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Abstract

A noise reinforced Brownian motion is a centered Gaussian process
B̂ = (B̂(t))t≥0 with covariance

E(B̂(t)B̂(s)) = (1− 2p)−1tps1−p for 0 ≤ s ≤ t,

where p ∈ (0, 1/2) is a reinforcement parameter. Our main purpose is
to establish a version of Donsker’s invariance principle. Specifically, B̂
arises as the universal scaling limit for a large family of step-reinforced
random walks in the diffusive regime. This extends known results on the
asymptotic behavior of the so-called elephant random walk.

Keywords: Reinforcement, Brownian motion, Invariance Principle,
Elephant Random Walk.

Mathematics Subject Classification: 60G50; 60G51; 60K35.

1 Introduction

This work concerns a rather simple real-valued and centered Gaussian process
B̂ = (B̂(t))t≥0 with covariance function

E(B̂(t)B̂(s)) =
tps1−p

1− 2p
for 0 ≤ s ≤ t, (1)

where p ∈ (0, 1/2) is a fixed parameter. Recently, this process has notably ap-
peared as the scaling limit for diffusive regimes of the so-called elephant random
walk, a simple random walk with memory that has been introduced by Schütz
and Trimper [21]. Just as the standard Brownian motion B corresponds to the
integral of a white noise, B̂ can be thought of as the integral of a reinforced
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version of the white noise, hence the name noise reinforced Brownian motion.
Here, reinforcement means that the noise tends to repeat itself infinitesimally
as time passes; we refer to [19] for a survey of various models of stochastic pro-
cesses with reinforcement and their applications, and to [16] and works cited
therein for more recent contributions in this area. The parameter p should be
interpreted as the strength of the reinforcement; specifically, it represents the
probability that an infinitesimal portion of the noise is a repetition. In the lim-
iting case p = 0 without reinforcement, one just recovers the standard Brownian
motion.

Our purpose here is twofold. We will first present several basic properties of
B̂ that mirror well-known facts for the standard Brownian motion, even though
the laws of B and B̂ are mutually singular. We will then establish a version of
Donsker’s invariance principle. That is, we will show that any so-called step-
reinforced random walk with reinforcement parameter p, whose typical step has
a finite moment of order r for some r > 1/p, converges after a proper rescaling
to a noise reinforced Brownian motion. In the special case when the typical
step has the Rademacher law, this encompasses known results on the large time
asymptotic behavior for the elephant random walk in diffusive regimes.

Our proof of this invariant principle uses an embedding of a step-reinforced
random walk in a branching process with types in R, which is based on a time-
substitution via an independent Yule process. This yields a remarkable martin-
gale, whose quadratic variation can then be estimated using well-known prop-
erties of Yule processes. In turn, this enables the application of the martingale
functional central limit theorem (later on referred to as martingale FCLT).

2 Some basic properties

We start by observing from (1) that the noise reinforced Brownian motion ad-
mits a simple representation as a Wiener integral, namely

B̂(t) = tp
∫ t

0

s−pdB(s), t ≥ 0, (2)

where B = (B(s))s≥0 is a standard Brownian motion. Note that equivalently,

B̂ has the same law as

(
tp√

1− 2p
B(t1−2p)

)
t≥0

. (3)

It follows immediately from (3) and the classical law of the iterated logarithm
for B that

lim sup
t→∞

B̂(t)√
2t ln ln t

= lim sup
t→0+

B̂(t)√
2t ln ln(1/t)

=
1√

1− 2p
a.s. (4)

In particular, we see that for different reinforcement parameters p, the distribu-
tions of noise reinforced Brownian motions, say on the time interval [0, 1], yield

2



laws on C([0, 1]) which are mutually singular, and are also singular with respect
to the Wiener measure.

We deduce from (2) by stochastic calculus that B̂ is a semi-martingale which
solves the stochastic differential equation

dB̂(t) = dB(t) +
p

t
B̂(t)dt, B̂(0) = 0. (5)

This shows that B̂ is actually a time-inhomogeneous diffusion process with
quadratic variation 〈B̂〉(t) = t. In this direction, we also infer from (1) that
the process

b̂(t) = B̂(t)− t1−pB̂(1) for 0 ≤ t ≤ 1,

is independent of B̂(1). Hence, for any x ∈ R,

b̂(t) + t1−px = B̂(t) + t1−p(x− B̂(1)) for 0 ≤ t ≤ 1,

is a version of the bridge of B̂ from 0 to x with unit duration.

