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Evolutionary algorithms (EA) are developed and compared based on well dened benchmark problems, but their application to realworld problems is still challenging. In image processing, EA have been used to tune a particular image lter or in the design of lters themselves. But nowadays in digital cameras, the image sensor captures a raw image that is then processed by an Image Signal Processor (ISP) where several transformations or lters are sequentially applied in order to enhance the nal picture. Each of these steps have several parameters and their tuning require lot of resources that are usually performed by human experts based on metrics to assess the quality of the nal image. This can be considered as an expensive black-box optimization problem with many parameters and many quality metrics. In this paper, we investigate the use of EA in the context of ISP parameter tuning with the aim of raw image enhancement.

Introduction

Image processing has been largely investigated for many years. As the quality of outputs is crucial for the whole computer vision chain, sophisticated mathematical theories and statistical methods have been developed in recent years [START_REF] Gonzalez | Digital image processing[END_REF]. These are a source of complex optimization problems. Moreover, new constraints for embedded, real-time computer vision systems necessitate the development of robust and exible as well as cost-eective algorithms.

Image-related optimization problems tend to be highly nonlinear and computationally expensive. The objectives and constraints are usually related to image metrics that need to be calculated based on the images from the output of the whole computer vision chain. Thus each evaluation of such objectives requires the combination of applying the considered image processing techniques (denoising, sharpening, white balance, etc...) with optimization-related techniques. Moreover the computational costs will increase with the size of the images. All these factors lead to high computational costs [START_REF] Yang | Bio-inspired computation and applications in image processing[END_REF]. many objectives: several metrics can be used to asses the quality of the output image, expensive optimization: computational costs increase with the image size and ISP may need several minutes to process one raw image. In addition, a gradient based search is not usable because the problem to optimize is a set of methods or procedures that might not be dierentiable.

Usually, the parameters of ISPs are painstakingly tuned by a human expert based on image quality metrics. This painstaking work usually leads to one closeto-optimal solution and must be done for each product and variant, severely limiting the number of new congurations that can be evaluated.

Although EAs have been applied to image processing considering one unique task as showed previously, to our knowledge EAs have never been used to optimize a whole image processing chain made of several sequential processing stages as ISPs. Thus here, we investigate the usage of such EA to automatically optimize parameters of a typical ISP based on image quality metrics, for the enhancement of raw images. The optimization problem that is the tuning of the parameters of an ISP can be formally dened as following. Given a set of image transformations T = {t 1 , t 2 , ..., t k }, one ISP ϕ is one element of the power set of T (ϕ ∈ P(T)). |ϕ| represents the number of transformations that will be applied on a raw image I R by ϕ. P is the set of parameters used by all t i ∈ ϕ. As each transformation t i is parameterized by a specic set of parameters p i ⊆ P(P), a function p is dened and associates a transformation with its corresponding set of parameters, i.e. p(t i ) = p i . Thus, ϕ is dened by P = ti∈ϕ p(t i ) and, the output image I obtained by applying all transformations contained in ϕ is dened by I = ϕ(I R , P ). Some image quality metrics m i are measured on resulting image I.

The goal is to identify the parameter values of P that will optimize all m i metrics. Without any loss of generality, this optimization problem can be formalized by Eq. 1:

arg min x ∈ R |P | M (x) = {m 1 (x), . . . , m n (x)} subject to g i (x) ≤ 0, i = 0, . . . , m m ≥ 0, h j (x) = 0, j = 0, . . . , p p ≥ 0 (1)
where g i and h i are respectively inequality and equality constraints on transformations parameters.

3 Objectives: image quality metrics

In the domain of camera-equipped mobile devices, a standardized suite of objective and subjective image quality metrics is available [START_REF]Ieee cpiq 1858-2016 -ieee standard for camera phone image quality[END_REF]. This suite also provides standardized image targets that allow the metrics to be comparable between dierent camera devices. Here are considered the visual noise and the visual acutance (as dened in [START_REF]Ieee cpiq 1858-2016 -ieee standard for camera phone image quality[END_REF]) to assess the noise and the acutance of the image, respectively. Indeed, a human observer with little experience can visually perceive if an image subjectively looks soft or sharp, also if it looks really noisy or not. Thus, a visual validation of solutions given by an EA can be done contrary to more "abstract" metrics such as Root Mean Square Error or Signal over Noise Ratio that are informative but dicult to sense with human eyes, for instance.

