
HAL Id: hal-02341195
https://hal.science/hal-02341195

Submitted on 31 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive Strategies for Patient Monitoring in Mobile
Health Applications

Mathieu Bagot, Pascale Launay, Frédéric Guidec

To cite this version:
Mathieu Bagot, Pascale Launay, Frédéric Guidec. Adaptive Strategies for Patient Monitoring in Mo-
bile Health Applications. International Symposium on Health and Medical informatics, Management
and Security (HMiMS 2019), Oct 2019, Granada, Spain. �hal-02341195�

https://hal.science/hal-02341195
https://hal.archives-ouvertes.fr


Adaptive Strategies for Patient Monitoring
in Mobile Health Applications

Mathieu Bagot∗, Pascale Launay†, and Frederic Guidec‡
Université Bretagne Sud

Laboratoire IRISA
Vannes, France

Email: ∗mathieu.bagot@univ-ubs.fr, †pascale.launay@univ-ubs.fr, ‡frederic.guidec@univ-ubs.fr

IRISA, CominLabs, Université Bretagne Sud

Abstract—Remotely monitoring the health status of patients in
all their activities of daily living is an interesting prospect. Yet
an m-Health application devoted to patient monitoring should be
able to deal with constrained and unstable operating conditions,
such as limited power budget and disruption-prone network
connectivity. This paper presents REGAS, a middleware system
that makes it possible for a developer to define and enforce
adaptive strategies, so their application can continuously adjust
its behavior to changing operating conditions. Experimental
results confirm that carefully designed strategies can have a
significant impact on transmission delays, as well as on the power
consumption of an m-Health monitoring application.

Index Terms—mobile health, remote monitoring, context-
aware application, middleware system, adaptive monitoring

I. INTRODUCTION

The combination of wearable sensors and cellular networks
offers interesting prospects for data acquisition and transmis-
sion while people are on the move. In a typical m-Health
application, the health status of a heart failure or peripheral
artery disease patient can be monitored continuously and
remotely, while this patient remains free to live a “normal”
life rather than stay at home or in a hospital ward. Yet
developing fully operational solutions for m-Health monitoring
remains a challenge, because all pathologies do not require the
same kind of monitoring. A patient may for example have to
wear a sensor providing full-featured ECG (thus producing a
continuous flow of samples at a rate of several kBps), while
another patient would only need to wear a heart rate meter
(producing only a few bytes per second). It could be useful
to track the location of a particularly fragile patient, while
location tracking would be totally useless —and even overly
intrusive— for another patient.

In order to meet the needs of different pathologies, an m-
Health monitoring system must therefore be modular, so the
wearable sensors can be selected according to the specific
condition of each patient, and so the characteristics of the
data samples produced by these sensors can also be taken into
account at application level. A monitoring system meant to be
used while on the move should also account for the variability
of the available resources, such as power budget and network
connectivity. Indeed, monitoring the health status of a mobile
patient requires using battery-powered wearable devices (or

energy harvesting devices), so power consumption must be
considered with great care in order to prevent unexpected
failures of the monitoring system. As for network connectivity,
it is often a highly volatile resource when a patient is moving
around. On certain occasions a patient may be located in an
area covered by several kinds of cellular networks simultane-
ously (e.g., Wi-Fi, GPRS, EDGE... up to 5G), but on other
occasions the same patient may visit a “white area” where no
network service is available whatsoever.

In order to deal with such varying constraints, an m-Health
monitoring system should be able to change its behavior
automatically based on its current conditions of operation,
switching seamlessly from one operation mode to another
depending on variations observed in the available resources
(e.g., battery level, network connectivity), or depending on
varying requirements of the application itself (e.g., level of
urgency of the data to be transmitted).

In this paper we present REGAS (REsource manaGement
with Adaptive Strategies), a context-aware middleware system
that has been designed specifically to facilitate the devel-
opment of adaptive applications, especially those devoted
to data acquisition and transmission in resource-constrained
environments. This middleware system has been developed in
the framework of project SHERPAM1, whose focus is on m-
Health monitoring. Yet REGAS is quite flexible, so it could also
be used for other purposes, such as adaptive data collection in
the IoT or in VANETs.

With REGAS a developer does not have to implement adap-
tive strategies directly in the source code of an application,
which would make this source code overly complex and hard
to maintain. Instead these strategies can be externalized from
the application, and be enforced at middleware level. This
approach fosters a clear decoupling between the core of the
application (i.e., what it does) and its adaptive behavior (i.e.,
how it does it).

