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Stability and convergence analysis of artificial boundary conditions
for the Schrodinger equation on a rectangular domain

Gang PANG!, Yibo YANG?, Xavier ANTOINE?, Shaogiang TANG*

Abstract. Based on the discrete artificial boundary condition introduced in [16] for the two-dimensional
free Schrédinger equation in a computational rectangular domain, we propose to analyze the stability
and convergence rate of the resulting full scheme. We prove that the global scheme is L?-stable and
that the accuracy is second-order in time, confirming then the numerical results reported in [16].

Keywords: Schrodinger equation; artificial boundary condition; stability analysis; convergence anal-
ysis.
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1 Introduction

Time-dependent Schrodinger equations play a key role in many applications related to physics and
engineering [6, 14, 21, 22|, including quantum physics, acoustics, electromagnetism and optics. In
many cases, the equation is set in the whole space R? (d > 1). Therefore, when one wants to simulate
the solution to the initial-value problem, we have to bound the computational domain to get a finite
number of spatial degrees of freedom. Doing this, one needs to fix a suitable boundary condition at the
fictitious interface of the domain that mimics the behavior of the wave field in the exterior domain.
If the physical solution is confined within a finite domain [6], trivially a homogeneous Dirichlet or
Neumann boundary condition can be considered. Nevertheless, this is insufficient in some situations.
A classical example is when the wave is outgoing, expanding then to infinity. More advanced boundary
conditions must be designed, considering transparent, artificial or absorbing boundary conditions,
according to the properties of the boundary condition. This usually requires a lot of mathematical
and numerical analysis to state well-suited boundary conditions that minimize the spurious reflection at
the boundary, but also to lead to accurate and stable numerical schemes. For the Schrédinger equation,
and over the past two decades, many contributions were done for the one- and two-dimensional cases,
for the linear or nonlinear Schrodinger equation, involving possibly some space and time variable
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potentials, with simple or complicate smooth convex fictitious boundaries. We refer to [4, 5, 7, 11,
13, 18] for some examples, the list of references being non exhaustive. Available review papers on
artificial boundary conditions are e.g. [12, 15, 23] for general PDEs, and [1, 3] more specifically for
Schrédinger-type problems. Many approaches can be developed to build these boundary conditions.
Some methods are based on directly working with the continuous PDE, building approximations to
the Dirichlet-to-Neumann (DtN) operators, others include constructions of boundary conditions for
the semi-discretized equation (in time or space), and finally other techniques are directly applied at
the full discrete level. For completeness, let us also mention that Perfectly Matched Layer (PML)
8,9, 10, 19, 24] can be used for truncating the computational domain.

Here, we consider the time-dependent linear free Schrodinger equation truncated in a rectangular
two-dimensional domain. The artificial boundary condition under consideration is the one proposed
n [16], based on an exact representation of the boundary operator for a rectangular shaped domain,
with a second-order spatial discretization of the Schrédinger equation. Therefore, the corresponding
boundary condition falls into the framework of semi-discrete artificial boundary conditions. From
some numerical simulations, we have shown in [16] that, based on a Crank-Nicolson scheme, the full
approximation is second-order in time. The aim of the present paper is to prove the stability of the
fully discrete scheme as well as the second-order error estimate in time. Since this paper is already
technical as well as [16], the authors strongly advise the reader to first understand the derivation in
[16] before entering into the details of the present paper.

The plan of the paper is the following. After the introduction (Section 1), Section 2 focuses on
the problem setting, its semi-discretization in space and some basic properties of the scheme. In
Section 3, we develop the results related to the exact artificial boundary condition for the discrete
spatial rectangular lattice. We also proceed to the full discretization of the initial boundary-value
problem. In Section 4, we prove the L?-stability of the fully discrete scheme. Section 5 is devoted to
the convergence analysis. Finally, we end by a conclusion in Section 6 and an Appendix.

