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Abstract. Evolutionary algorithms (EA) are developed and compared
based on well defined benchmark problems, but their application to real-
world problems is still challenging. In image processing, EA have been
used to tune a particular image filter or in the design of filters themselves.
But nowadays in digital cameras, the image sensor captures a raw image
that is then processed by an Image Signal Processor (ISP) where several
transformations or filters are sequentially applied in order to enhance
the final picture. Each of these steps have several parameters and their
tuning require lot of resources that are usually performed by human
experts based on metrics to assess the quality of the final image. This
can be considered as an expensive black-box optimization problem with
many parameters and many quality metrics. In this paper, we investigate
the use of EA in the context of ISP parameter tuning with the aim of
raw image enhancement.

Keywords: Image Signal Processor - Parameter tuning - Particle Swarm
Optimization.

1 Introduction

Image processing has been largely investigated for many years. As the quality
of outputs is crucial for the whole computer vision chain, sophisticated mathe-
matical theories and statistical methods have been developed in recent years [7].
These are a source of complex optimization problems. Moreover, new constraints
for embedded, real-time computer vision systems necessitate the development of
robust and flexible as well as cost-effective algorithms.

Image-related optimization problems tend to be highly nonlinear and compu-
tationally expensive. The objectives and constraints are usually related to image
metrics that need to be calculated based on the images from the output of the
whole computer vision chain. Thus each evaluation of such objectives requires
the combination of applying the considered image processing techniques (de-
noising, sharpening, white balance, etc...) with optimization-related techniques.
Moreover the computational costs will increase with the size of the images. All
these factors lead to high computational costs [18].
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2 G. Portelli and D. Pallez

Classical image processing methods tuned with EAs have been shown to
outperform manually tuned classical methods such as image filtering, denoising
or enhancement [17], and object detection [5], in terms of convergence speed
and ability to deal with highly degraded image source. However, because of its
complexity (non-linear process, number of parameters, etc...) and computing re-
source needs, authors focused on the optimization of a unique task [3,12,18]. For
instance, [3] investigated the application of the Artificial Bee Colony algorithm
(ABC) [10] where the artificial bees are moving to search for the optimal param-
eters of a pixel luminance transformation function to enhance the image contrast
based on the fitness function.

But nowadays, embedded computer vision systems can be found in lots of
devices such as digital cameras and small devices as smartphones, tablets, etc.
Usually coupled with the digital sensor, an ISP can be found and applies se-
quentially many processing and filtering to the raw images like noise reduction,
sharpening, white balance or color correction and thus aims at enhancing the
image quality of final pictures (Fig. 1). Depending on the application, ISPs can
have approximately 6 to 14 processing stages and each stage can have tens or
even hundreds of parameters.

Scenery Optics Sensor ISP Output Image

N

- |

Denoising

Demosaicing
Sharpening

White Blance

Tuning parameters

Fig. 1: Classical design of a digital vision system.

All those processing are based on methods that are parameterized. When
enhancing only one raw image, many parameters have to be set and each of
them could be continuous or discrete. Because of its size and its complexity,
i.e. the amount of parameters to optimize (constrained and unconstrained) and
several time consuming criteria, the problem to be solved combines fundamental
issues like:

— large scale optimization: each stage embedded in the ISP can have few or
even hundreds of parameters,

— constrained optimization: processing stages might have parameters that must
fulfill specific inequality to be valid, for instance a specific relationship be-
tween two (or more) parameters or parameter values that must be within a
given range,
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— many objectives: several metrics can be used to asses the quality of the
output image,

— expensive optimization: computational costs increase with the image size
and ISP may need several minutes to process one raw image.

In addition, a gradient based search is not usable because the problem to
optimize is a set of methods or procedures that might not be differentiable.

Usually, the parameters of ISPs are painstakingly tuned by a human expert
based on image quality metrics. This painstaking work usually leads to one close-
to-optimal solution and must be done for each product and variant, severely
limiting the number of new configurations that can be evaluated.