The remainder of this paper is organized as follows. Related
work is discussed in Section II. In Section III we present
the m-Health monitoring application developed in project
SHERPAM as a typical use case, highlighting the need for such
an application to adapt its behavior continuously in order to
account for the state of the resources available at runtime. In

1https://sherpam.cominlabs.u-bretagneloire.fr

http://www.irisa.fr
http://www.cominlabs.ueb.eu
http://www.univ-ubs.fr
https://sherpam.cominlabs.u-bretagneloire.fr


Section IV we propose an overview of the REGAS middleware
system, and show how this system can help devise and support
adaptive strategies in an m-Health monitoring application. In
Section V we present experimental and emulation results that
confirm the advantage of allowing such an application to
be adaptive. Section VI concludes this paper, and proposes
directions for future work.

II. RELATED WORK

Adaptive context-aware applications are applications that
can adapt their behavior automatically according to changes
observed in their context of operation. In [1] the context
is defined as any piece of information that can be used to
characterize the situation of an entity (i.e., a person, a place or
an object). Based on this definition, context-awareness consists
in using contextual information to optimize a system and/or
enhance the user experience in a continuous process as the
context changes.

A survey on previous work in Ambient Assisted Living
(AAL) is available in [2], covering topics such as e-Health in
smart homes [3] and behavioural change detection [4]. Most
of the works in AAL propose a user-centric adaptation, as
they aim at exploiting high-level contextual information such
as a patient’s usual activities in order to detect anomalies,
or to trigger changes in the services offered to that patient.
Since AAL is primarily focused on assisting patients at home,
most AAL solutions do not address the problem of monitoring
patients when they leave their home. Besides, the problem of
dealing with resource-constrained wearable devices is usually
not considered as being a prime concern in AAL solutions.

In contrast, m-Health applications typically aim at providing
e-Health services to mobile patients [5]. Each m-Health project
usually focuses on a particular use case, and a dedicated
application is developed for this use case. A user-centric
approach is often proposed to personalize the application to
the patient’s profile, as proposed in [6]. Contextual information
can also be used to send feedback to the patient, to a caregiver,
or to the medical staff when an anomaly is detected. The
detection of anomalies can be performed directly on the device
worn by the patient via embedded data processing [7], [8], [9],
or data can be transferred to the cloud first, where important
computing resources can be mobilized for data analysis [10].

For practical reasons the main device worn by a patient
is often a smartphone, which serves as a gateway between
sensors (also worn by the patient) and remote servers dedi-
cated to data storage and processing. Wi-Fi and mobile data
networks can be used for data transmissions to these servers.
The management of this smartphone’s limited resources —
especially the battery— is usually not considered, and most
proposals depend entirely on the default network manager
implemented in the operating system of the device to drive
the transmission of data.

The use of heteregeneous networks for data transmission is
investigated in [11], as well as in Release 15 [12] of the 5G
specification. This release considers three main features for
mobile health applications:

Figure 1. Illustration of the SHERPAM system

• the promise of better network coverage, and higher trans-
mission throughputs.

• an improvement of the handover management based on
the QoS required by the applications. For mobile health
applications, this QoS is characterized by the need of
low latency, and in the case of biosignal acquisition, high
uplink throughput.

• the introduction of Mobile Edge Computing that offers
interesting prospects to offload some computing processes
closer to the patient.

These consideration mostly concern the network infrastruc-
ture, while resource management of wearable devices, and
most specifically energy-efficiency, are prime concerns when
dealing with constrained devices, as observed in [13].

III. USE CASE

In the remainder of this paper, we will consider the m-
Health application developed in the framework of project
SHERPAM as a typical m-Health use case. This application
is meant to allow the continuous monitoring of cardiopathic
and arteriopathic patients during all kinds of indoor and
outdoor activities, including sport practise. Wearable sensors
are used to acquire data pertaining to a patient’s health status
(acceleration, heart rate or full-featured ECG, ambient and
body, temperature, location, etc.). The data samples produced
by these sensors are collected wirelessly (mostly via Bluetooth
transmission) by an Android smartphone, which serves as a
gateway and is responsible for transmitting the data further
toward a remote site where they will be processed (see
Figure. 1).