The image noise can be view as the random variation of brightness or color information in images, usually related to the electronic noise. It can be produced by the digital sensor and circuitry in digital camera. The acutance of an image describes a subjective perception of sharpness that is related to the edge contrast of an image. It is linked to the amplitude of the derivative of brightness with respect to space.

The output value of visual noise function will actually decrease as the noise decrease in the measured image. Inversely, the output of the visual acutance function will increase with the sharpness of the measured image: the more the sharpness, the greater the visual acutance. One has to note that noise and acutance counteract with each other.

From a human point of view, a high value of visual acutance does not necessarily implies a subjectively good looking image. Preliminary tests with manual tuning of the ISP used here (data not shown) show that values of visual acutance ∼102.0 (and visual noise ∼0.01) gives best looking images. Thus not the raw value of the visual acutance function but its transformation (x -102.0) 2 will be used as objective to be minimized. The visual noise as it is will be minimized.

Particle Swarm Optimization

The aim of the presented study is not to compare EAs nor to nd the best EA for the considered problem. Here the aim is to test whether or not this kind of real-world problem can be tackled using EA. Among the numerous EA strategies that have been investigated by the community, here in the considered real-world application, we focus on Particle Swarm Optimization algorithms (PSO). However others EA strategies could be considered.

PSO is a bio-inspired meta-heuristic mimicking the social behavior of bird ocking or sh schooling [START_REF] Kennedy | Particle swarm optimization (pso)[END_REF] which has become very popular to solve multiobjective [START_REF] Reyes-Sierra | Multi-objective particle swarm optimizers: A survey of the state-of-the-art[END_REF] and many-objective [START_REF] Figueiredo | Many objective particle swarm optimization[END_REF] optimization problems. Briey, swarm particles will evolve in the solution space where their position will be updated at each iteration given their own vector speed computed from global best and local best encountered solutions.

PSO has many advantages, for instance, easy implementation, eective memory, ecient maintenance of the solution diversity [START_REF] Zhang | Multi-objective optimization problems using cooperative evolvement particle swarm optimizer[END_REF]. Also, PSO makes few or no assumptions about the problem being optimized and can search very large spaces of candidate solutions. PSO does not use the gradient of the problem being optimized, which means PSO does not require that the optimization problem be dierentiable as is required by classic optimization methods such as gradient descent. However, as many others metaheuristics, PSO do not guarantee an optimal solution is ever found.

Among all the possible variants, we focus on SMPSO [START_REF] Nebro | Smpso: A new pso-based metaheuristic for multi-objective optimization[END_REF] to solve the optimization of the ISP. Its main features are : use of a strategy to limit the velocity of the particles, external archive to store the non-dominated solutions (leaders) and a density estimator (crowding distance), leader selection with a binary tournament from the leaders archive taking into account the crowding distance, mutation operator (polynomial mutation) that add turbulence.

It has been shown to exhibit high performances in various benchmarks and realworld problems [START_REF] Nebro | Smpso: A new pso-based metaheuristic for multi-objective optimization[END_REF], and suitable for large scale problems up-to 2048 variables [START_REF] Nebro | Extending the speedconstrained multi-objective pso (smpso) with reference point based preference articulation[END_REF]. Briey as described in [START_REF] Nebro | Smpso: A new pso-based metaheuristic for multi-objective optimization[END_REF], the pseudo code of SMPSO is given in Algo. 1.

Algorithm 1: SMPSO pseudo-code (from [START_REF] Nebro | Smpso: A new pso-based metaheuristic for multi-objective optimization[END_REF]) In the original publication, the performances of SMPSO were stated on benchmark problems after 25000 function evaluations [START_REF] Nebro | Smpso: A new pso-based metaheuristic for multi-objective optimization[END_REF]. Such a number of function evaluations seems to be not compatible with expensive problems. Motivated by decreasing the computational costs in evolutionary optimization of expensive problems, Surrogate-Assisted evolutionary computation has been highly investigated (see for review [START_REF] Jin | Surrogate-assisted evolutionary computation: Recent advances and future challenges[END_REF]). Basically, surrogates are used together with the real tness function with the aim of estimating the tness of new individuals of which can be then selected upon a given criteria for a real evaluation. As the realworld problem presented here is expensive, we modied SMPSO in order to add surrogates model (SASMPSO). The dierence is that, during the evolutionary algorithm, the swarm particles will search according to their estimated evaluation thanks to surrogate, for a given amount of resources (maxNfeSurrogate). Once those resources are depleted, all the current swarm particles are evaluated using the real tness function and then used in the evolutionary algorithm.

