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Abstract. (fewer than 250 words) 

Middle-down mass spectrometry (MD MS) has emerged as a promising alternative to classical 

bottom-up approaches for protein characterization. Middle level experiments after enzymatic 

digestion are routinely used for subunit analysis of monoclonal antibody (mAb)-related 

compounds, providing information on drug load distribution and average drug-to-antibody ratio 

(DAR). However, peptide mapping is still the gold standard for primary amino acid sequence 

assessment, post-translational modifications (PTM) and drug conjugation identification and 

localization. However, peptide mapping strategies can be challenging when dealing with more 

complex and heterogeneous mAb formats, like antibody-drug conjugates (ADCs).  

We report here, for the first time, MD MS analysis of a third-generation site-specific DAR4 

ADC using different fragmentation techniques, including higher energy collisional- (HCD), 

electron-transfer (ETD) dissociation and 213 nm ultraviolet photo-dissociation (UVPD). UVPD 

used as a standalone technique for ADC subunit analysis afforded, within the same liquid 

chromatography-MS/MS run, enhanced performance in terms of primary sequence coverage 

compared to HCD- or ETD-based MD approaches, and generated substantially more MS/MS 

fragments containing either drug conjugation or glycosylation site information, leading to 

confident drug/glycosylation site identification. In addition, our results highlight the 

complementarity of ETD and UVPD for both primary sequence validation and drug 

conjugation/glycosylation site assessment. Altogether, our results highlight the potential of 

UVPD for ADC MD MS analysis for drug conjugation/glycosylation site assessment, and 

indicate that MD MS strategies can improve structural characterization of empowered next-

generation mAb-based formats, especially for PTMs and drug conjugation sites validation. 

 

Keywords. (5 to 10 keywords): Middle-down mass spectrometry (MD MS), UVPD 

fragmentation, ETD, HCD, site-specific bioconjugation, antibody-drug conjugate (ADC).  
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Abbreviations.  

ADC, antibody-drug conjugate; CDR, complementarity-determining region; CQA, critical 

quality attribute; Cys, cysteine; DAR, drug-to-antibody ratio; DARav, average drug-to-

antibody ratio; DLD, drug load distribution; DTT, dithiothreitol; ETD, electron transfer 

dissociation; Fc, fragment crystallizable; fGly, formylglycine; HCD, higher-energy collisional 

dissociation; IdeS, immunoglobulin degrading enzyme from Streptococcus pyogenes; IgG, 

immunoglobulin G; LC, light chain; LC-MS/MS, liquid chromatography-tandem mass 

spectrometry; mAb, monoclonal antibody; MD, middle-down; MS, mass spectrometry; PTM, 

post-translational modification; SMD, small molecule drug; TD, top-down; UVPD, ultraviolet 

photo-dissociation. 
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INTRODUCTION 

Antibody-drug conjugates (ADCs) are a variety of monoclonal antibody (mAb)-based formats 

that show unmatched efficacy for treatment of many diseases, including cancers and 

autoimmune diseases.(1) ADCs are comprised of a mAb scaffold onto which a highly cytotoxic 

drug is covalently bound via a linker.(2) Among critical quality attributes (CQAs) requested by 

regulatory agencies such as the US Food and Drug administration or European Medicine 

Agency, ADC characterization requires drug load distribution (DLD) assessment, along with 

average drug-to-antibody ratio (DARav) determination, the amount of unconjugated mAb (D0), 

and residual small molecular drugs (SMDs).(3) Localization of the conjugation sites and post-

translational modifications (PTMs) is also of utmost importance. The analytical 

characterization of ADCs relies on a combination of state-of-the-art mass spectrometry (MS), 

chromatography and electrophoresis techniques. Therapeutic mAbs and their 

immunoconjugates are usually analyzed at different levels (intact and subunit mass analyses 

and peptide mapping) to achieve the best analytical characterization.  

Primary sequence validation and localization of drug conjugation or PTMs are usually 

performed by classical peptide mapping strategies that consist of reduction, alkylation, and 

enzymatic (trypsin, pepsin or a combination of proteases) digestions followed by liquid 

chromatography-tandem mass spectrometry (LC-MS/MS) analysis of the generated peptides. 

Even if routinely performed, this approach has a series of limitations. First, digestion often 

occurs at basic pH and can lead to artifactual modifications of the mAb (e.g., deamidation, 

oxidation(4-6)). In some cases, peptide mapping approaches can also lead to incomplete 

sequence coverage, and thus an absence of information on the uncovered regions. Glycosylation 

site identification is accomplished through detection of specific glycan fragmentation patterns 

of the glycosylated peptide along with the presence of signature glycan oxonium ions at low 

mass range (204 m/z, and 366 m/z).(7-8) In addition, for ADCs, drug conjugation adds a 
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substantial mass increase on mAb peptides that is combined often with a significant increase in 

hydrophobicity of the conjugated peptides. As a consequence, conjugated peptides are more 

difficult to separate during LC and are challenging for MS/MS analysis.(9-10)  In addition, 

ADC payloads are often prone to dissociation during MS/MS in the mass spectrometer, 

hampering/avoiding the detection of the payload at the peptide level. So, even if well 

established, peptide mapping might be time consuming, labor-intensive and incomplete in terms 

of characterization for heterogeneous ADC formats. Thus, there is still a need for method 

improvement in order to provide unbiased characterization of ADC sites of conjugation and 

PTMs.  