The general objective is that each data sample acquired
from a sensor should be processed in “as close to real-time
as possible”, while ensuring a reasonable autonomy (typically
one day) of the monitoring system. A tradeoff must therefore
be maintained between sending each data sample to the remote
site immediately after it has been produced by the sensor, and
differing this transmission for a while in order to preserve
the resources involved in data transmissions. Indeed, every
developer of mobile applications is aware that maintaining
active transmission channels between a smartphone and a
remote server is the best way to deplete the smartphone’s



battery in a very short time. In contrast, opening transmission
channels every now and then to perform short transmission
bursts makes it possible to increase the smartphone’s autonomy
significantly. Android’s synchronization mechanism is actually
based on that idea, but since REGAS is meant to be portable
over several kinds of platforms it cannot simply rely on An-
droid’s features. Besides, implementing transmission strategies
directly in REGAS makes it possible to define and enforce
advanced strategies that could hardly be driven by Android’s
synchronization mechanism.

In project SHERPAM the data samples produced by the
sensors are collected by the gateway (i.e., smartphone), which
aggregates these samples in bundles. A bundle is basically
a collection of data samples collected over a certain time
interval, together with meta-information that characterizes
these data (e.g., timestamps, type and format of the data, etc.).
Bundles serve as basic transmission units between the gateway
and the remote server to which the data should eventually be
delivered. A bundle can be stored in the gateway for a while,
until an opportunity occurs to upload this bundle to the server.
In order to preserve the power budget of the smartphone —
thus ensuring the maximum autonomy— the SHERPAM system
deliberately switches the Wi-Fi and cellular radio interfaces
off whenever possible, and it only switches either of them
on when data bundles must be uploaded to the server. Yet,
network connectivity (i.e., the availability of a usable Wi-Fi
access point or cell tower) is not guaranteed when a radio
interface is switched on, so backoff strategies must be enforced
in such circumstances.

IV. OVERVIEW OF THE REGAS MIDDLEWARE SYSTEM

REGAS (REsource manaGer using Adaptive Strategies) is a
context-aware middleware system that is meant to facilitate the
development of context-aware applications, especially those
running in resource-constrained environments. REGAS focuses
on the management of the data transmission by externalizing
adaptive strategies at middleware level instead of implement-
ing them directly in the source code of an application.

The architecture of the REGAS system is presented in Fig. 2.
This architecture is roughly similar to the classical architecture
of context-aware applications presented in [14]. It includes five
main components, which are discussed below.

A. Probes

With REGAS, the whole system is perceived as a set of re-
sources, whose capacity and availability can change over time.
Probes are used to gather information about theses resources,
whether they are part of the underlying operating system, of
the application itself, or of the surrounding environment.

Probes observing the operating system can for example
return information about the current amount of available
memory, about the CPU load, or about the state of each
network interface. When the application must run on a battery-
powered host, an important resource is the battery itself,
whose maximum capacity is limited, and whose current ca-
pacity tends to decrease over time. A battery probe can

OS

Application

trigger

action

update

REGAS

notify

observe

update

consult

execute

action

Application

API

Application Adapter

Application

Probe

Software

Probe

execute

action

probe

Action

Manager

Actions

Repository

Decision

Maker

Rules

Repository

State

Manager

State

Register

Figure 2. Overall architecture of the REGAS system

therefore provide information about the battery’s maximal
capacity, about its current level, and about its charging status
(empty/charging/charged/discharging).

Probes capable of observing an application must usually be
developed specifically for this application, in order to signal
any change in its configuration parameters or operating mode.
Adaptive strategies enforced by REGAS can thus account
for the actual state and needs of an application, rather than
considering this application as a black box.

The environment includes any element that is not part of the
core of the system. This may include sensors or actuators, net-
works, or even users. Dedicated probes are therefore required
to collect information about such external elements whenever
required. When the application must run on a mobile host, for
example, the available wireless connectivity is likely to change
over time. Dedicated probes can return information about the
surrounding Wi-Fi access points or about cell towers.

B. State Manager

The State Manager contains the contextual information
adaptive strategies can be based on. This contextual informa-
tion is mostly provided by the system’s probes, but it also
pertains to internal elements that are used by REGAS, such as
internal timers.

Information maintained in the State Manager is stored in
a registry, which is organized as a (key, value) map. The
maximal capacity of a 3000 mAh battery may for example
be stored in this map as (batt_cap, 3000), the current battery
level as (batt_level, 56%), and the current charging status as
(batt_charging_status, charged).