Although EAs have been applied to image processing considering one unique
task as showed previously, to our knowledge EAs have never been used to op-
timize a whole image processing chain made of several sequential processing
stages as ISPs. Thus here, we investigate the usage of such EA to automatically
optimize parameters of a typical ISP based on image quality metrics, for the
enhancement of raw images.

2 Real-world problem: ISP

The optimization problem that is the tuning of the parameters of an ISP can
be formally defined as following. Given a set of image transformations T =
{t1,t2,...,tx}, one ISP ¢ is one element of the power set of T (¢ € P(T)). |¢|
represents the number of transformations that will be applied on a raw image
Ir by . P is the set of parameters used by all ¢; € ¢. As each transformation
t; is parameterized by a specific set of parameters p; C P(P), a function p is
defined and associates a transformation with its corresponding set of parameters,
i.e. p(t;) = p;. Thus, ¢ is defined by P' = {J,, ., p(t;) and, the output image
I obtained by applying all transformations contained in ¢ is defined by I =
©(Ig,P'). Some image quality metrics m; are measured on resulting image I.

The goal is to identify the parameter values of P’ that will optimize all
m; metrics. Without any loss of generality, this optimization problem can be
formalized by Eq. 1:

arg min  M(z) = {my(x),...,m,(x)}

z e RIPI

subject to  g;(x) <0, i=0,...,m m >0,
hj(m): ) j:07"'7p pzo

(1)

where g; and h; are respectively inequality and equality constraints on trans-
formations parameters.

3 Objectives: image quality metrics

In the domain of camera-equipped mobile devices, a standardized suite of objec-
tive and subjective image quality metrics is available [1]. This suite also provides
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standardized image targets that allow the metrics to be comparable between
different camera devices. Here are considered the visual noise and the visual
acutance (as defined in [1]) to assess the noise and the acutance of the image, re-
spectively. Indeed, a human observer with little experience can visually perceive
if an image subjectively looks soft or sharp, also if it looks really noisy or not.
Thus, a visual validation of solutions given by an EA can be done contrary to
more "abstract" metrics such as Root Mean Square Error or Signal over Noise
Ratio that are informative but difficult to sense with human eyes, for instance.

The image noise can be view as the random variation of brightness or color
information in images, usually related to the electronic noise. It can be produced
by the digital sensor and circuitry in digital camera. The acutance of an image
describes a subjective perception of sharpness that is related to the edge contrast
of an image. It is linked to the amplitude of the derivative of brightness with
respect to space.

The output value of visual noise function will actually decrease as the noise
decrease in the measured image. Inversely, the output of the visual acutance
function will increase with the sharpness of the measured image: the more the
sharpness, the greater the visual acutance. One has to note that noise and acu-
tance counteract with each other.

From a human point of view, a high value of visual acutance does not neces-
sarily implies a subjectively good looking image. Preliminary tests with manual
tuning of the ISP used here (data not shown) show that values of visual acu-
tance ~102.0 (and visual noise ~0.01) gives best looking images. Thus not the
raw value of the visual acutance function but its transformation (z —102.0)? will
be used as objective to be minimized. The visual noise as it is will be minimized.

4 Particle Swarm Optimization

The aim of the presented study is not to compare EAs nor to find the best EA
for the considered problem. Here the aim is to test whether or not this kind of
real-world problem can be tackled using EA. Among the numerous EA strategies
that have been investigated by the community, here in the considered real-world
application, we focus on Particle Swarm Optimization algorithms (PSO). How-
ever others EA strategies could be considered.

PSO is a bio-inspired meta-heuristic mimicking the social behavior of bird
flocking or fish schooling [11] which has become very popular to solve multi-
objective [15] and many-objective [6] optimization problems. Briefly, swarm par-
ticles will evolve in the solution space where their position will be updated at
each iteration given their own vector speed computed from global best and local
best encountered solutions.