To overcome the limitations of MS-based bottom-up approaches, emergent alternative 

strategies aiming at direct sequencing of the mAb without any prior sample digestion, called 

top-down (TD) or its variation middle-down (MD), are appealing.(11-14) In theory, TD MS 

approaches combining intact mAb measurements and direct fragmentation of 150-180 kDa 

protein ions should provide complete protein sequence coverage, including precise 

determination of PTM type and position, C- or N-terminus truncations and mutations. However, 

in practice, TD MS is still challenging and has achieved only limited success.(15) In the best 

cases, electron transfer dissociation (ETD)-based TD allowed for 30-35% sequence coverage 

attained of a commercial IgG,(12, 16-17) due to the rigidity coming from the disulfide bridges 

across each IgG domain. One way to circumvent TD MS analysis shortcomings is to reduce the 

size of the protein. In the case of mAb-related products, this can be achieved by MD MS 

approaches using specific enzymes to produce 25 kDa subunit fragments for which appropriate 

resolution and fragmentation techniques are available on current MS platforms (Q-TOF and 

Orbitrap) usually available in biopharmaceutical companies. The production of mAb subunits 

is often performed using IdeS (immunoglobulin-degrading enzyme of Streptococcus 

pyogenes)(18) digestion followed by reduction with dithiothreitol (DTT) to produce 25 kDa 
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subunits (Fc/2, LC, and Fd fragments). Optimized IdeS-based MD ETD MS/MS workflow 

allowed up to ∼50% sequence coverage to be reached for selected IgG fragments in a single 25 

min LC run, and up to ∼70% when data obtained by distinct LC−MS runs are averaged.(19) 

Higher sequence coverages for Fc/2 and Fd fragments were even reported using IdeS-based 

MD ETD MS/MS on a 21 Tesla FT-ICR instrument.(11)  

In the recent years, to improve TD and MD MS workflows, several groups have evaluated the 

possibilities of newly developed alternative ion activation techniques. Recently, Brodbelt and 

coworkers have demonstrated the benefits of 193 nm ultraviolet photo-dissociation (UVPD) 

and hybrid activation methods for intact protein analysis, including histone proteoforms,(20) 

HeLa whole-cell lysate(21) and mAb analyses.(13) Under optimal conditions, UVPD resulted 

in 60% overall coverage of the IgG sequence, in addition to unambiguous glycosylation site 

localization and extensive coverage of the antigen-binding complementarity determining 

regions (CDRs) in a single LC-MS/MS experiment. Combining UVPD and ETD data provided 

deeper sequencing and greater overall characterization of IgG subunits, highlighting potential 

of this new MD UVPD MS/MS strategy for the comprehensive characterization of mAb-based 

therapeutics.(22) 

Here, we report the first MD analysis to identify the sites of conjugation and glycosylation of a 

site-specific ADC with drug-to-antibody ratio (DAR) of 4 (CBW-03-106) using different 

fragmentation techniques, including HCD, ETD and 213 nm UVPD. Altogether, our results 

highlight the potential of UVPD and the complementarity of MS/MS activation techniques from 

MD approaches to allow for improved primary sequence coverage and conjugation site 

identification of the DAR4 site-specific ADC. 
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MATERIAL AND METHODS 

Site-specific DAR4 ADC 

CBW-03-106 was produced and modify in-house by Catalent Biologics West (CA, USA). The 

minimal FGE consensus sequence (CXPXR) was cloned into two specific sites of the mAb 

heavy chain (HC) using molecular biology technologies. The antibody is produced in a cell line 

with an overexpression of human FGE that oxidize the cysteine into a formyl-glycine 

(fGly)(23). 

Middle level IdeS digestion 

Site-specific DAR4 ADC was enzymatically digested using IdeS enzyme (immunoglobulin-

degrading enzyme of Streptococcus pyogenes) as previously described (24). Disulfide bonds 

were subsequently reduced during 60 min at 37 °C in strong denaturing conditions (6 M 

guanidine hydrochloride,) using DTT (Sigma) as a reducing agent (100 mM final DTT 

concentration). For MD MS analysis, the sample was infused without any previous cleaning 

step.    

 

Middle level LC-MS and LC-MS/MS analysis  

Separation of the Fc/2, Fd, and LC subunits were performed with a Thermo Fisher MAbPac™ 

RP LC column (100 mm, 1 mm i.d., 4 µm particle size, and 1500 Å pore size, San Jose, CA) 

preheated at 60 °C, using a Thermo Fisher Vanquish Horizon UHPLC system (San Jose, CA). 