C. Decision Maker

The adaptive behavior of the system is defined as a set
of rules, which must be enforced by the Decision Maker.
Whenever a change is observed in the State Manager, this



change is notified to the Decision Maker, which then parses
its rules in order to determine if one or several or them are
addressed by this change.

Each rule is described as a (trigger, condition, action)
tuple. The trigger field is meant to match a key in the State
Manager’s registry. Whenever the value associated with this
key is altered in the registry, the rule is examined by the
Decision Maker.

The condition field defines the logical conditions for the
action to be executed. These conditions can relate to any entry
or combination of entries in the registry. The action field refers
to an action that can be executed by the Action Manager, upon
request by the Decision Maker.

As an illustration, consider the following rule:

(batt_level,
batt_level < 20
AND batt_charging_status == discharging
AND cell_tx_enabled == true,

disable_cell_transmissions)

This rule is triggered (and thus examined) whenever the value
associated with key batt_level changes in the registry. Yet
the condition field specifies that the rule matches only if
the battery level is below 20%, is still decreasing (as the
battery is discharging), and if cellular transmissions are still
allowed. In that case, function disable_cell_transmissions is
called upon the Action Manager. Note that the action does not
simply consist in changing the value of key cell_tx_enabled
in the registry, as this would have no effect whatsoever on
the current state of wireless interfaces and transmissions. The
Action Manager is therefore required to enforce a decision
made by the Decision Manager, and enforcing this decision
will usually result in new changes in the registry.

D. Action Manager

The Action Manager provides a set of actions that can be
executed upon the decision of the Decision Manager. These
actions can involve sending commands to the operating system
(e.g., enabling or disabling a wireless interface) or to the
application via an Application Adapter (e.g., switching to a
different operating mode). In some cases, the execution of an
action can directly lead to changes in the State Manager’s
registry. This is for example the case when an action consists
in starting a timer, which in turn will trigger another action
when the timer completes. In such a case, information must be
entered in the registry in order to maintain information about
this timer.

E. Application Adapter

The Application Adapter is an optional software module
that can be required to allow REGAS to interact with a given
application. It defines specific probes that make it possible for
REGAS to perceive the application’s state, and it provides an
API so that functions defined in the application can be called
by the Action Manager.

V. EXPERIMENTATION RESULTS

A. Evaluation method

Running real-life experiments involving mobile devices is
always a tedious task, and the results thus obtained can
hardly compare because it is always difficult —if not entirely
impossible— to replay the very same scenario several times.
In order to show how REGAS can perform while enforcing
different adaptive strategies, we have developed an emulation
platform that makes it possible to replay a predefined scenario
several times with different adaptive strategies, and to compare
the results thus obtained in a fully controlled environment.

When running in real conditions, the REGAS system per-
ceives its environment via real probes, that keep it informed
about the state of the underlying platform. When running in
emulation mode, REGAS interacts with virtual probes, which
are part of the emulation platform, and which present the state
of virtual resources whose evolution is driven according to a
pre-defined scenario.

Power consumption: The emulation platform implements
a power consumption model, whose parameters have been
obtained by measuring the actual power consumption observed
on a smartphone in real-life conditions. More specifically, we
used a Moto G 4G smartphone to measure the impact of
enabling or disabling the Wi-Fi and cellular radios, of using
any of these radios for sending or receiving data (at different
bitrates and using different modulation standards), of using the
GPS receiver, of switching the display screen on and off, etc.
The parameters thus obtained have been fed into our power
consumption model, which allows the emulation platform
to closely mimic the power consumption while running an
experiment involving REGAS.

Network connectivity: The network connectivity ob-
served by a smartphone when its owner is moving around
changes continuously. Our emulation platform can replay a
connectivity scenario as many times as needed, which makes
it possible to observe how tiny changes in the adaptation rules
enforced by REGAS can impact the resulting performance of
the system. A connectivity scenario played by the emulation
platform can be totally artificial, or it can be a scenario that
has first been captured in real life by a user moving around
with a smartphone (serving as a recorder) in their pocket.

