parametric motion segmentation using color information[END_REF][START_REF] Ayer | Layered representation of motion video using robust maximum-likelihood estimation of mixture models and MDL encoding[END_REF][START_REF] Odobez | Direct incremental model-based image motion segmentation for video analysis[END_REF]. The first ones only determine a binary partition into regions conforming or not to the dominant image motion supposed to be due to the camera motion. The latter ones aim at defining a complete motionbased partition into homogeneous regions usually in terms of 2D parametric motion models.

Motion segmentation methods are known to be computationally expensive. Furthermore, they are likely to divide articulated or deformable objects, or group of objects, into several subregions, since they rely on motion-based homogeneity criteria w.r.t. 2D parametric motion models. Yet, in the context of dynamic scene analysis, the key issue is to extract semantically meaningful entities. Motion detection schemes are usually far less CPU time consuming. However, they cannot hold one group of objects as a whole. In many situations such as ones involving "fluid" or "temporal texture" configurations (e.g., fluttering leaves, sea waves, torrents,...), or comprising groups of motion entities (e.g., players in sport videos) (see Figure 1), regions of interest do not consist of one single object. To handle these kinds of dynamic contents, it is not relevant to exploit 3D models or 2D parametric motion models. Furthermore, using an intensity-based or contourbased approach is also questionable, since explicitly defining boundaries for such entities is not easy. In this paper, we are addressing the extraction of meaningful moving regions within image sequences without any a priori information, on motion types nor on object appearance (texture, shape). We also aim at handling a wide variety of situations from rigid motion to non-rigid motion and temporal texture examples. To this end, we investigate the use of more general characterization of dynamic contents in terms of motion activity [START_REF] Bouthemy | Motion characterization from temporal cooccurrences of local motion-based measures for video indexing[END_REF][START_REF] Fablet | Non parametric motion recognition using temporal multiscale gibbs models[END_REF]. We propose a general statistical framework able to extract entities of interest based on non-parametric motion activity characterization. This simultaneously provides us with self-learned motion models for further analysis in terms of motion recognition or classification. The remainder of this paper is organized as follows.

Section 2 presents the local motion-related measurements considered for non-parametric motion activity modeling. In Section 3, the statistical modeling of motion information and the estimation of these models are addressed. 

Local motion-related measurements

Dominant motion estimation

Since our goal is to characterize the actual dynamic content of the scene, we have first to cancel camera motion. To this end, we estimate the dominant image motion between successive images, and we assume that it is due to camera motion. We then warp the images of the processed sequence to a reference frame.

To model the global transformation between two successive images, we consider a 2D affine motion model (a 2D quadratic model could also be considered). The velocity ¢¡ ¤£ ¥ §¦ , at pixel ¥ , re- lated to the affine motion model parameterized by ¨is given by:
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with ¥ 6 7£ # 98 @' ¦ and ¨ 7A B 9 "! "& C 0) C "2 "3 (D . The six affine motion parameters are computed with the robust gradient-based incremental estimation method described in [START_REF] Odobez | Robust multiresolution estimation of parametric motion models[END_REF]. An important feature of this robust approach is to supply a map of weights 

Local motion-related measurements

We compute the local motion-related measurements in the image sequence Q SR generated by compensating for the estimated dominant image motion. More precisely, we consider a weighted local average of normal flows given by [START_REF] Bouthemy | Motion characterization from temporal cooccurrences of local motion-based measures for video indexing[END_REF][START_REF] Odobez | Separation of moving regions from background in an image sequence acquired with a mobile camera[END_REF]:
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where £ ¥ §¦ is a % window centered on ¥ , ! a predetermined constant related to the noise level (typically, 7 ). i Q hR £ ¥ §¦ and Q "R u £ ¥ §¦ are respec- tively the spatial gradient and the temporal derivative of the intensity function Q SR . The considered motion-related measurement T "U XW `Y a£ ¥ §¦ forms a more reliable quantity than normal flow, while still simply computed from intensity derivatives. It has already been successively used for motion detection [START_REF] Odobez | Separation of moving regions from background in an image sequence acquired with a mobile camera[END_REF], and for motion-based video indexing and retrieval [START_REF] Fablet | Non-parametric motion activity analysis for statistical retrieval with partial query[END_REF][START_REF] Fablet | Statistical motion-based video indexing and retrieval[END_REF].