Mobile phase A consisted of 0.1% formic acid in water, and mobile phase B was 0.1% formic 

acid in acetonitrile. For LC-MS/MS analysis, 1 to 1.5 µg of digested ADC was loaded onto the 

column with 20% of B at a constant flow rate of 0.1 mL/min. More details about the 

chromatographic method can be found in the legend of Figure S5. The LC system was 

hyphenated to a Thermo Fisher Orbitrap Fusion Lumos Tribrid mass spectrometer (San Jose, 

CA) equipped with three different fragmentation modes: HCD, ETD, and 213 nm UVPD. For 
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all experiments, the spray voltage was set to 3.6 kV and the temperature of the ion transfer tube 

was 275 °C. MS/MS spectra were recorded using a mass range of 350-2000 m/z and resolving 

power of 120000 at 200 m/z. The multiplexing method was used and 5 precursor ions (MSX5) 

were selected over each specific elution window and subsequently fragmented using the three 

fragmentation modes. (The 5 most intense charge states were selected for HCD and UVPD. To 

increase the fragmentation efficiency of ETD, the highest charge states were targeted.) An 

isolation window of 0.8 m/z was used for each multiplexed ions. For HCD fragmentation, ions 

were accelerated with 12 eV under a constant N2 pressure of 10-9 mbar. In the case of ETD, the 

automatic gain control (AGC) for the precursor ions was set to 1x106 and all the precursor ions 

were allowed to react with the anionic fluoranthene reagent in the linear trap for 8 ms. In order 

to enhance the radical-driven fragmentation, the reagent AGC was set to 7x105 with a maximum 

reagent injection time of 200 ms. For UVPD MS/MS analysis, the same AGC value was used 

as previously specified for ETD fragmentation. Ions were resonantly activated with 213 nm 

laser during 20 or 30 ms, delivering a total energy of 100-150 µJ (2 µJ/pulse).   

 

MS/MS data analysis 

MS/MS spectra were analyzed with BioPharma Finder 3.0 that includes Xtract and Prosight 

algorithms to perform the deconvolution and match the deconvoluted masses to the sequence, 

respectively. MS/MS spectra were averaged through different subunit elution windows and then 

deconvoluted using a S/N of 7. The deconvoluted masses were matched to the sequence with a 

5 ppm ion tolerance to reduce the number of false positives. Different fragment ions were 

considered as a function of the fragmentation technique. Thus, b/y in the case of HCD, c/z for 

ETD, and a/x, b/y, and c/z fragments were obtained in the case of the UVPD. Since the addition 

of the RED-106 drug molecule was performed on cysteine residues that were oxidized into 

formyl-glycine (fGly), all the cysteine residues contained in the Fd, and Fc/2 subunits were 
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considered as putative bioconjugation sites, giving rise to eight proteoforms for the Fd, and five 

proteoforms for the Fc/2 (Figure S2). In the case of the Fc/2 subunit, ions corresponding to the 

G0F glycoform were targeted so G0F at the Asp61 was defined as a fixed modification to search 

the data. 

 

Bottom-up peptide mapping analysis 

Sample preparation. Fifteen micrograms of CBW-03-106 ADC was solubilized in 100 mM 

ammonium acetate, 0.1% RapiGestTM (Waters, Milford, USA) at pH 7.4. Disulfide reduction 

was performed by incubating the ADC solution with 5 mM DTT for 30 min at 60 °C. Alkylation 

was performed with 15 mM iodoacetamide for 30 min in the dark. After these steps, the samples 

were split in two for enzymatic digestion using trypsin or pepsin.  

Digestion was performed by adding trypsin (Promega, Madison, USA) to a 1:50 

enzyme:substrate ratio. Samples were incubated overnight at 37 °C. The reaction was quenched 

by adding 1% of trifluoroacetic acid. RapiGestTM was eliminated by centrifugation at 10,000 g 

for 5 min.  

For pepsin digestion, pH was decreased to 2.0 prior to the addition of pepsin (Promega, 

Madison, USA). Digestion was performed by adding pepsin at a 1:50 enzyme:substrate ratio. 

Samples were incubated at 37 °C for 3 h. The reaction was stopped by heating at 95 °C for 10 

min. RapiGestTM was eliminated by a centrifugation at 10,000 g for 5 min. To keep the peptides 

in solution, 10% of isopropanol was added after digestion. 

LC-MS/MS analysis- NanoLC-MS/MS analysis was performed using a nanoAcquity Ulta-

Performance-LC (Waters, Milford, USA) coupled to the Q-Exactive Plus Orbitrap mass 

spectrometer (Thermo Scientific, Bremen, Germany) with a nanoSpray source. The peptides 

were trapped on a nanoACQUITY UPLC precolumn (C18, 180 µm x 20 mm, 5 µm particle 

size), and then separated on a nanoACQUITY UPLC column (C18, 75 µm x 250 mm with 1.7 
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µm particle size, Waters, Milford, USA) maintained at 60 °C. Mobile phase A was 0.1% (v/v) 

formic acid in water and mobile phase B was 0.1% (v/v) formic acid in acetonitrile. A gradient 

(1-8% B for 2 min, 8-35% B for 58 min, 35-90% B for 1 min, 90% B for 5 min, 90-1% B for 1 

min and maintained 1% B for 20 min) was used at a flow rate of 450 nL/min. The Q-Exactive 

Plus Orbitrap source temperature was set to 250 °C and spray voltage to 1.8 kV. Full scan MS 

spectra (300-1800 m/z) were acquired in positive mode at a resolution of 140 000, a maximum 

injection time of 50 ms and an AGC target value of 3 x 106 charges, with lock-mass option 

being enabled (polysiloxane ion from ambient air at 445.12 m/z). The 10 most intense multiply 

charged peptides per full scan were isolated using a 2 m/z window and fragmented using higher 

energy collisional dissociation (normalized collision energy of 27). MS/MS spectra were 

acquired with a resolution of 17 500, a maximum injection time of 100 ms and an AGC target 

value of 1 x 105, and dynamic exclusion was set to 60 sec. The system was fully controlled by 

XCalibur software v3.0.63, 2013 (Thermo Scientific) and NanoAcquity UPLC console 

v1.51.3347 (Waters). 