PSO has many advantages, for instance, easy implementation, effective mem-
ory, efficient maintenance of the solution diversity [19]. Also, PSO makes few or
no assumptions about the problem being optimized and can search very large
spaces of candidate solutions. PSO does not use the gradient of the problem be-
ing optimized, which means PSO does not require that the optimization problem
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be differentiable as is required by classic optimization methods such as gradi-
ent descent. However, as many others metaheuristics, PSO do not guarantee an
optimal solution is ever found.

Among all the possible variants, we focus on SMPSO [14] to solve the opti-
mization of the ISP. Its main features are :

— use of a strategy to limit the velocity of the particles,

— external archive to store the non-dominated solutions (leaders) and a density
estimator (crowding distance),

— leader selection with a binary tournament from the leaders archive taking
into account the crowding distance,

— mutation operator (polynomial mutation) that add turbulence.

It has been shown to exhibit high performances in various benchmarks and real-
world problems [14], and suitable for large scale problems up-to 2048 variables
[13]. Briefly as described in [14], the pseudo code of SMPSO is given in Algo. 1.

Algorithm 1: SMPSO pseudo-code (from [14])

initializeSwarm()

initializeLeadersArchive()

generation = 0

while generation < mazGenerations do
computeSpeed Vector()
updateParticlesPosition()
mutation()
evaluation()
updateLeadersArchive()
updateLocalBest()
generation ++

end

returnLeadersArchive()

In the original publication, the performances of SMPSO were stated on
benchmark problems after 25000 function evaluations [14]. Such a number of
function evaluations seems to be not compatible with expensive problems. Moti-
vated by decreasing the computational costs in evolutionary optimization of ex-
pensive problems, Surrogate-Assisted evolutionary computation has been highly
investigated (see for review [9]). Basically, surrogates are used together with the
real fitness function with the aim of estimating the fitness of new individuals of
which can be then selected upon a given criteria for a real evaluation. As the real-
world problem presented here is expensive, we modified SMPSO in order to add
surrogates model (SASMPSO). The difference is that, during the evolutionary
algorithm, the swarm particles will search according to their estimated evalu-
ation thanks to surrogate, for a given amount of resources (mazNfeSurrogate).
Once those resources are depleted, all the current swarm particles are evalu-
ated using the real fitness function and then used in the evolutionary algorithm.
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6 G. Portelli and D. Pallez

Here, there is no particular selection of best candidates for real evaluations. The
pseudo code of SASMPSO is given in Algo. 2.

Algorithm 2: SASMPSO pseudo-code

initializeSwarm()

initializeLeadersArchive()

generation — 0

computeSpeed Vector()

updateParticlesPosition()

mutation()

evaluation()

updateLeadersArchive()

generation ++

while generation < mazGenerations do

selectSurrogates()

trainSurrogates()

nfeSurrogate — 0

while nfeSurrogate < maxNfeSurrogate do
computeSpeed Vector()
updateParticulesPosition()
mutation()
estimation WithSurrrogate()
updateLocalBest()
nfeSurrogate ++

end

evaluation()

updateLocalBest()

updateLeadersArchive()

generation ++

end

returnLeadersArchive()

Upon the real evaluation of the initial swarm population, surrogates used
here are constructed and updated for each objectives, separately, following the
method described in [8]. Briefly, four models as Gaussian Process, Radial Basis
Function, and Multivariate polynomial regression of degree 1 and 2 have been
used here even if other surrogate models can be considered too. First, surrogates
are selected based on the minimum root mean-squared error while performing a
crossvalidation with 80% of samples for the training set and 20% of samples for
the testing set (function selectSurrogates in Algo.2). Then, the selected surrogate
is trained considering all the samples (function trainSurrogates in Algo.2). The
samples are from an external archive different from the archive containing the
leaders. This archive is updated with all the real-evaluated individuals and will
grow until the algorithm stops. Whenever this archive is updated with new real-
evaluated individuals, surrogates are re-selected and re-trained with the aim of
getting the most accurate estimation.
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4.1 Encoding/decoding parameters