Statistical motion activity modeling

Temporal Gibbs models of motion activity

To model and characterize motion activity, we exploit the probabilistic framework we previously presented in [START_REF] Fablet | Non parametric motion recognition using temporal multiscale gibbs models[END_REF][START_REF] Fablet | Statistical motion-based video indexing and retrieval[END_REF]. We briefly outline it hereafter. It can be viewed as an extension of texture modeling for grey level images with local motion quantities playing a role similar to grey levels for texture analysis. Since we exploit cooccurrence statistics, we have to deal with motionrelated quantities defined over a finite set. Hence, we have to perform a quantization of the continuous motion measurements within a predefined bounded interval. It will also allow us to compare motion activity models associated to different entities for recognition issues. Another motivation to fix an upper bound is to reject spurious motion measurements.

Let be the discretized range of values for

T VU XW `Y a£ ¥ §¦ , ¡ the time instant of the current image to be processed and ¢ # ¤£ ¦¥ § ¦© the pair of maps of quantized motion-related quantities for the processed video sequence computer over successive images at time instants £ ¡ I r8 ¡ ¦ , and £ ¡ 8 ¡ I ¦ .

Let denote the spatial region of interest in the image ¡ and ¢ # £ 8 @# £ "! the restriction of the pair ¢ # £ "! 8 @# £ # over region $ . We assume that the pair # ¢ # £ 8 @# £ "! is the realization of a first- order Markov chain:
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where 0 refers to the motion activity model.

% '& £ # £ ¦ designates the a priori distribution of # £ . We will consider in practice a uniform law for

% '& £ # £ ¦ .
In this causal modeling framework, we evaluate only temporal interactions, i.e., cooccurrence of two given motion quantities at the same grid point for two successive instants. First, it means that we focus on the temporal evolution of motion content and we can handle certain kinds of temporal non-stationarity. Second, it makes feasible an exact computation of the conditional likelihood % '& £ # ¦ . This is crucial since it will enable to achieve model estimation in an easy way and to define an appropriate similarity measure between motion activity models based on the Kullback-Leibler divergence [START_REF] Basseville | Distance measures for signal processing and pattern recognition[END_REF].

In addition, we consider an equivalent Gibbsian formulation of
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It implies the introduction of potentials 2 3& 54 # £ "! £ ¥ §¦ 8 @# £ £ ¥ §¦ 76 specifying the motion activity model 0 as follows:
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As in [START_REF] Gimel'farb | Texture modeling by multiple pairwise pixel interactions[END_REF][START_REF] Zhu | Filters, random fields and maximum entropy (FRAME) : towards a unified theory for texture modeling[END_REF], a relation can be established between this Gibbsian setting and cooccurrence distributions. The conditional likelihood % '& £ # ¦ can be expressed according to an ex- ponential formulation involving 2 D& FE HG , the dot product between the cooccurrence distribution
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where

d
is the Kronecker symbol. We finally get:
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This modeling scheme can be stated as nonparametric in two ways. On one hand, the statistical model 0 does not refer to a 2D parametric motion model, but expresses in a broad sense the notion of motion activity. On the other hand, ¢ 8 y 9 2 3& £ PI 8 I Q ¦ e SR ¥ R UT f c WV YX is not assumed to fol- low a known parametric law (Gaussian,. . . ).

The availability of the exponential formulation ( 6) presents several interests. First, it makes the computation of the conditional likelihood % g& £ # ¦ , for any sequence # and region , feasible and simple. Second, for classification or recognition issues, the storage of the motion-related quantities # is not required. In fact, all the motion information exploited in our approach is captured by the cooccurrence distribution G .