Bottom-up data interpretation. Raw data collected were processed and converted in .mgf 

format. The mgf files from trypsin and pepsin digestions were merged using Mass Spectrometry 

Data Analysis 2.7.3 (MSDA).  

The MS/MS data were interpreted using a local Mascot server with MASCOT 2.5.0 algorithm 

(Matrix Science, London, UK). Spectra were searched with a mass tolerance of 5 ppm for MS 

and 0.07 Da for MS/MS data, using none as enzyme. G0F glycosylation (+1445.45 Da), the 

linker modification (+652.37 Da) and the whole RED-106 payload (+1198.59 Da) were 

specified as variable modifications. Protein identifications were validated with Mascot ion 

score above 25. Each conjugation site was manually validated based on the presence of y-ion 

and b-ion series and the peak intensity observed on the MS/MS spectra, using Proline 1.5 

software.(25) 
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RESULTS 

Middle level LC-MS analysis of IdeS digested CBW-03-106  

The antibody CBW-03-106 used in this study is a site-specific DAR4 ADC generated through 

aldehyde-specific bioconjugation.(26-32) In this case, four cysteine residues found within a 

specific pentapeptide consensus sequence were oxidized to formyl-glycine (fGly) with a 

formyl-glycine-generating enzyme.(27, 29) The fGly residues were further modified using 

aldehyde-specific chemistries in order to selectively conjugate four RED-106 drug molecules 

to the mAb structure, located on the Fc/2 (C213) and Fd (C163) subunits.(32) We first 

performed a middle level characterization of intact CBW-03–106 using IdeS enzymatic 

digestion followed by DTT reduction. An improved LC method compared to the one described 

in Botzanowski et al.(24) was developed and allowed separation of Fc/2, LC, and Fd ADC 

subunits within a 10 min run (see Material and Methods). This LC-MS analysis was used as a 

high resolution LC-MS survey run to provide information on subunit retention times, the charge 

state distribution (isotopic resolution of each peak) and subsequent sub 3 ppm mass accuracies 

within a single LC-MS run. Three peaks were observed corresponding to the Fc/2, the light 

chain (LC), and Fd fragments, respectively (Figure 1). Peak 1 (27307.51 ± 0.01 Da, 2 ppm) 

corresponds to the theoretical mass of the G0F glycoform of the Fc/2 with one molecule of 

RED-106; peak 2 could be unambiguously attributed to the LC of the mAb (23389.31 ± 0.01 

Da, 2 ppm), and peak 3 was assessed to the conjugated Fd subunit with one RED-106 molecule 

(26770.34 ± 0.01 Da, 3 ppm). No signals corresponding to the unconjugated Fd and Fc/2 

subunits could be detected from extracted ion chromatograms. High-resolution LC-MS analysis 

also revealed the presence of two common modifications on the Fc/2 subunit, namely C-

terminal K-clipping and N-glycosylation.  
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Figure 1 : Middle level LC-MS analysis of site-specific DAR4 CBW-03-106 ADC after Ides 

digestion and DTT reduction. Chromatogram of the IdeS-digested ADC (a). Mass spectra 

obtained for each subunit peak (b) and corresponding measured masses (c).  

 

Altogether, middle level LC-MS analysis and accurate mass measurements enabled us to make 

conclusions about the drug localization at the subunit level: one drug was linked to the Fc/2 

subunit and the other bound to the Fd fragment, as expected from the position of the aldehyde 

tags in the heavy chain mAb sequence. No signal corresponding to unbound Fd or Fc/2 was 

detected, leading to a DARav of 4.0 ± 0.0, in good agreement with previous data obtained from 

intact and middle level characterization.(24)   

 

Peptide mapping for identification of drug conjugation sites of the site-specific DAR4 

ADC 
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Peptide mapping is the gold standard for mAb and ADC analysis to obtain optimal primary 

sequence coverage and to gain information on glycosylation and drug conjugation sites. In our 

routine mAb/ADC peptide mapping workflow, we usually combine results from two 

independent digestions using two complementary enzymes (trypsin and pepsin, see Material 

and Methods). As expected, 100% and 99% sequence coverages were obtained for CBW-03-

106 light and heavy chains (see Figure S1), respectively, which meets regulatory agencies’ 

requirements (FDA, EMA) in terms of primary amino acid sequence verification. Peptide 

mapping data were next interpreted for glycosylation and drug conjugation site identifications. 

The first analysis using automatic workflows (including glycosylation as variable modification, 

see Material and Methods) for bottom-up data interpretation did not provide any information 

about glycosylation position. After further manual analysis, the masses measured from two 

precursor ions (EEQYNSTYR and TKPREEQYNSTYR) could be potentially assigned to 

glycopeptides bearing the G0F glycoform, but their fragmentation spectra (Figure S1c) revealed 

that the main fragments were obtained from the glycan fragmentation, hindering glycan peptide 

sequencing, and thus peptide validation by automated search tools.  