We further see from (1) that the scaling property,

for every c > 0,
(
c−1B̂(c2t)

)
t≥0

has the same law as B̂, (6)

as well as the time-inversion property,(
tB̂(1/t)

)
t>0

has the same law as
(
B̂(t)

)
t>0

,

both hold. In this vein, we also point at a remarkable connection with Ornstein-
Uhlenbeck processes: the process

Û(t) = e−t/2B̂(et) , t ∈ R

is a stationary Ornstein-Uhlenbeck process with infinitesimal generator

Gf(x) =
1

2
f ′′(x) + (p− 1/2)xf ′(x),

where f ∈ C2(R). This can be checked by stochastic calculus from (5), or
directly by observing from (1) and (6) that Û is a stationary Gaussian process
with covariance

E(Û(t)Û(0)) =
e(p−1/2)t

1− 2p
for t ≥ 0.

On the other hand, several classical results for the standard Brownian motion
plainly fail for its reinforced version. For instance, the increments of B̂ are
clearly not independent, and the time-reversal property (e.g. Exercise 1.11 in
Chapter I of [20]) also fails.
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3 An invariance principle with reinforcement

The main purpose of this section is to point out that noise reinforced Brownian
motions arise as universal scaling limits of a large class of random walks with step
reinforcement. We first recall some features on the so-called elephant random
walk, where the story begins.

The elephant random walk has been introduced by Schütz and Trimper [21]
as a discrete-time nearest neighbor process with memory on Z; it can be depicted
as follows. Fix some q ∈ (0, 1) and call q the memory parameter. Imagine that
a walker (an elephant) makes a first step in {−1,+1} at time 1; then at each
time n ≥ 2, it selects randomly a step from its past. With probability q, the
elephant repeats this step, and with complementary probability 1− q, it makes
the opposite step. Note that for q = 1/2, the elephant merely follows the path
of a simple symmetric random walk. The elephant random walk has generated
much interest in the recent years, we refer notably to [2, 3, 7, 8, 9, 17, 18],
see also [1, 4, 5, 6, 12] for variations, and references therein for further related
works. A remarkable feature is that its large time asymptotic behavior of an
elephant random walk is diffusive when the memory parameter q is less than
3/4 and super-diffusive when q > 3/4.

Remark 3.1. The laws of the iterated logarithm (4) for a noise reinforced Brow-
nian motion bear the same relation to that for the elephant random walk in
the diffusive regime (Corollary 1 in [8] and Theorem 3.2 in [3]; beware that
the memory parameter denoted by p there corresponds to q = (1 + p)/2 in the
present notation as it will be stressed below), as the law of the iterated loga-
rithm for the standard Brownian motion due to P. Lévy does to that for the
simple random walk due to A.Y. Khintchine.

We are interested in a generalization where the distribution of a typical
step of the walk is arbitrary, that we call step reinforced random walk. Fix a
parameter p ∈ (0, 1), called the reinforcement parameter1; at each discrete time,
with probability p, a step reinforced random walk repeats one of its preceding
steps chosen uniformly at random, and otherwise, i.e. with probability 1− p, it
has an independent increment with a fixed distribution. More precisely, consider
a sequence X1, X2, . . . of i.i.d. copies of a random variable X in R and define
recursively X̂1, X̂2, . . . as follows. Let (εi : i ≥ 2) be an independent sequence of
Bernoulli variables with parameter p. We set first X̂1 = X1, and next for i ≥ 2,
we let X̂i = Xi if εi = 0, whereas we define X̂i as a uniform random sample
from X̂1, . . . , X̂i−1 if εi = 1. Finally, the sequence of the partial sums

Ŝ(n) = X̂1 + · · ·+ X̂n, n ∈ N,

is referred to as a step reinforced random walk.

1Beware that we assumed p < 1/2 in the preceding sections. The first part of the present
section (super-diffusive regime) does not involve any noise reinforced Brownian motion, and
the case p ≥ 1/2 is allowed. In the second part of this section (diffusive regime), we shall
again focus on the case p < 1/2 and noise reinforced Brownian motions will then re-appear.
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When the typical step X has the Rademacher law, i.e. P(X = 1) = P(X =
−1) = 1/2, Kürsten [18] (see also [10]) pointed out that Ŝ is a version of the
elephant random walk with memory parameter q = (p + 1)/2 in the present
notation. We also note that Ŝ is a time-inhomogeneous Markov chain when X
can take at most two values, but otherwise the Markov property fails for Ŝ.
When X has a symmetric stable distribution, Ŝ is the so-called shark random
swim which has been studied in depth by Businger [6]. More general versions
when the distribution of X is infinitely divisible have been considered in [5].