For simplicity, parameters are encoded as float valued parameters in the range
[0,1]. In order to deal with the different ranges of the ISP parameters (see section
5.1), a function is used to convert float values in [0, 1] to proper parameters values
compatible with the experimental ISP. To do so, Eq. 2 was used. Regarding the
particular dependence between the parameters k and N of the denoising filter,
Eq. 3 was used to compute the values of each k and N parameters before feeding
the experimental ISP. One can note that N will not be tuned directly but k& and
n will be, thanks to Eq. 3.

x € [original range]

x. € [0,1] @

x = (ze * (maz(z) — min(z))) + min(z) , with {

N=4xn+k,

with {k = 2% (round((ke * (max(k) — min(k))) + min(k))) — 1, k. € [0, 1]
n = round((n. * (max(n) —min(n))) + min(n)) , n. € [0,1] and n € [2, 5]

3)

4.2 Function evaluation

Algorithm 3: Function evaluation

f (rawImage, parame);

Input : Raw image, encoded ISP parameters
Output: acutance, noise

param = decode(parame.)

srbg = experimentall SP(rawlImage, param)
acutance = (visual Acutance(srgb) — 102)?
noise = visual Noise(srgb)

The function evaluation is defined as in Algo. 3. It takes as input the raw
image (rawlImage) and the ISP parameters. The encoded parameters (param.)
are decoded with the decode described function, into proper ranged values be-
fore feeding the experimental ISP. The output of the ISP, i.e. the processed
image srgb is then used to compute the image quality metrics with the functions
visual Acutance and visualNoise. This gives the values of the two objectives
that will be minimized by the EAs. One can note that the computation time of
one function evaluation will be the sum of the ISP processing a raw image plus
the metrics measure, that is 400 seconds in average.
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5 Experimental methods

Because of its complexity and as a first step, we propose to simplify the prob-
lem of ISP tuning by using EAs to optimize the parameters of a two-filtering
stages ISP thanks to two image quality metrics. We designed a simplified two-
filtering stages ISP that can be tuned according to 8 parameters, with respect
to the minimization of 2 objectives. The parameters are related to the denoising
and sharpening filters that will be detailed here after. As previously described,
objectives that are minimized are the visual noise and the visual acutance. In
the following we detail the experimental ISP, the implemented image filters and
their parameters.

5.1 The experimental ISP

As ISPs used in industry feature hundreds of parameters and are not open source,
a simpler prototype has been developed. Based on commonly used procedures
of raw image processing [16], we implemented a simple but fully functional ISP.
Here as a proof of concept, only denoising and sharpening stages will be consid-
ered.

The denoise filter is based on the non-local means algorithm (NLM) proposed
by [2]. Briefly, NLM filtering takes a mean of all pixels in the image, weighted
by how similar these pixels are to the target pixel. This results in much greater
post-filtering clarity, and less loss of detail in the image. Here is considered
especially the implementation suggested in [4]. It depends on five parameters
{a, B, k, N, thr} which are the lower/upper values [a, (] for the noise profile of
the sensor itself that can vary in the 20 % range, k£ and N the size of the patches
of the denoise filter, and thr a threshold.

The sharpening stage is based on the commonly used unsharp-mask tech-
nique [7] where the original image is combined to a mask obtained from the
negative image that is blurred, or "unsharp". This combination creates an out-
put image that is less blurry than the original. This unsharp-mask depend on
three parameters {radius,amount,threshold} which are mainly related to the
parameters of the Gaussian function used to blur the original image. All the
eight parameters and their ranges are detailed in Table 1.

5.2 Raw images

Nowadays, lots of imaging devices allow access to the raw output of the digi-
tal sensor such as digital single-lens reflex camera and even some recent smart-
phones with high-end photographic capabilities. Thanks to the suite [1], pictures
of image target suitable for measuring the visual noise and the visual actuance
(standard deadleaves target) have been made in a controlled environment. Espe-
cially, two raw images of this target, one in low-light condition (20 lux) and one
in normal-light condition (100 lux) have been considered. Typically, in low-light
condition, the image is more noisy and should be more difficult to process than
the normal-light condition image. Thus, the EA will optimize the parameters of
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Table 1: Tunable parameters of the experimental ISP for denoising and sharpen
filters.