For drug conjugation, C163 (Fd subunit) and C213 (Fc/2 subunit) are expected to be modified 

from bioconjugation reaction. No peptide bearing the intact RED-106 payload (+ 1198.59 Da) 

was detected. As the internal fragmentation of the ADC payload (linker-cytotoxic molecule, 

especially the ester bond between the linker and the drug(33)) can be induced at increasing ion 

internal energies,  MS data were analyzed taking into account the disruption of the linker-

cytotoxic covalent bond (+ 652.37 Da on the conjugated amino acid). However, no peptide 

containing the fragmented RED-106 product could be identified. Two explanations can account 

for that: 1) the poor solubility of more hydrophobic drug-containing peptides, and 2) the internal 

dissociation of the drug-linker interaction in HCD.  Further manual data interpretation using 

extracted ion chromatograms (XIC) of tryptic peptides ions bearing the CBW-03-106 payload 
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(1175.57 m/z and 868.44 m/z) allowed detection of peptides. However, the most intense signal 

in MS/MS spectra consists of the dissociation of the drug from the conjugated peptide, resulting 

in an intense overwhelming signal at 547.22 and 485.22 m/z that hinders peptide backbone 

fragmentation (Figure S1b). As a consequence, the conjugation site is deduced from indirect 

XIC data interpretation of diagnostic ions from the payload fragmentation, without specific ions 

of the peptide bearing the payload.  

 

MD MS analysis with UVPD activation affords drug conjugation site identification of the 

site-specific DAR4 ADC 

Since MD MS might be well suited to circumvent bottom-up limitations, we thus used UVPD 

in a MD MS workflow to evaluate the capabilities of this activation technique to provide 

fragment ions characteristic of the position of the two modifications of interest (N-glycosylation 

and payload). This strategy avoids solubility issues related to hydrophobic drug-conjugated 

peptides and allows the use of UVPD, less prone to PTM fragmentation as compared to HCD 

(13, 34). Altogether, UVPD MS/MS MD experiments of the Ides digested CBW-03-106 

allowed for global amino acid sequence coverage of ~50% (44% Fc/2, 50% Fd, 62% LC), as 

already reported for unconjugated mAbs (Figure 2).(13, 22) As the conjugation strategy 

targeted two cysteine residues located in the Fc/2 (C213) and Fd (C163) subunits and the N-

glycoforms are also located on N61 of the heavy chain of the antibody, the discussion will 

mainly focus on the Fc/2 and Fd subunits. To take into account possible RED-106 internal 

fragmentation, the presence of the linker (without the cytotoxic drug) was included as a search 

parameter (see Material and Methods).  

After one LC-MS/MS (20 ms UVPD) run, the sequence coverage of the Fc subunit was 44% 

among which 34 fragments contained the RED-106 molecule (Figure 2a). Among the 34 

payload-containing fragments, 8 C-terminal fragment ions containing the C213 conjugation site 
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can be distinguished, allowing the unambiguous identification of the Fc/2 conjugation site 

(Figure 2a). Similar to the identification of the conjugation site, UVPD activation allows for 

the characterization of the N-glycosylation of the CBW-03-106. The fragmentation map of the 

Fc/2 subunit exhibits 31 fragment ions that contain the intact G0F scaffold thus, pointing out 

the suitability of the UVPD fragmentation to provide efficient fragmentation of the Fc/2 

backbone whilst preserving relative labile modifications such us glycoforms (Figure 2a).  

The identification of the conjugation site on the Fd subunit is more complex owing to both the 

position of the conjugated cysteine in the interior regions of the Fd sequence (C163) and the 

UV fragmentation pattern (Figure 2b). In spite of the significant fragmentation yield of the Fd 

subunit upon UV irradiation (50 % of sequence coverage), no clear-cut evidences about the 

conjugation site can be afforded mostly due to the size of the fragment ions (59 amino acids 

average length) but also to the absence of N-terminal fragments bearing the RED-106 payload. 

In this case, 22 C-terminal fragment ions (x, y, and z ions) contain the RED-106 payload. 

However, all these fragments include several other cysteines that can be considered as putative 

conjugation sites. So the identification of the conjugation site of the Fd subunit cannot be 

delimited to one specific cysteine. 

For these reasons, the variation of additional parameters, such as the sequence coverage and the 

number of payload-containing fragments, as a function of the hypothetical position of the 

payload conjugation site were taken into account to guide the determination of the specific 

conjugated cysteine. In the case of the Fd subunit, the sequence coverage increases from 37% 

when C22 was assumed to bear the drug to 50% for the C163-conjugated proteoform (Table 

S1a). In addition, 8 MS/MS fragments that contained the RED-106 molecule were observed 

when conjugation was supposed to be on C22 compared to 22 MS/MS fragments when C163 

was hypothesized to be conjugated (Table S1a). This latter parameter (number of MS/MS 

fragments) remains constant when the payload is assumed on cysteine residues closer to the C-
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terminus (C202, C222, C228, and C231) while the global sequence coverage decreases (Table 

S1), which allowed us to  reinforce the confidence that the RED-106 is more likely conjugated 

on the C163 of the Fd subunit.  