Here, there is no particular selection of best candidates for real evaluations. The pseudo code of SASMPSO is given in Algo. 2. Upon the real evaluation of the initial swarm population, surrogates used here are constructed and updated for each objectives, separately, following the method described in [START_REF] Habib | A multiple surrogate assisted decomposition based evolutionary algorithm for expensive multi/manyobjective optimization[END_REF]. Briey, four models as Gaussian Process, Radial Basis Function, and Multivariate polynomial regression of degree 1 and 2 have been used here even if other surrogate models can be considered too. First, surrogates are selected based on the minimum root mean-squared error while performing a crossvalidation with 80% of samples for the training set and 20% of samples for the testing set (function selectSurrogates in Algo.2). Then, the selected surrogate is trained considering all the samples (function trainSurrogates in Algo.2). The samples are from an external archive dierent from the archive containing the leaders. This archive is updated with all the real-evaluated individuals and will grow until the algorithm stops. Whenever this archive is updated with new realevaluated individuals, surrogates are re-selected and re-trained with the aim of getting the most accurate estimation.

Encoding/decoding parameters

For simplicity, parameters are encoded as oat valued parameters in the range [0, 1]. In order to deal with the dierent ranges of the ISP parameters (see section 5.1), a function is used to convert oat values in [0, 1] to proper parameters values compatible with the experimental ISP. To do so, Eq. 2 was used. Regarding the particular dependence between the parameters k and N of the denoising lter, Eq. 3 was used to compute the values of each k and N parameters before feeding the experimental ISP. One can note that N will not be tuned directly but k and n will be, thanks to Eq. 3.

x = (x e * (max(x) -min(x))) + min(x) , with

x ∈ [original range]

x e ∈ [0, 1]
(2) The function evaluation is dened as in Algo. 3. It takes as input the raw image (rawImage) and the ISP parameters. The encoded parameters (param e ) are decoded with the decode described function, into proper ranged values before feeding the experimental ISP. The output of the ISP, i.e. the processed image srgb is then used to compute the image quality metrics with the functions visualAcutance and visualN oise. This gives the values of the two objectives that will be minimized by the EAs. One can note that the computation time of one function evaluation will be the sum of the ISP processing a raw image plus the metrics measure, that is 400 seconds in average.

N = 4 * n + k , with k = 2 * (round((k e * (max(k) -min(k))) + min(k))) -1 , k e ∈ [0, 1] n = round((n e * (max(n) -min(n))) + min(n)) , n e ∈ [0, 1] and n ∈ [2, 5] (3) 

5 Experimental methods

Because of its complexity and as a rst step, we propose to simplify the problem of ISP tuning by using EAs to optimize the parameters of a two-ltering stages ISP thanks to two image quality metrics. We designed a simplied twoltering stages ISP that can be tuned according to 8 parameters, with respect to the minimization of 2 objectives. The parameters are related to the denoising and sharpening lters that will be detailed here after. As previously described, objectives that are minimized are the visual noise and the visual acutance. In the following we detail the experimental ISP, the implemented image lters and their parameters.

The experimental ISP

As ISPs used in industry feature hundreds of parameters and are not open source, a simpler prototype has been developed. Based on commonly used procedures of raw image processing [START_REF] Rob | Processing raw images in matlab[END_REF], we implemented a simple but fully functional ISP. Here as a proof of concept, only denoising and sharpening stages will be considered.

The denoise lter is based on the non-local means algorithm (NLM) proposed by [START_REF] Buades | A non-local algorithm for image denoising[END_REF]. Briey, NLM ltering takes a mean of all pixels in the image, weighted by how similar these pixels are to the target pixel. This results in much greater post-ltering clarity, and less loss of detail in the image. Here is considered especially the implementation suggested in [START_REF] Darbon | Fast nonlocal ltering applied to electron cryomicroscopy[END_REF]. It depends on ve parameters {α, β, k, N, thr} which are the lower/upper values [α, β] for the noise prole of the sensor itself that can vary in the 20 % range, k and N the size of the patches of the denoise lter, and thr a threshold.