Name Range type
@ a =+ 20% float
B B £ 20% float

k [3,5,7,9] integer

N N =f(k), with N < 37 integer
thr [0,2] float
radius [0, 3] float
amount [0,2] float
threshold [0,1] float

the experimental ISP considering one of the two images at a time and results
will be compared.
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Fig. 2: Pareto fronts for each independent runs (one color per run), and for each
algorithm and raw image combination, after 1000 nfe.
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5.3 Performance evaluation

In this study, both SMPSO and the proposed SASMPSO are compared for the
optimization of the experimental ISP parameters considering two raw images
(100 lux and 20 lux).

Hyperparameters are the same for both algorithms and raw images. The ini-
tial population size and the leaders archive size are set to 50. When surrogates
are involved, the maximum number of evaluations using the surrogates (mazN-
feSurrogate) is set to 1000. The maximum number of real evaluations allowed is
set to 1000. Of course one could also vary those hyperparameters to analyze the
sensitivity of the algorithms. But this is not the aim of the presented study. Six
independent runs are performed. We agree that such a low number of runs is
not enough to get statistically significant conclusions, and will need to be com-
pleted. But here are preliminary results that we think are already interesting for
the community.

As the considered problem is black-box, the true Pareto front is unknown.
Nevertheless, the performance between algorithms can be compared visually by
the cumulative Pareto front across the 6 independent runs obtained after 1000
real evaluations, i.e. the non-dominated solutions over the concatenated solutions
of the 6 runs. The idea beyond this is to have an overview of the exploration of
the solution space.

The hypervolume indicator is computed to assess the differences in diversity
and convergence. The hypervolume is the area between the non-dominated so-
lutions and a reference point. Especially due to the low number of independent
runs available, not the average but the median of the hypervolumes computed
for the 6 runs is considered and is displayed as a function of the number of real
function evaluations (nfe). The aim here is to provide a measure of central ten-
dency: what is the most representative behavior of the hypervolume across the
6 runs. With such a low number of runs, the average will be highly sensitive to
extreme values and variability unlike the median.

6 Results

Pareto fronts for each independent runs can be seen in Figure 2. One can note the
variabilty between the runs of one algorithm given one raw image, especially for
SASMPSO 20 lux (Fig. 2d). Because of these discrepancies and the low number
of available runs, not the mean but the median of the hypervolume is used.
For each combination algorithm-raw image, the hypervolume is computed
for each run and the median is plotted as a function of the increasing number
of nfe (Fig. 3a). For all, the hypervolume is increasing with the nfe showing
that there is minimization of the two objectives. One can speculate that there
is convergence toward regions of the solution space containing better solutions.
Also here, little differences can be seen between the two algorithm while consid-
ering the 100 lux raw image. SASMPSO seems to perform better than SMPSO
while considering the 20 lux raw image. But as a squared difference is used as

54



ISP tuning with surrogate-assisted PSO 11

3200

3000 1

NN
o @
s 9
s o

median(Hv)

2400 1

—&— 100lux SMPSO
—®— 100lux SASMPSO
—&— 20lux SMPSO
~&— 20lux SASMPSO -6 —*— 20lux SASMPSO

—&— 100lux SMPSO
—4 { —®— 100lux SASMPSO
—&— 20lux SMPSO

2200

log(max(median(Hv))-median(Hv))

2000 4

200 400 600 800 1000 200 400 600 800

(a) (b)

Fig.3: (3a) median of the hypervolumes for the 6 independent runs. (3b) log
of the difference between the maximum of the median of hypervolumes and the
median of hypervolumes. SMPSO is in black, SASMPSO is in grey, and for the
raw images, 100 lux is circle markers and 20 lux is triangle markers.