The main result of Businger [6] is that the large time asymptotic behavior of
a shark random swim exhibits a phase transition similar to that for the elephant
random walk, but for a different critical parameter. We shall now extend this
to a large class of step reinforced random walks. In the sequel we implicitly
rule out the degenerate case when the typical step variable X is a constant. We
start with the super-diffusive regime for which all the ingredients are already in
Section 3.1 in [6].

Theorem 3.2. Let p ∈ (1/2, 1), and suppose that X ∈ L2(P). Then

lim
n→∞

Ŝ(n)− nE(X)

np
= L in L2(P),

where L is some non-degenerate random variable.

Proof. By centering and normalizing, we may assume without loss of generality
that E(X) = 0 and Var(X) = 1. One first introduces for every i, n ∈ N,
the number ri,n of repetitions of the variable Xi in the reinforced sequence

X̂1, . . . , X̂n (in particular, ri,n = 0 when either εi = 1 or i > n). We stress that
repetition numbers only depend on the Bernoulli variables εj and are hence
independent of the variables Xj . We know from Lemmas 3 and 5 in [6] that for
each i ∈ N

lim
n→∞

n−pri,n = Ri, a.s.

where Ri is some non-degenerated random variable with
∑
i E
(
R2
i

)
<∞.

In particular,
∑
iR

2
i < ∞ a.s., and since the variables Xi are i.i.d. cen-

tered and with unit variance, the sum
∑
iRiXi = L is well-defined a.s. (as

a martingale limit, conditionally on the Ri). More precisely, E(L) = 0 and
E(L2) =

∑
i E
(
R2
i

)
.

To conclude, we recall from Equation (6) in [6] that

lim
n→∞

∑
i

E
(∣∣n−pri,n −Ri∣∣2) = 0. (7)

By the construction of the step reinforced random walk, we have

Ŝ(n) =
∑
i

ri,nXi.
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Since the variables ri,n and Ri are independent of the Xi, and further E(X) = 0
and E(X2) = 1, there is the identity

E
(
|n−pŜ(n)− L|2

)
= E

(∑
i

∣∣n−pri,n −Ri∣∣2) .
An appeal to (7) completes the proof.

We then turn our attention to the diffusive regime, and obtain a version of
Donsker’s invariance principle for step reinforced random walks.

Theorem 3.3. Let p ∈ (0, 1/2), and suppose that X ∈ Lr(P) for some r > 1/p.
Then as n→∞, the sequence of processes

Ŝ(btnc)− tnE(X)√
nVar(X)

, t ≥ 0

converges in distribution in the sense of Skorohod towards a noise reinforced
Brownian motion B̂ with reinforcement parameter p.

Remark 3.4. It is of course tempting to conjecture that Theorem 3.3 holds under
the weaker assumption X ∈ L2(P). Note in particular that our requirement
X ∈ Lr(P) for some r > 1/p gets stronger as the reinforcement parameter p
decreases to 0+, which is clearly contrary to the intuition. This requirement is
essential for establishing the forthcoming Lemma 3.8, which however is much
stronger than the asymptotic negligibility of the maximal jumps that is needed
for applying the martingale FCLT.

The method used in [2] to establish Theorem 3.3 for the elephant random
walk relied crucially on limit theorems for generalized Pólia urns due to Janson
[14]. Unfortunately this approach is not available for arbitrary step distribu-
tions, notably as one would need to work with urn models having types in an
infinite space (the real line R to be more specific), and how to deal with this
kind of urns is still an open problem; see Remark 4.1 in [14]. Our approach
relies essentially on the martingale FCLT, which also plays a key role for urn
models (see [11, 14]), as well in the works of Coletti et al. [7, 8] and of Bercu
[3] on the elephant random walk. For the sake of simplicity, we only consider
here the one-dimensional setting only, however the argument could be readily
adapted to Rd; see also [4].