Maximum likelihood estimation

Given a set of motion-related quantities # h within a region , we have to identify the model i0 specified by its potentials ¢ 2 i & qp £ PI 8 I Q ¦ e SR ¥ R UT f c WV YX which best fits # . We adopt the Maximum Like- lihood (ML) criterion:
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The considered temporal Gibbsian model reduces to a product of t t independent condi- tional transitions from instant ¡ to instant ¡ I , and is specified by the transition matrix
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Therefore, the ML model estimate i0 is readily determined from the em- pirical estimation of the transition probability
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We now describe how we exploit the nonparametric statistical motion modeling described above to extract meaningful entities, comprising pertinent motion activity, in frame ¡ of the processed image sequences. Motion activity properties are learned in an unsupervised way at the level of a group of pixels (elementary blocks or subset of blocks). We initially consider a blockbased partition of the image (typically, ¡ ¡ blocks).

We believe that the loss of accuracy induced by considering small blocks is not a real shortcoming here. First, for cases involving few mobile objects, the interest is mainly to identify pertinent entities and not necessarily to accurately determine their boundaries. Second, this formulation allows us to handle a wider range of motion types compared to other techniques. Besides, this approach will prove far less time consuming than motion-based region segmentation or level-set algorithms.

Let us consider a partition of the image defined by the set of ¢ W ¤£ blocks ¢ ¦¥ ¨ § § c © ¥ ¥ . We further assume that motion activity within each block ¥ ! § is characterized by means of the associated statistical model 0 #" %$ derived from the cooccurrence distribution G " %$ as explained in Section 3.

Statistical similarity measure related to motion activity

Considering two regions and Q (regions and Q can be elementary blocks among .
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We have designed a similarity measure relying on the Kullback-Leibler (KL) divergence [START_REF] Basseville | Distance measures for signal processing and pattern recognition[END_REF]The KL divergence evaluates the distance between two probability distributions as the expectation of their log-ratio. The motion activity similarity measure ' £ 0 8 0 T ¦ is a symmetrical version of the KL divergence:
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where ( v £ 0 g 0 T ¦ denotes the KL diver- gence. It is approximated as [START_REF] Fablet | Statistical motion-based video indexing and retrieval[END_REF]: (10) Since 0 is the ML model estimate asso- ciated with the cooccurrence distribution G , ( v £ 0 g 0 T ¦ is positive and equals 0 if the two statistical distributions are identical. In fact, this ratio quantifies the loss of information occurring when substituting 0 T for 0 to account for motion activity within area .
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Region-level graph labeling

We now present the labeling stage of the blockbased partition of the image, ¢ ¦¥ 1 § § c © ¥ ¥ .

It will be exploited to extract regions of interest comprising significant motion activity as described in the next section. It relies on a Markovian region-level labeling framework applied to the adjacency graph 2 £ 43 8 65 ¦ where 3 is the set of nodes of graph 2 and 5 the set of its arcs. Each node 7 8 § @9 3 holds for block ¥ & § with A B9 ¢ H 8 DC DC DC 8 ¢ W ¤£ , and 5 represents the set of arcs between graph nodes corresponding to connected blocks (in practice, we consider a four-connectivity block neighborhood). Over this graph structure 2 , we define a region-level Markov random field model the sites of which are the nodes of graph 2 . In addition, two-site clique neighborhood system is deduced from the set of arcs 5 .

Let us assume that a set of labels E relative to different motion activity models has been specified. We further consider that to each label F G9 HE is attached the cooccurrence distribution G £ and the associated motion activity model 0 £ . We will more precisely explain in the next subsection how these motion activity models are defined and estimated.

Let us note I ¢ PI RQ $ § c © ¥ ¥ the label field with I RQ $ taking value in E , and S ¢ ¦S PQ $ § c © ¥ ¥ the observation field. In our case, at each node 7 8 § , S PQ $ refers to the motion activity characterization attached to block ¥ ! § , i.e. both cooccurrence distribution G " %$ and motion activity model 0 #" %$ . Adopting the Maximum A Posteriori (MAP) criterion, the Markovian labeling scheme comes to solve for:
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where § £ I 8 S ¦ § ©¨£ I 8 S ¦ § W £ I ¦ , with § ©¨t he data-driven energy term, and § W the regularization term. Both are split in the sum of local potentials and they are defined by: (12) with a parameter tuning the relative importance of the regularization term and 9), and is given by: ¨£ I DQ $ 8 S PQ $ ¦ C 8 y 9 A@ ' 4 0 ¢ $ 8 0 " %$ 6 CB (13) We introduce an exponential form to get values of potential ¨w ithin the range A H 8 PI (D , which en- ables to more easily set the regularization parameter . The minimization issue ( 11) is tackled using the HCF (Highest Confidence First) algorithm [START_REF] Chou | The theory and practice of Bayesian image modeling[END_REF], since the number of nodes of the considered graph is relatively small.
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Separation of entities of interest from static background