The experimentation results presented in this paper have
been obtained using such a real-life connectivity scenario. A
volunteer has carried a smartphone over a timespan of 11
hours, and the available networks detected by the smartphone
over this timespan have been recorded. Figure 3 shows the
resulting timeline, using a HIGH-LOW presentation for each
network technology. It can for example be observed that
Wi-Fi connectivity is only available for 1h22 (12% of the
time) during the scenario, at the beginning and end of the
timespan (as the volunteer was at home at these moments),
but only occasionally during the day (as the volunteer was
visiting a public library, as well as places with accessible
hotspots). LTE connectivity was observed for rather long
periods of time, but with a long gap in the middle of the



Wi-Fi

EDGE

HSPA

LTE

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00

N
e
tw

o
rk

 T
y
p
e

Time (HH:MM)

Figure 3. Network connectivity scenario

day. HSPA was also observed quite frequently, but with a
similar —though shorter— gap in the middle of the day. As
for EDGE connectivity, it was available most of the time, but
with occasional connectivity disruptions that each lasted a few
minutes (notably between 06:00 and 08:30). It is interesting to
notice that during these disruptions no other kind of network
connectivity was available, which means that the volunteer
carrying the smartphone was actually traversing “white areas”,
where no transmission is possible, whatever the technology
considered.

Several other connectivity scenarios have been recorded by
volunteers, using the same approach. These scenarios consti-
tute a valuable traceset with which different adaptive strategies
can be examined. They have also been used to validate our
power consumption model: each scenario has been replayed
with REGAS in emulation mode in order to confirm that the
power consumption simulated by the emulation platform is
similar to that observed in the corresponding traceset.

Transmission modes: We conducted experiments in order
to compare three different transmission modes, referred to as
bundle0, bundle1, and bundle5 in the remaining of this
paper. With mode bundle0 we assume that the data samples
produced by sensors are not assembled in bundles in order
to be sent in burst mode to the remote server. Instead they
are sent immediately (if the network connectivity permits)
to the server. This mode therefore promotes a continuous
transmission of data to the server, which clearly yields the
least latency, but which also yields higher power consumption.
With mode bundle1 the data samples acquired from sensors
are assembled in bundles, each bundle containing the samples
acquired over one minute. With mode bundle5 a similar ap-
proach is used, but each bundle contains the samples acquired
over five minutes.

Data production: During these experiments we con-
ducted, we assumed that sensors associated with the smart-
phone produce data samples at a steady rate of 600 bytes

per second (which is a realistic bitrate when an ECG sensor
is used). These data samples can optionally be assembled in
bundles upon being received by the smartphone. Moreover,
we assume that high-priority data are produced during two
short episodes during the 11 hour timespan considered in our
experiments. The first episode occurs from 3h00 to 3h10, and
the second episode occurs from 6h55 to 7h15.

Other parameters: The virtual smartphone modeled by
the emulation platform is assumed to be powered by a
1500 mAh battery, and we assume that this battery is ini-
tially fully charged, and then keeps discharging until being
completely depleted. The smartphone can use both Wi-Fi
and cellular networking (more precisely 2.5G, 3G, and 4G
transmission standards), with an unlimited data plan.

Adaptive strategies: Four adaptive strategies have been
defined and implemented with REGAS, for the sake of demon-
stration. Before describing these strategies it is important to
emphasize that our motivation is not to determine which of
these strategies is the best one, since each strategy may actu-
ally be better suited for a particular combination of application
and connectivity scenarios. In this paper our motivation is only
to demonstrate that such strategies can actually be defined
and enforced with REGAS, and that applying one or the other
strategy may yield significant differences in terms of power
consumption and transmission delays.

• “Android-As-Usual” Strategy (AAUS): this
strategy is meant to serve as a baseline in our exper-
iments. It mimics the default behavior observed in an
Android platform, assuming that both the Wi-Fi and
cellular radios are enabled continuously. In such a case
Android’s default strategy consists in prefering using Wi-
Fi transmissions over cellular transmissions. Besides LTE
transmissions are preferred over HSPA transmissions,
which themselves are preferred over EDGE transmis-
sions.

• “Wi-Fi Only” Strategy (WFOS): this strategy
only attempts to use Wi-Fi transmissions to send data.
The Wi-Fi radio is thus enabled continuously, while the
cellular radio is turned off. Admittedly such a strategy
may not be very appropriate with a connectivity scenario
such as that shown in Figure 3, but it may prove useful
when dealing with a very limited mobile data plan, or
when the user mostly moves in an area where Wi-Fi
connectivity is almost always guaranteed (e.g., at home,
at work, or while moving in an area covered by many
public hotspots).