The rest of this section is devoted to the proof of Theorem 3.3; without loss
of generality, we henceforth assume that X ∈ Lr(P) for some r > 1/p > 2 with
E(X) = 0 and Var(X) = 1. These assumptions are implicit in the forthcoming
statements and their proofs.

We first embed the step reinforced random walk in a branching process as
follows. Let Y = (Yt)t≥0 be a standard Yule process, that is Y is a pure birth
process started from Y0 = 1, with birth rate n from any state n ∈ N. We
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further assume that Y and Ŝ are independent, and will mainly work with the
time-changed process Ŝ(Y·)

Before tackling the proof of Theorem 3.3, it may be worth discussing a bit
our motivation for introducing the time-substitution based on an independent
Yule process. Even though this discussion will not be used in the proof, it
nonetheless provides a useful guiding line for our approach. Roughly speaking,
Y describes a population model started from a single ancestor, where individuals
are eternal, and each begets a child at unit rate, independently of the other
individuals. Those individuals are naturally enumerated in the increasing order
of their birth time, in particular the ancestor is the first individual. We decide
to assign the type X̂n to the n-th individual, and write

Zt(dx) =

Yt∑
n=1

δX̂(n)(dx), x ∈ R,

for the point process of the types of individuals alive at time t. We see from
basic properties of independent exponential clocks that Z = (Zt)t≥0 is a (mul-
titype) branching process, in which each individual begets a child at unit rate,
independently of the other individuals. A child is either a clone of its parent,
an event which occurs with probability p, or a mutant, an event which occurs
with probability 1− p. If a child is a clone, then its type is the same as that of
its parent, whereas if it is a mutant, its type is given by an independent copy of
X. In this setting, there are the identities

Yt = Zt(1) and Ŝ(Yt) = Zt(Id), (8)

with the notation 1(x) = 1, Id(x) = x and Zt(f) =
∫
R f(x)Zt(dx). The key

point is that the functions z 7→ z(1) and z 7→ z(Id) on the space of point
measures z are eigenfunctions for the infinitesimal generator of the branching
process Z, for the eigenvalues 1 and p, respectively.

Lemma 3.5. The process

M(t) = e−ptŜ(Yt), for t ≥ 0,

is a square integrable purely discontinuous martingale.

Proof. Plainly, E(Ŝ(n)2) ≤ n2E(X2) = n2, and since Ŝ and Y are independent
with E(Y 2

t ) <∞, M(t) is indeed square integrable. We next point out that for
any n ∈ N,

E(X̂(n+ 1) | X̂(1), . . . , X̂(n)) = (1− p)E(X) + p
X̂(1) + · · ·+ X̂(n)

n

= p
Ŝ(n)

n
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(this observation is also the starting point of the analysis of the elephant random
walk in [7, 8, 3]). Since the Yule process has precisely jump rate n from the
state n, this entails that

Ŝ(Yt)− p
∫ t

0

Ŝ(Ys)ds, for t ≥ 0

is a martingale, and our statement then follows from elementary stochastic
calculus.

We will need to estimate the angle-bracket 〈M〉 of M , and in this direction,
we first introduce

V̂ (n) = X̂(1)2 + · · ·+ X̂(n)2 , n ∈ N.

Lemma 3.6. We have that, as t→∞,

E
(∣∣∣∣e−ptV̂ (Yt)− (1− p)

∫ t

0

e−psYsds

∣∣∣∣) = o(e(1−p)t).

Proof. Just as in the proof of Lemma 3.5, we note the identity

E(X̂(n+ 1)2 | X̂(1), . . . , X̂(n)) = p
V̂ (n)

n
+ 1− p,

and get by stochastic calculus that the process

M ′(t) = e−ptV̂ (Yt)− (1− p)
∫ t

0

e−psYsds, t ≥ 0

is a purely discontinuous martingale in Lr/2(P).

Suppose first that r ≥ 4. Then the square bracket of M ′ can be expressed
as

[M ′](t) =

∫
(0,t]

e−2ps|X̂(Ys)|4dYs, t ≥ 0.

We compute its expected value and get

E(X4)E

(∫
(0,t]

e−2psdYs

)
= E(X4)

∫ t

0

e(1−2p)sds

= o(e2(1−p)t),

where for the first equality, we used that the instantaneous jump rate of the Yule
process at time s equals Ys and E(Ys) = es. We conclude by the Cauchy-Schwarz
inequality that

E(|M ′(t)−M ′(0)|) ≤ E((M ′(t)−M ′(0))2)1/2 = E([M ′](t))1/2 = o(e(1−p)t).
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Suppose then that 2 < r < 4. Since r/4 < 1 and dYs is a point measure,
there is the inequality

[M ′]r/4(t) ≤
∫
(0,t]

e−prs/2|X̂(Ys)|rdYs, t ≥ 0.