the Acutance fitness (see 3), objective values evolve within a huge range. As a
consequence, the reference point use to compute the hypervolume is far from
the final solutions and thus the differences in hypervolumes that could be ob-
served toward the "convergence" are smothered. In order to reduce this bias, is
represented the log of the difference between the maximal median hypervolume
and the considered hypervolume (log(max(medians) — median)) in Figure 3b.
As a result, it can be seen the decrease toward the highest hypervolume, i.e. the
faster the decrease, the better. Thus, it is highlighted that SASMPSO (grey)
is converging faster than SMPSO (black) toward this best encountered hyper-
volume. Also in both algorithms, the decrease toward the highest hypervolume
seems to be slower while considering the 20 lux image compared to the 100 lux
image (both circles versus both triangles curves until 800 nfe, Figure 3b). This
supports the a priori about the increased difficulty of the processing due to the
inherent higher noise level in the 20 lux image.

Figure 4 shows the cumulative Pareto fronts across the 6 independent runs,
after 1000 nfe for SMPSO (black), SASMPSO (grey), considering the 20 lux
raw image (triangles) or the 100 lux raw image (circles). The objectives are in
log scale. Both algorithms reach solutions in the range of expected values for
both objectives. The use of surrogates in SASMPSO seems to lead to a better
convergence for both raw images. Even if the differences are low for the 100 lux
raw image, SASMPSO seems to outperform SMPSO for the enhancement of the
20 lux raw image, although the processing of the 20 lux raw image was a priori
more difficult to optimize due to its inherent higher noise level compared to the
100 lux raw image. For illustration, crops of the raw image and the processed
image related to the kneepoint solution of the cumulative Pareto front of each
conditions are showed in Figure 5.
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Fig. 4: Cumulative Pareto fronts across 6 independent runs after 1000 function
evaluations for each algorithms and raw images combination. SMPSO is in black,
SASMPSO is in grey. And for the raw images, 100 lux is circle markers and 20
lux is triangle markers.

7 Discussion and conclusions

We presented in this study the use of an EA to optimize the parameters of a set
of filters for the image enhancement, i.e. for the optimization of an ISP. Com-
monly in the literature, EAs were used in the context of image processing for
the optimization or the design of single filters for image enhancement [3,12,18,5].
To our knowledge, this is the first time that EAs are used to optimize a set
of filters for image enhancement. Among the diversity of available EAs we fo-
cused on PSO, especially SMPSO [14] and the proposed simple surrogate-assisted
SMPSO, SASMPSO, to optimize the parameters of an experimental ISP for the
enhancement of raw images in normal-light and low-light conditions.

Despite the fact that the presented results can be considered as preliminary,
results show that both EA succeeded in converging toward solutions in the ex-
pected range of values for the objectives, for both light conditions. Results show
also that the use of surrogates allows to "converge" quicker. One could argue that
only a simplified ISP have been used here and actual complete ISP are far more
complex and challenging. We agree that the presented results obtained using
the simplified ISP need to be confirmed with complementary experiments using
more complex ISP (more filters, more parameters, more image quality metrics).
Indeed, besides the black-box and expensive aspects, complete ISPs can have
approximately tens processing stages, each of them parameterized with tens or
even hundreds of parameters. Moreover, one could consider that the sequence of
processing stages itself, can be optimized which highly increase the complexity
of the problem.
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(b) SMPSO 100 lux (¢) SASMPSO 100 lux

(d) Raw 20 lux (e) SMPSO 20 lux (f) SASMPSO 20 lux

Fig. 5: Raw images and processed images related to the kneepoint solutions of
the Pareto fronts showed in Figure 4

So, the final problem combines many of current challenges as black-box,
expensive, large scale, many objectives optimization which have been and are
currently investigated separately or partially combined, by the community. Going
toward the optimization of a complete ISP will require the development of new
surrogate-assisted EAs that can handle all those challenges at once.
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