• “Wi-Fi Preferred” Strategy (WFPS): with
this strategy we assume that the data acquired from
the sensors are time-sensitive, and must be sent to the
server within a reasonable delay (about 3 minutes in
the case considered here). However, since the power
budget of the smartphone is considered to be a highly
critical resource, we try to foster Wi-Fi transmissions
over cellular transmissions. The Wi-Fi radio of the
smartphone is therefore enabled continuously, while the
cellular radio is disabled most of the time. The cellular



0

10

20

30

40

50

60

70

80

90

100

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00

WFOS

B
a
tt

e
ry

 l
e
v
e
l 
(%

)

Time (HH:MM)

WFPS

bundle0
AAUS

bundle0 WFPS

bundle1

WFPS

bundle5

HPOS

bundle1

HPOS

bundle0

AAUS

bundle1

AAUS

bundle5

HPOS

bundle5

Figure 4. Comparison of the evolution of the battery level

radio is enabled only when no effective transmission to
the server has been achieved over the last 3 minutes, or
as soon as high-priority data are produced, as these must
be sent urgently. The cellular radio remains enabled
as long as high-priority data are still waiting to be
sent to the server. It is disabled two minutes after the
last transmission of high-priority data, and at least 30
seconds after being enabled.

• “High-Priority Only” Strategy (HPOS):
with this strategy we focus on high-priority data, and
choose to send only these data to the server (assuming
low-priority data are only meant to be processed locally
by the smartphone). Both the Wi-Fi radio and the cellular
radio are enabled as soon as high-priority data have been
produced by the sensors, and they are disabled at least
30 seconds later, but only if no priority data are still
waiting to be sent.

B. Results

Several emulations runs have be performed using REGAS
and the emulation platform, considering each time a combi-
nation of one transmission mode (i.e., bundle0, bundle1,
or bundle5) and one adaptive strategy (i.e., AAUS, WFOS,
WFPS, HPOS). Figure 4 presents the evolution of the battery
level for each emulation run. It can be observed that when run-
ning the AAUS strategy, the battery is fully depleted before the
end of the 11 hour timespan, except when using the bundle5
transmission mode. This is because this transmission mode,
which consists in assembling data samples in bundles that each
contain five minutes’ worth of data, allows the radios to enter
sleep mode, and to stay in this mode most of the time. In
contrast when the radios are sollicited more frequently, the
benefit of their built-in power saving mechanism is reduced.

Strategies WFOS, WFPS, HPOS all contribute to reduce sig-
nificantly the power consumption observed on the smartphone.
Of course strategy HPOS is the most frugal, as it makes very
little use of the radios. Inflection points are actually clearly
visible in the figure, as the radios are turned on and off
again during the two episodes when high-priority data must
be transmitted to the server.

With strategy WFOS, the advantage of assembling data
samples in bundles (rather than sending then continuously)
is negligible. This is because once a Wi-Fi radio is enabled,
its power consumption is almost similar whatever the way this
radio is used.

With strategy WFPS, it can be observed that transmission
modes bundle0 and bundle1 produce similar results, while
mode bundle5 consumes less power. This is the consequence
of the timeout used for enabling the cellular radio: whether
the data samples are to be sent individually (bundle0) or in
bundles containing one minute’s worth of data (bundle1),
the cellular radio will only be switched on after data samples
have been available for 3 minutes, waiting to be sent to the
server. In contrast, with mode bundle5 there are times when
there is no need to enable the cellular radio, because the
next bundle to be sent is not ready yet. This example shows
that when defining a strategy to be enforced by REGAS, it is
important to make sure that this strategy is consistent with the
way data are produced by the application.

00:00

00:01

00:02

00:03

00:04

00:05

00:06

00:07

00:08

00:09

00:10

A
A
U
S bundle0

A
A
U
S bundle1

A
A
U
S bundle5

W
FPS bundle0

W
FPS bundle1

W
FPS bundle5

Tr
a
n
s
m

is
s
io

n
 S

a
m

p
le

 A
g
e
 (

H
H

:M
M

)

Strategy and Transmission mode

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

W
FO

S bundle0

W
FO

S bundle1

W
FO

S bundle5

Figure 5. Comparison of the transmission data samples ages (TSA)

Several metrics have been computed while running these
experiments. In Figure 5 we focus on the age of data samples
when they are sent to the remote server. Each data sample
is produced by a sensor, transmitted to the gateway, where
it is inserted in a bundle, and then sent to the server when
the bundle is completed and some connection is available.
The transmission data sample age (TSA) represents the time
interval between the data sample generation by a sensor and
its emission to the server. Strategy HPOS is not considered
in this figure, since it only concerns high-priority data. For
strategy AAUS, the TSA represented in this figure does not
include the period when the battery is fully depleted and no
data can be transmitted anymore.