We compute the expected value of the right-hand side just as above, and get

E
(

[M ′]r/4(t)
)
≤ E(|X|r)

∫ t

0

e(1−pr/2)sds = o(e(1−p)rt/2).

Since r/2 > 1, we conclude from Jensen’s inequality at the first line and the
Burkholder-Davis-Gundy inequality (see, e.g. Theorem 26.12 in [15]) at the
second line that

E(|M ′(t)−M ′(0)|) ≤ E(|M ′(t)−M ′(0)|r/2)2/r

≤ c(r)E([M ′]r/4(t))2/r

= o(e(1−p)t),

where c(r) denotes some constant depending on r only.

We next recall that the asymptotic behavior of the Yule is described by

lim
t→∞

e−tYt = ε a.s. (9)

where ε is a standard exponential variable. Needless to say, ε is independent of
Ŝ.

Corollary 3.7. The angle-bracket 〈M〉 of the martingale M in Lemma 3.5
fulfills

lim
t→∞

e−(1−2p)t〈M〉(t) =
ε

1− 2p
in probability.

Proof. The square-bracket process of M can be expressed in the form

[M ](t) =

∫
(0,t]

e−2ps|X̂(Ys)|2dYs, t ≥ 0,

and if follows readily that its predictable compensator 〈M〉 is given by

〈M〉(t) =

∫
(0,t]

e−2ps
(
pV̂ (Ys) + (1− p)Ys

)
ds, t ≥ 0. (10)

Since 2p < 1, our statement now derives from (9), (10) and Lemma 3.6.

Next, we point out that the maximal jump size of M has a finite moment of
order r.
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Lemma 3.8. The random variable ∆∗ = supt≥0 |Mt −Mt−| belongs to Lr(P).

We stress that the initial value M0 is viewed as an initial jump (i.e. we
use with the convention M0− = 0) and therefore is taken into account in the
definition of ∆∗.

Proof. Let τ(n) = inf{t > 0 : Yt = n} denote the first hitting time of n ∈ N by
the Yule process. From the definition of M , there is the identity

∆∗ = sup
n∈N

e−pτ(n)|X̂(n)|.

Since τ(n) and X̂(n) are independent and each X̂(n) is a copy of X, there is
the inequality

E((∆∗)r) ≤ E(|X|r)
∞∑
n=1

E(e−rpτ(n)),

and we just need to check that the series in the right-hand side converges.

We express E(e−rpτ(n)) = P(Yσ(rp) > n), where σ(rp) denotes an exponential
random variable with parameter rp, which is independent of the Yule process.
In this setting, is it well-known that Yσ(rp) has the so-called Yule-Simon distri-
bution with parameter rp,

P(Yσ(rp) = k) = rpB(k, rp+ 1) ∼ rpΓ(rp+ 1)k−(rp+1) as k →∞,

where B (respectively, Γ) stands for the beta (respectively, gamma) function.
Since rp > 1, this ensures the finiteness of

∑∞
n=1 E(e−rpτ(n)), and hence com-

pletes the proof.

The angle-bracket 〈M〉 is a continuous strictly increasing bijection from R+

to R+ a.s., see (10), and we write T for the inverse bijection. We introduce for
each n ∈ N the process

Nn(t) = n−1/2MT (nt) = n−1/2e−pT (nt)Ŝ(YT (nt)), t ≥ 0.

We are in position of applying the martingale FCLT.

Proposition 3.9. As n → ∞, the sequence of processes Nn converges in dis-
tribution in the sense of Skorohod to a standard Brownian motion.

Proof. Plainly, each Nn is a square-integrable martingale with angle-bracket
〈Nn〉(t) = t, and Lemma 3.8 ensures that the maximum jump in Nn is asymp-
totically negligible in Lr(P). This enables us to apply the martingale FCLT;
see e.g. Theorem 2.1 in [22], and also Section VIII.3 in [13] for more general
versions.
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We shall actually need a slightly stronger version of Proposition 3.9 in the
which the convergence holds conditionally on the variable ε in (9).