 

 

Figure 2: Fragmentation maps of Fc/2 (a), Fd (b), and LC (c) subunits after irradiation with 213 

nm UVPD when RED-106-03 payload is assumed on C213 for the Fc subunit and C163 for the 

Fd. The N-glycosylation (G0F) and the payload conjugation sites are highlighted with green 

squares. Blue and red circles show the identified cleavage sites that contain the G0F glycoform 

and the RED-106 payload, respectively. Specific fragment ions of C213 conjugation site are 

depicted with black arrows. 
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ETD and HCD fragmentations for more confidence in glycosylation and conjugation sites 

characterization  

UVPD fragmentation capabilities for CBW-03-106 characterization were benchmarked against 

more conventional fragmentation techniques, like HCD(35) and ETD,(36-37) more frequently 

used in biopharmaceutical R&D labs, to evaluate the limitations/benefits associated with each 

individual technique and to complement our UVPD dataset.  

HCD led in fact to the lowest primary amino acid sequence coverage and the lowest number of 

cleavage sites that contain the RED-106 conjugation or the N-glycosylation compared to UVPD 

or ETD (Figure S3). In this case, HCD fragmentation yielded very low number of fragment ions 

characteristic of both conjugation sites (1 fragment ion characteristic of the C213 Fc/2 and 0 

fragment ions corresponding to the C163 on the Fd subunit). In-depth analysis of MS/MS 

spectra showed that internal fragmentation of the RED-106 payload was favored under HCD 

conditions compared to UVPD (Figure S4). Intensities of diagnostic ions for payload internal 

fragmentation (547.22 m/z) were higher with HCD than with UVPD MS/MS spectra (Figure 

S4). This higher payload internal fragmentation might also explain the results obtained by 

peptide mapping upon HCD MS/MS fragmentation (no RED-106 containing peptide detected). 

Additionally, the site of N-glycosylation with HCD is difficult to identify, due to the low 

number of identified cleavage sites containing the intact G0F glycoform (Figure S3d), which 

corroborates peptide mapping observations. 

ETD fragmentation was then carried out to induce the backbone cleavage of the site-specific 

DAR4 ADC subunits (Figure 3). Electron-driven fragmentation techniques have already proven 

their utility for mAbs sequencing at top-(12, 16-17) and middle-level(13, 22, 38) 

characterization. In our case, after 8 ms of reaction with the anionic reagent, the sequence 

coverage of the Fc/2, Fd, and LC subunits was 37%, 47%, and 52%, respectively (Figure 3), 

leading to an overall mAb sequence coverage of 45%. Albeit slightly lower sequence coverage 



19 
 

was obtained compared to UVPD, overall the fragmentation maps corresponding to the ETD 

fragmentation exhibit fragment ions that contain the RED-106 modification. ETD generates 19 

cleavage sites that contain the payload in the Fc/2 structure (Figure 3a) and four of these 

cleavage sites are specific of the C213 conjugation site, strengthening the results obtained with 

UVPD activation and thus providing more confident drug conjugation site identification. 

Similarly, 17 cleavage sites that contain the G0F moiety along with unambiguous localization 

of G0F site owing to the identification of the c60 and c61 consecutive fragment ions (Figure 3d) 

were also obtained by ETD, showing its suitability to characterize the position of the 

glycoforms in mAb structures. In the case of the Fd subunit, despite the detection of 16 ETD 

fragments bearing the RED-106 payload, no specific fragment ions of the C163 conjugation 

position that could led to the univocal identification of the conjugation site on C163 was 

observed, as previously observed upon UVPD activation (Figure 3b). While conjugation sites 

in the central region of the subunit sequences require the presence of N-terminal and C-terminal 

fragments specific of one single conjugation site to unambiguously determine the site of 

conjugation, other signature fragment ions can be used to discard the co-existence of different 

proteoforms. In our case, four ETD fragment ions (c147, c148, c154, and c157) point out that the 

C143 is not conjugated, and at least 29 fragment ions support that the conjugation site is not 

located on cysteine amino acids at the C-terminal side (C202, C222, C228, and C231) of the Fd 

subunit (Figure 3b). In addition, the best sequence coverage is obtained when the RED-106 

position is assumed on the C163 as previously observed using UVPD fragmentation (Table 

S1b). Altogether, these results lead to the indirect conclusion that the conjugation site of the Fd 

subunit is located on the C163.    
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Figure 3: Fragmentation maps of Fc/2 (a), Fd (b), and LC (c) subunits after ETD fragmentation. 

The N-glycosylation (G0F) and the payload conjugation sites are highlighted with green 

squares. Blue and red circles show the identified cleavage sites that contain the G0F glycoform 

and the RED-106 payload, respectively. Specific fragment ions of C213 conjugation site are 

depicted with black arrows. The deconvoluted ETD fragment spectrum of the Fc/2 subunit 

showing a mass difference between the two consecutives c60 and c61 ions that corresponds to 

the mass of the intact G0F structure (d).  

 

 

Complementarity between UVPD, HCD and ETD in MD MS of CBW-03-106 

Even though UVPD  provides the best outcomes concerning the three principal parameters for 

ADC characterization (number of RED-106 cleavage sites, number of G0F cleavage sites and 

global amino acid sequence coverage), substantial benefits are obtained when MS/MS data 
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from the three activation techniques are combined, highlighting the complementarity between 

HCD, ETD, and UVPD (Figure 4). After combining the results from the three activation 

techniques, the primary sequence coverage of the three ADC subunits rose to 64%, 74% and 

83% for Fc/2, Fd and LC, respectively (Figure 4a), which approach the highest sequence 

coverages reported in literature using MD approaches.(13, 22) In addition, only a limited 

number of MS/MS fragments are common to the three activation modes (18 for both Fc/2 and 