The sharpening stage is based on the commonly used unsharp-mask technique [START_REF] Gonzalez | Digital image processing[END_REF] where the original image is combined to a mask obtained from the negative image that is blurred, or "unsharp". This combination creates an output image that is less blurry than the original. This unsharp-mask depend on three parameters {radius, amount, threshold} which are mainly related to the parameters of the Gaussian function used to blur the original image. All the eight parameters and their ranges are detailed in Table 1.

Raw images

Nowadays, lots of imaging devices allow access to the raw output of the digital sensor such as digital single-lens reex camera and even some recent smartphones with high-end photographic capabilities. Thanks to the suite [START_REF]Ieee cpiq 1858-2016 -ieee standard for camera phone image quality[END_REF], pictures of image target suitable for measuring the visual noise and the visual actuance (standard deadleaves target) have been made in a controlled environment. Especially, two raw images of this target, one in low-light condition (20 lux) and one in normal-light condition (100 lux) have been considered. Typically, in low-light condition, the image is more noisy and should be more dicult to process than the normal-light condition image. Thus, the EA will optimize the parameters of Hyperparameters are the same for both algorithms and raw images. The initial population size and the leaders archive size are set to 50. When surrogates are involved, the maximum number of evaluations using the surrogates ( maxN-feSurrogate) is set to 1000. The maximum number of real evaluations allowed is set to 1000. Of course one could also vary those hyperparameters to analyze the sensitivity of the algorithms. But this is not the aim of the presented study. Six independent runs are performed. We agree that such a low number of runs is not enough to get statistically signicant conclusions, and will need to be completed. But here are preliminary results that we think are already interesting for the community.

As the considered problem is black-box, the true Pareto front is unknown.

Nevertheless, the performance between algorithms can be compared visually by the cumulative Pareto front across the 6 independent runs obtained after 1000 real evaluations, i.e. the non-dominated solutions over the concatenated solutions of the 6 runs. The idea beyond this is to have an overview of the exploration of the solution space.

The hypervolume indicator is computed to assess the dierences in diversity and convergence. The hypervolume is the area between the non-dominated solutions and a reference point. Especially due to the low number of independent runs available, not the average but the median of the hypervolumes computed for the 6 runs is considered and is displayed as a function of the number of real function evaluations (nfe). The aim here is to provide a measure of central tendency: what is the most representative behavior of the hypervolume across the 6 runs. With such a low number of runs, the average will be highly sensitive to extreme values and variability unlike the median.

Results

Pareto fronts for each independent runs can be seen in Figure 2. One can note the variabilty between the runs of one algorithm given one raw image, especially for SASMPSO 20 lux (Fig. 2d). Because of these discrepancies and the low number of available runs, not the mean but the median of the hypervolume is used.

For each combination algorithm-raw image, the hypervolume is computed for each run and the median is plotted as a function of the increasing number of nfe (Fig. 3a). For all, the hypervolume is increasing with the nfe showing that there is minimization of the two objectives. One can speculate that there is convergence toward regions of the solution space containing better solutions. Also here, little dierences can be seen between the two algorithm while considering the 100 lux raw image. SASMPSO seems to perform better than SMPSO while considering the 20 lux raw image. But as a squared dierence is used as So, the nal problem combines many of current challenges as black-box, expensive, large scale, many objectives optimization which have been and are currently investigated separately or partially combined, by the community. Going toward the optimization of a complete ISP will require the development of new surrogate-assisted EAs that can handle all those challenges at once.

4. 2

 2 Function evaluation Algorithm 3: Function evaluation f (rawImage, parame); Input : Raw image, encoded ISP parameters Output: acutance, noise param = decode(parame) srbg = experimentalISP (rawImage, param) acutance = (visualAcutance(srgb) -102) 2 noise = visualN oise(srgb)

5. 3

 3 Performance evaluationIn this study, both SMPSO and the proposed SASMPSO are compared for the optimization of the experimental ISP parameters considering two raw images (100 lux and 20 lux).

Fig. 5 :

 5 Fig.5: Raw images and processed images related to the kneepoint solutions of the Pareto fronts showed in Figure4
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