We want to separate regions of interest from background. Since we consider image sequences compensated for the estimated dominant image motion assumed to be due to the camera motion, this issue reduces to extract regions which do not conform to the dominant image motion.

In a first step, we determine a binary labeling of the initial block partition of the image in terms of blocks conforming or not to the dominant image motion. As the image segmentation proceeds from motion activity characterization, we have to establish a model corresponding to the static background. Even if we could merely infer an activity model corresponding to zero-value motion measurements, we prefer to explicitly estimate the background model from actual motion-related quantities at points attached to the extracted background, since camera motion cannot be perfectly cancelled. To achieve this, we exploit the map of weights E issued from the robust multiresolution estimation of the affine motion model accounting for the dominant image motion (see Section

2). By thresholding map E , we can roughly de- termine the support associated to the estimated dominant image motion. It is formed by points

¥ satisfying E §F "! $# . Using our statistical motion activity modeling framework, we can estimate the model 0 &% ' attached to the background ( 0) . If

( 1) designates the complementary set of ( 2) (corresponding to the outlier map), we can evaluate in the same way the associated motion activity model 0 % 3' .

At this stage, we achieve afirst Markovian blockbased labeling, as described in subsection 4.2, considering only two labels referring to statistical models attached to regions ( 0) and ( 1) (i.e. label set E contains only two labels in that case). The obtained binary segmentation allows us to update the support of regions ( 0) and ( 1) , and consequently their associated models 0 4% ' and 0 % ' can be updated too. Since ( 0) includes the regions of interest we are seeking, we determine its connected components. Let us denote ¢ § § c © ¥ ¥ 65 87 @9 the ¢ BA ¢ DC resulting regions.

For each region G § , we estimate its motion activity model 0 $ . We then perform a second region-level labeling stage applied to the original block-based partition as explained in subsection 4.2, with now t E t ¢ A ¢ DC I . We consider ¢ BA ¢ DC I different labels ¢ ¦F 8 DC )C 8 F 65 87 @9 correspond- ing to the updated model 0 E% ' (label F ) and to models ¢ ¦0 $ § c © ¥ ¥ 65 87 @9 . Once convergence is reached, regions F § formed by blocks with labels F § HG F are regarded as the entities of interest for the processed image sequence. Moreover, the dynamic content within each extracted entity F § is characterized by its motion activity model 0 PI $ , which is updated at the final step of our scheme. 

Results

Illustration of the successive method stages

We first illustrate the different stages of our method in Fig. 2. The parameters involved are set as follows: the motion-related measurements have been quantized within A H 8 ¡ rD As illustration, we have considered a wide-angle shot of a basketball game with one of the processed images displayed in Fig. 2.a. This sequence involves a slight panning and zooming of the camera. Fig. 2.b contains the support of the dominant image motion estimated between the considered frame and the preceding one in the sequence. Extracted regions of interest are shown in Fig. 2.c. These two entities indeed comprise the interesting parts of the scene content. It should be pointed out that one player does not appear in any of these two areas since he is static. Our method also appears efficient in terms of computational complexity. It requires about H C second of CPU time to process images of size I H I ¢ H compris- ing 20 blocks of size ¡ ¢ ¡ on a Sun Creator workstation 360MHZ.

Experimental evaluation of the extraction of regions of interest

We report in Fig. 3 five examples of extraction of regions of interest in image sequences. We have considered four kinds of dynamic scenes: sequences involving a single or only a few moving elements, rigid motion situations, wide-angle sport shots where regions of interest are formed by several players, and sequences involving temporal texture samples. For all situations, we have succeeded in identifying meaningful entities. As far as sport sequences are concerned, it should be pointed out that superimposed logos or score captions are also extracted as illustrated in Fig. 3. This is due to the fact they are associated to important residual motion displacements in case of a moving camera, since we perform motion activity analysis in images compensated for the estimated dominant image motion.