It can be observed that strategies AAUS and WFPS present
similarities. Both have a maximum TSA value at 8 minutes.
This is the longest disconnection time encountered in the
scenario, which means that they have been able to send
their data as soon as a network has been available. Also,
both present similar TSA values for the transmission mode



bundle5. This transmission mode yields a higher standard
deviation of TSA than the other modes, since the oldest data
samples are already 5 minutes old when the bundles are
completed. Strategy AAUS has mostly been able to send the
bundles as soon as they were ready, and thus the TSA is only
limited by the age of the data samples when the bundles are
completed. Yet low latency comes at a price, which is a very
high power consumption, as shown above. In fact strategy
AAUS makes it possible to send data rapidly for a while as
long as the battery is not fully depleted. In contrast strategy
WFOS presents the highest TSA values, with a high standard
deviation whatever transmission mode used. Again this is no
surprise, for this strategy basically consists in waiting passively
for Wi-Fi connectivity, which is very rare in the connectivity
scenario considered in these experiments. Strategy WFPS lies
in-between these two extrema. Although it does not provide
the lowest TSA, it still allows to get an average TSA of 1
minute for transmission modes bundle0 and bundle1. The
similar results for these two transmissions modes is explained
by the choice of parameters in the strategy that enables the
cellular interface if no data has been sent in the last 3 minutes,
and keeps this interface enabled for at least 30 seconds, when
no Wi-Fi transmission is possible, which is the case for 88%
of the time in the scenario considered.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00

N
u
m

b
e
r 

o
f 

d
a
ta

 s
a
m

p
le

s

Time (HH:MM)

Number of data samples waiting to be sent

Figure 6. Evolution of the number of data samples waiting to be sent, using
strategy WFOS and transmission mode bundle0

Fig 6 shows the amount of data waiting to be sent using
strategy WFOS, assuming transmission mode bundle0 (i.e.,
continuous transmission). We can notice the accumulation of
data samples during disconnection periods, with a maximum
of 19.000 data samples waiting to be sent around 09:18.
Moreover, at 09:20 a disconnection occurs while data samples
are being transmitted, which causes the number of waiting data
samples to start rising again. Yet at the end of the timespan
the amount of waiting data samples is back to 0. This figure
demonstrates the ability of strategy WFOS to deliver all the data
samples to the server, provided Wi-Fi connectivity is available
every now and then. But of course this strategy, which is very
frugal as far as power is concerned, also yields high latency

in a scenario with very little Wi-Fi connectivity such as that
considered here.

In summary, we have observed that REGAS can be used to
adapt the behavior of a device according to a set of rules,
which can be combined in order to define various strategies.
Such strategies can be used to manage critical resources
at a fine grain, or to respond to specific application-level
requirements.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented REGAS (REsource man-
aGer using Adaptive Strategies), a context-aware middleware
system that makes it easy for a developer to define adaptive
strategies, so their application can continuously adapt its
behavior to changing operating conditions. REGAS is notably
being used in the framework of project SHERPAM, in order to
develop a smartphone-hosted m-Health application devoted to
the monitoring of cardiopathic and arteriopathic patients.

Several basic strategies have been considered in this paper
in order to demonstrate that REGAS can indeed enforce such
strategies, and that the choice of one or the other strategy can
have a significant impact on transmission delays and power
consumption. More complex strategies should be devised and
experimented in the near future. Meta-strategies may for exam-
ple be defined by combining basic ones, and determining how
and when to switch between them. Motion detection (based
on the built-in GPS receiver or accelerometers) may be used
to disable network scanning when the smartphone is station-
ary. Indeed, once REGAS has determined which surrounding
networks —if any— are available for data transmission, there
is no benefit to keep looking for other networks, unless the
smartphone is moving. Machine learning may also be an
interesting approach to let REGAS discover recurrent network
connectivity patterns, so as to predict when and where the
smartphone’s radios should be switched on and off.