Corollary 3.10. As n → ∞, the sequence of pairs (ε,Nn) converges in dis-
tribution in the sense of Skorohod to (ε, B) where B is a standard Brownian
motion independent of ε.

Proof. First fix t > 0 and consider a random variable A(t) which is measurable
with respect to the sigma-algebra σ(MT (s) : 0 ≤ s ≤ t). The statement with
A(t) replacing ε follows from the martingale FCTL applied to the sequence of
processes (Nn(s+ t/n))s≥0, just as in Proposition 3.9. Corollary 3.10 can then
be deduced, provided that we can choose A(t) such that

lim
t→∞

A(t) = ε a.s. (11)

Specifically, consider any continuous functional F on the Skorohod space with
|F | ≤ 1, and any continuous and bounded function f on R. Taking (11) for
granted, for any η > 0 arbitrarily small, we can first choose t > 0 sufficiently
large so that

E(|f(A(t))− f(ε)|) ≤ η,

and then n(t) ∈ N such that

|E (f(A(t))F (Nn))− E(f(A(t)))E(F (B)))| ≤ η for all n ≥ n(t).

We can conclude from the triangle inequality that

|E (f(ε)F (Nn))− E(f(ε))E(F (B)))| ≤ 3η for all n ≥ n(t).

We now have to construct variables A(t) so that (11) holds, and in this
direction, we first assume that P(X = 0) = 0. All the steps of Ŝ are non-zero
a.s., and YT (t) is then the total number of jumps of the process MT (·) on the
time interval [0, t] (recall that this takes the initial jump at time 0 into account),
and hence is measurable with respect to σ(MT (s) : 0 ≤ s ≤ t). On the other
hand, we deduce from Corollary 3.7 that

T (t) =
1

1− 2p
ln

(
(1− 2p)t

ε

)
+ o(1) as t→∞, (12)

and then from (9) that

YT (t) ∼ ((1− 2p)t)1/(1−2p)ε−2p/(1−2p) as t→∞. (13)

The construction of the sough variables A(t) is plain from (13).

The case when P(X = 0) = a ∈ (0, 1) only requires a minor modification. We
can no longer identify YT (t) with the total number of jumps of the process MT (·)
on the time interval [0, t]. Nonetheless the latter is now close to (1− a)YT (t) for
t� 1, and we can conclude just as above.
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We now have all the ingredients needed for the proof of the invariance prin-
ciple.

Proof of Theorem 3.3. Set

s = s(t) = (ε−2pt)1/(1−2p) and k = k(n) = ((1− 2p)n)1/(1−2p),

so (13) and (12) yield respectively

YT (nt) ∼ ks and e−pT (nt) ∼ (ks/ε)−p.

Since n = k1−2p/(1− 2p) and t = ε2ps1−2p, we deduce from Corollary 3.10 and
the very definition of the Skorohod’s topology involving changes of time (see, e.g.
Section VI.1 in [13]) that as k →∞, the sequence of processes k−1/2(Ŝ(bksc))s≥0
converges in distribution in the sense of Skorohod towards(

ε−p√
1− 2p

spB(ε2ps1−2p)

)
s≥0

,

where B is a standard Brownian motion independent of ε. By the scaling prop-
erty of Brownian motion, the process displayed above has the same distribution
as (

sp√
1− 2p

B(s1−2p)

)
s≥0

,

and we complete the proof with (3).
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to Pólya-type urns. Phys. Rev. E 94 (Nov 2016), 052134.

[3] Bercu, B. A martingale approach for the elephant random walk. J. Phys.
A 51, 1 (2018), 015201, 16.

[4] Bercu, B., and Laulin, L. On the multi-dimensional elephant random
walk. Journal of Statistical Physics 175, 6 (Jun 2019), 1146–1163.

[5] Bertoin, J. Noise reinforcement for Lévy processes. arXiv:1810.08364.

[6] Businger, S. The shark random swim (Lévy flight with memory). J. Stat.
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[21] Schütz, G. M., and Trimper, S. Elephants can always remember:
Exact long-range memory effects in a non-markovian random walk. Phys.
Rev. E 70 (Oct 2004), 045101.

[22] Whitt, W. Proofs of the martingale FCLT. Probab. Surv. 4 (2007),
268–302.

13


	Introduction
	Some basic properties
	An invariance principle with reinforcement