Fd subunits, and 37 for LC), highlighting the complementarity of UVPD, HCD and ETD for 

overall sequence coverage (Figure S4). For CBW-03-106 primary sequence coverage using MS 

approaches, our results demonstrate a limited contribution of HCD data, but a strong 

complementarity between ETD and UVPD activation techniques (Figure S6), as already 

reported for unconjugated mAbs.(13, 22)  

When focusing on identification of the RED-106 drug conjugation (on C163 and C213) or N-

glycosylation sites (N61) (Figure 4 and 5), the complementarity between UVPD, ETD, and 

HCD is even more obvious. Indeed, no RED-106 containing fragments are common to all three 

activation modes (Figure 5). Again, the number of RED-106 cleavage sites considerably 

increases when results of the three fragmentation techniques were combined:  58 RED-106 

containing fragments can be identified within the Fc/2 sequence and 34 in the case of the Fd 

subunit (Figure 4b), which are significantly higher than those obtained after using only UVPD 

(34 and 22 respectively). Furthermore, among the total number of RED-106 containing MS/MS 

fragments (92), 47% result specifically from UVPD compared to 27% and 10% specific 

fragments generated by ETD and HCD, respectively. It is important to notice that UVPD 

afforded also the highest number of payload containing fragments specific of the C213 on the 

Fc/2 subunit (8 fragments) compared to ETD (4 fragments) and HCD (1 fragment). Conversely 

all fragmentation techniques tested in the present work failed in direct identification of a 

fragment bearing RED-106 on Cys163. Altogether, the significantly higher number of drug-
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containing MS/MS fragment ions along with the number of ions characteristic of a single 

conjugation site obtained by UVPD compared to ETD or HCD reveals the potential of UVPD 

for more confident drug-conjugation site determination. However specific MS/MS fragments 

allowed excluding the positioning of RED-106 on cysteine’s upstream from C163. Moreover, 

pairwise association of two fragmentation modes increased the confidence in drug conjugation 

binding site identification (Figure 5), through validation of cleavage sites by at least two 

different fragmentation techniques (3, 5 and 2 RED-106 containing MS/MS spectra of Fc/2 

shared between UVPD/ETD, UVPD/HCD and ETD/HCD, respectively).  

 

 

Figure 4: Contribution of HCD (blue), ETD (red), UVPD (green), ETD+UVPD (pink) and the 

combination of the three activation techniques (grey) to overall sequence coverage (a), number 

of RED-106 containing fragments (b), and number of G0F containing payloads (c). 

 

The benefits of combining HCD, ETD, and UVPD can also be observed for the identification 

of the G0F glycosylation site. Thereby, 44 G0F-containing cleavage sites were identified after 

the combination of MS/MS data coming from the three activation techniques, while only 31 

G0F containing fragments were detected using UVPD (Figure 4 and 5). In spite of the 
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significantly lower number of G0F-fragments obtained upon ETD fragmentation (17) compared 

to UVPD (31), this activation technique allowed the identification of the glycosylation site of 

the CBW-03-106 at the amino acid level, in agreement with UVPD. Similarly to drug 

conjugation, no N61 G0F-contaning MS/MS fragment was common to the three activation 

techniques, illustrating the complementarity of the fragmentation techniques for G0F site 

identification.  

Altogether, our MD results illustrate a clear complementarity between UVPD, ETD and HCD 

for global amino acid sequence coverage and both drug conjugation and glycosylation site 

identification.  

Taking into account that these results imply four independent LC-MS/MS runs (one LC-MS, 

and three LC-MS/MS) and that HCD has only minor contribution to the MS/MS data, we 

evaluated the benefits of combining one LC-UVPD MS/MS and one LC-ETD MS/MS analysis. 

Interestingly, only minor differences can be observed in terms of sequence coverage and the 

number of identified payload/G0F-containing cleavage sites after combining MS/MS data from 

ETD and UVPD (pink bars Figure 4). For CBW-03-106 MD MS characterization, the 

combination of ETD and UVPD is the best option to provide the highest sequence coverage 

(65%), along with unambiguous drug conjugation and glycosylation site identification from 

two independent fragmentation techniques. 
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Figure 5: Venn diagram of RED-106 bearing cleavage sites obtained throughout the Fc/2 (a), 

and Fd (b) subunits upon UVPD, ETD, and HCD fragmentations. Number of cleavage sites 

containing the G0F glycoform (N61) in the Fc/2 domain after fragmentation with the three 

different techniques (c).  
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CONCLUSIONS 

We report here for the first time the use of MD approaches for the characterization of a third-

generation site-specific DAR4 ADC (CBW-03-106). Three fragmentation techniques (HCD, 

ETD, and 213 nm UVPD) have been used to induce the fragmentation of the Fc/2, Fd, and LC 

subunits of CBW-03-106. Our work highlights the great potential of UVPD, a new 

commercially available fragmentation technique on Orbitrap platforms, for drug conjugation 

and glycosylation site assessment of ADCs. 