ACKNOWLEDGMENT

This work is part of the SHERPAM project (2014-2019).
As such it has received a French government support granted
to the COMIN Labs excellence laboratory, which is man-
aged by the National Research Agency in the "Investing
for the Future" program under reference ANR-10-LABX-07-
01. Further information about this project can be found at
http://www.sherpam.cominlabs.ueb.eu/.

REFERENCES

[1] A. K. Dey, “Providing Architectural Support for Building Context-Aware
Applications,” Ph.D. dissertation, 2000.

[2] E. Zavala, X. Franch, and J. Marco, “Adaptive Monitoring: A Systematic
Mapping,” Information and Software Technology, vol. 105, pp. 161–189,
January 2019.

[3] M. Alirezaie, J. Renoux, U. Köckemann, A. Kristoffersson, L. Karlsson,
E. Blomqvist, N. Tsiftes, T. Voigt, and A. Loutfi, “An Ontology-Based
Context-Aware System for Smart Homes: E-care@home,” Sensors,
vol. 17, no. 7, p. 1586, July 2017.

[4] A. R. M. Forkan, I. Khalil, Z. Tari, S. Foufou, and A. Bouras, “A
Context-Aware Approach for Long-term Behavioural Change Detection
and Abnormality Prediction in Ambient Assisted Living,” Pattern Recog-
nition, vol. 48, no. 3, pp. 628–641, March 2015.

http://www.sherpam.cominlabs.ueb.eu/


[5] B. M. Silva, J. J. Rodrigues, I. de la Torre Díez, M. López-Coronado,
and K. Saleem, “Mobile-Health: A Review of Current State in 2015,”
Journal of Biomedical Informatics, vol. 56, pp. 265–272, August 2015.

[6] M. Klein, A. Manzoor, and J. Mollee, “Active2Gether: A Personalized
m-Health Intervention to Encourage Physical Activity,” Sensors, vol. 17,
no. 6, p. 1436, June 2017.

[7] P. Kakria, N. Tripathi, and P. Kitipawang, “A Real-Time Health Monitor-
ing System for Remote Cardiac Patients using Smartphone and Wearable
Sensors,” International journal of Telemedicine and Applications, vol.
2015, p. 8, January 2015.

[8] M. Esposito, A. Minutolo, R. Megna, M. Forastiere, M. Magliulo,
and G. De Pietro, “A Smart Mobile, Self-Configuring, Context-Aware
Architecture for Personal Health Monitoring,” Engineering Applications
of Artificial Intelligence, vol. 67, pp. 136–156, January 2018.

[9] I. Miralles and C. Granell, “Considerations for Designing Context-Aware
Mobile Apps for Mental Health Interventions,” International Journal of
Environmental Research and Public Health, vol. 16, no. 7, p. 1197, April
2019.

[10] J. Santos, J. J. Rodrigues, B. M. Silva, J. Casal, K. Saleem, and
V. Denisov, “An IoT-Based Mobile Gateway for Intelligent Personal
Assistants on Mobile Health Environments,” Journal of Network and
Computer Applications, vol. 71, pp. 194–204, August 2016.

[11] D. Niyato, E. Hossain, and S. Camorlinga, “Remote Patient Monitoring
Service using Heterogeneous Wireless Access Networks: Architecture
and Optimization,” IEEE Journal on Selected Areas in Communications,
vol. 27, no. 4, pp. 412–423, May 2009.

[12] 3GPP, “3GPP specification : Release 15,” https://www.3gpp.org/
release-15, April 2019, [Online; accessed 22-July-2019].

[13] R. Mahapatra, Y. Nijsure, G. Kaddoum, N. U. Hassan, and C. Yuen,
“Energy Efficiency Tradeoff Mechanism Towards Wireless Green Com-
munication: A Survey,” IEEE Communications Surveys & Tutorials,
vol. 18, no. 1, pp. 686–705, October 2015.

[14] P. Bellavista, A. Corradi, M. Fanelli, and L. Foschini, “A Survey
of Context Data Distribution for Mobile Ubiquitous Systems,” ACM
Computing Surveys (CSUR), vol. 44, no. 4, p. 24, August 2012.

https://www.3gpp.org/release-15
https://www.3gpp.org/release-15

	Introduction
	Related work
	Use case
	Overview of the regas middleware system
	Probes
	State Manager
	Decision Maker
	Action Manager
	Application Adapter

	Experimentation results
	Evaluation method
	Results

	Conclusion and future work
	References