The last two examples shown in Fig. 3 are particularly interesting. The first one is a wide-angle shot of a rugby match with the camera tracking the action. We successfully recover an area comprising all players except one. The last example appears to be a particularly difficult situation. It involves a camera tracking a windsurfer with the background formed by a static area (sky) and wavy sea. Furthermore, the boundary of the windsurf board is not well-defined due to the presence of waves with foam. In spite of these difficulties, we identify a relevant area comprising almost all the windsurfer and his board.

As shown in Figure 4, our approach for scene activity segmentation could also be exploited for tracking entities of interest within image sequences. For "Stefan" sequence, we succeed in extracting from image to image the region of interest in the scene, i.e., the tennis player.

Conclusion

We have presented an original approach for the extraction of regions of interest in an image sequence upon a broad notion of pertinent dynamic content. Motion information is expressed as non- parametric statistical motion models. These models are directly estimated from the data (image sequences). They supply a characterization in terms of motion activity and are far more flexible compared to 2D parametric motion models or 3D motion models. In particular, it allows us to cope with a wide variety of dynamic content such as rigid motion, articulated motion, deformable and fluid motion (temporal texture), and group of moving entities. The extraction of regions of interest according to motion activity is formulated as a block-based labeling issue embedded in a properly formalized statistical framework. Moreover, our method directly discriminates regions comprising relevant motion activity from the non-pertinent background. We have provided a convincing validation of our method on real image sequences representative of various dynamic scenes (car sequences, sports videos, temporal textures). We have in particular demonstrated its capability to extract meaningful regions of interest comprising several moving objects, as in wide-angle shots of sport sequences, or to handle temporal textures such as wind blown trees ow wavy sea..

Another important feature of our segmentation method is that it simultaneously delivers motion activity characterization within extracted entities of interest, which could be straightforwardly exploited for motion classification or recognition purpose, or for video retrieval with partial query by example. In particular, in [START_REF] Fablet | Non-parametric motion activity analysis for statistical retrieval with partial query[END_REF], we have shown the effectiveness of our approach to tackle motion-based video retrieval with partial query by example. To this end, we first build a database of entities of interest extracted from video shot keyframe and characterized by a statistical motion activity model 0 ¡

. Then, given an area in the image proposed as partial query £¢ , we compute the associated set of motion-related measurements # ¥¤ and temporal cooccurrence distribu- tion G ¥¤ . The retrieval operation is then stated as a Bayesian inference issue w.r.t. the MAP criterion and relies on the ranking of the conditional likelihood

% & §¦ £ # ¥¤ ¦ for all the elements of the database of entities of interest.
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 1 Figure 1: Examples of dynamic scenes to be dealt with: (a) tracking of a given hockey player; (b) focus on a group of players on a rugby playing field; (c) wind blown trees.

  or groups of blocks), we have to evaluate the degree of similarity between their respective motion activity contents. Let us note 0 and 0 T the statistical models of motion activity attached to regions and Q resp. cor- responding to the pair of motion-related measurements. # ¢ # £ 8 @# £ "! and #
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 7 how relevant the description of observation S PQ $ by label I RQ $ is. It involves the similarity measure ' , defined in relation (

Figure 2 :

 2 Figure 2: Illustration of the successive stages of our method to motion activity segmentation: (a) one image of the processed sequence; (b) support (in white) of the dominant image motion estimated between the considered image (a) and the preceding frame in the sequence; (c) result of the motion activity segmentation (parameter setting is given in text in subsection 5.1). The black area holds for the region regarded as the static background and the two extracted regions of interest are displayed and delimited by a white border.
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 34 Figure 3: Extraction of regions of interest according to motion activity in image sequences. The extracted areas are delimited in white or in black depending on the examples.

  E . At each point ¥ in the image, the weight value E GF , comprised in A H 8 PI (D indicates whether the point

	is likely or not to belong to the part of the im-
	age undergoing the dominant image motion. The closer E §F to 1, the more the point ¥ conforms to
	the dominant image motion.
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