ADC characterization requires assessment of a series of CQA,(39) including primary amino 

acid sequence verification, glycoprofile and glycosylation site determination, DLD, DARav 

assessment and identification of drug conjugation sites. Currently no unique analytical 

workflow tackles all these issues, and multilevel analysis (intact and subunit mass analysis and 

peptide mapping)(39) are advised for extensive primary structure determination. Peptide 

mapping approaches consisting of enzymatic digestion followed by routine LC-MS/MS 

analysis are the gold standard for primary amino acid sequence assessment, including PTM 

identification and localization. Bottom-up limitations are clear in ADC drug-conjugation site 

identification, as many drugs increase the hydrophobicity of the resulting peptides, often 

leading to less soluble entities. In addition, drug-linker interactions might be dissociated in 

MS/MS, resulting in hardly detectable intact drug-conjugated peptides. Apart from primary acid 

verification, DLD, DARav, and glycoprofiles are not attainable by peptide mapping.  

For all the above mentioned reasons, MD approaches have gained interest and may even 

complement conventional and routine bottom-up analyses when they reach their limits. 

Especially for ADC characterization, we demonstrate here using the CBW-03-106 site-specific 

DAR4 ADC that state of the art MD approaches provide rapid and accurate drug conjugation 

site assessment, information that was not easily obtained by peptide mapping. Advantages of 

middle level approaches include faster analysis time (10 min/run) combined with limited 
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sample preparation. At the MS2 level, MD MS/MS analysis can provide additional specific 

information, like PTM (glycosylation) or drug conjugation site determination at the amino acid 

level. Even if peptide mapping is qualified as a critical quality test by regulatory agencies for 

routine amino acid sequence validation, innovative complementary approaches must be 

strengthened and pushed forward to improve the portfolio of analytical workflows for the more 

complex mAb formats being developed.  

In MD approaches, UVPD used as a standalone technique showed better performance compared 

to HCD and ETD not only for overall sequence coverage, but also for drug or glycosylation 

binding site identification. Our results are in line with those obtained by the groups of Brodbelt 

and Kelleher on therapeutic unconjugated mAbs,(13, 22) suggesting that the presence of 

hydrophobic drugs on the amino acid scaffold does not affect UVPD performances.   

A clear complementarity between UVPD and ETD in MD approaches was also demonstrated 

for CBW-03-106, providing complementary MS/MS information for improved sequence 

coverages and more accurate drug conjugation and PTM site assessment. The combination of 

one MS1 and two MS2 UVPD/ETD MS/MS run appears to be a good compromise for drug-

conjugation site assessment. Indeed, a relatively low amount of redundant information was 

obtained from MS/MS data from ETD and UVPD, while the overall sequence coverage and the 

confidence in identification of PTM/conjugation sites of the three subunits rose significantly, 

pinpointing a synergic effect between both activation techniques. However, identification of 

conjugation/PTM sites in the interior region of subunit sequences can be challenging for MD 

approaches since specific N-terminal and C-terminal fragments are needed to assign these 

modifications to one specific amino acid.  

We believe that the routine implementation of MD approaches in R&D laboratories will 

strongly depends on the development of tailored software modules based on statistical studies 

to correlate a specific score to each putative conjugation/PTM site. Altogether, our results 
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highlight the benefits of combining MD MS analysis with multiple ion activation techniques to 

provide an extensive primary structure characterization of ADCs. With the ongoing progress in 

mass spectrometry instrumentation, activation techniques and development of adapted user-

friendly software for automated scoring, validation and statistical evaluation of MS/MS spectra, 

we believe that MD MS will soon be mature for more routine use in biopharma companies for 

next-generation empowered mAb-based formats characterization. 
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LEGENDS FOR FIGURES AND TABLES 

Figure 1: Middle level LC-MS analysis of site-specific DAR4 CBW-03-106 ADC after Ides 

digestion and DTT reduction. Chromatogram of the IdeS-digested ADC (a). Mass spectra 

obtained for each subunit peak (b) and corresponding measured masses (c). 

 

Figure 2: Fragmentation maps of Fc/2 (a), Fd (b), and LC (c) subunits after irradiation with 213 

nm UVPD when RED-106-03 payload is assumed on C213 for the Fc subunit and C163 for the 

Fd. The N-glycosylation (G0F) and the payload conjugation sites are highlighted with green 

squares. Blue and red circles show the identified cleavage sites that contain the G0F glycoform 

and the RED-106 payload, respectively. Specific fragment ions of C213 conjugation site are 

depicted with black arrows. 

 

Figure 3: Fragmentation maps of Fc/2 (a), Fd (b), and LC (c) subunits after ETD fragmentation. 

The N-glycosylation (G0F) and the payload conjugation sites are highlighted with green 

squares. Blue and red circles show the identified cleavage sites that contain the G0F glycoform 

and the RED-106 payload, respectively. Specific fragment ions of C213 conjugation site are 

depicted with black arrows. The deconvoluted ETD fragment spectrum of the Fc/2 subunit 

showing a mass difference between the two consecutives c60 and c61 ions that corresponds to 

the mass of the intact G0F structure (d). 

 

Figure 4: Contribution of HCD (blue), ETD (red), UVPD (green), ETD+UVPD (pink) and the 

combination of the three activation techniques (grey) to overall sequence coverage (a), number 

of RED-106 containing fragments (b), and number of G0F containing payloads (c). 
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Figure 5: Venn diagram of RED-106 bearing cleavage sites obtained throughout the Fc/2 (a), 

and Fd (b) subunits upon UVPD, ETD, and HCD fragmentations. Number of cleavage sites 

containing the G0F glycoform (N61) in the Fc/2 domain after fragmentation with the three 

different techniques (c). 

 

 

 