2 Problem setting: semi-discretization and basic properties

Let us consider the two-dimensional linear Schrodinger equation with unknown w := u(z,y,t)

. Pu 0%
ie= (g + 5,) (1)

where (z,y) € R? and t > 0 are the space and time variables, respectively. The time derivative is
denoted by @ := d,u. In addition, a compactly supported initial data u(z,y,t = 0) = ug(z,y) is added
to equation (1). Finally, the complex-valued number ¢ is such that ¢ := /—1.

Let us now introduce the uniform spatial steps Az and Ay in the z- and y-directions, respectively.
By discretizing (1) with a second-order five points stencil scheme for the laplacian (with Az = Ay
here) and after rescaling the time variable through ¢t = (Az?)~t, we obtain the following semi-discrete
system for the exact (e) solution ¥ := (¢y, ,) (m,n)ez2

“Lfn,n = _(¢fn+1,n + dfn—l,n + wren,n—{—l + wfn,n—l - 4¢$n,n) = _quz)ren,rn (2)

with compactly supported initial data ¢, ,(0) = uo(mAz,nAz) for the uniform lattice (m,n) € Z*.
In the above equation, we define the discrete laplacian as: A := A, + Ay, with A, = Aj’yA;y and



denoting by At (A, respectively) the forward (backward, respectively) finite-difference operator in
x xX

the z-direction. Similarly, the operators A;j and A are introduced in the y-direction. Let us assume
that the initial data is square integrable, i.e. || %¢(0) ||l.2< oo, where the semi-discrete L*-norm on
the infinite lattice is defined by

F98 llea= (Y Wal'2
(m,n)€Z2
We furthermore consider the following standard behavior of the solution at infinity

|¢fnn(t)| — 0 for |m|+ |n| — oc.

We define djfﬁgﬁ) (t) as the k-th order time derivative of ¢, ,,(¢). Then, we have |¢mn (&) (t)] — 0.

By multiplying Eq. (2) by v¢, ,,(t) (2 being the conjugate of a complex number z), taking the con-
jugate of Eq. (2) and multiplying it by —7, ,,(t), then summing up the two equations for (m,n) in VA
and integrating by parts the resulting equation, one can prove the semi-discrete L?-norm conservation

VE >0, || e(t) [le2=] ¥°(0) ||z -

In addition, taking the k-th derivative of the semi-discrete equation

iwfn,n - _<w1en,nfl + wren,n+1 + wfnJrl,n + 1/’5171,71 - 4¢7€n,n)7

we obtain k) J(k)
ﬂ)a(k—H (¢7c;z(n 1 + wm n+1 wm+1 n wfn In 4¢€ k))’
which means that
B8] < |+ 1l + ol 15l + 4l @)
This leads to
[ D2 < Bl 12+ Bl a2 4 Bl Ll + Bl I + 80 B

Summing up over all the indices m and n, we have
DR < 1002 eI
m,n

Finally, we conclude that

| pFFD(0) [l.2< 10 || =8 (0)

*,2 (3)
and

1 9B llea=l (0 [lo2% 10° | $50) [z - @

One also gets the inequality: |w,en(7]§)(0)| < 10% || 4%(0) [|+,2, meaning that each function ¢, ,,(t) is
analytic.

Remark 1. The discussion above extends to the case of the Schridinger equation with a compactly
supported potential term given by V, i.e.

. %u  0%*u
LU——(@—FBQ)—FV(I'Z/,), (5)

where each function V(mAx,nAx,t) is analytic with respect to t.



3 Exact boundary conditions for the semi-discrete Schrodinger equa-
tion on a rectangular domain - full discretization

Let us introduce the Laplace transform

By (s / Uy (t)e” % dE. (6)

Before presenting the construction of boundary conditions for general compact initial data, we start
with a special case, i.e., the so-called point-source problem. We assume that the wave function ¢
satisfies Eq. (2) and that 97, ,(0) = 0, for (m,n) # (0,0). For a given function ¢ ,(t), we have, for
(m,n) # (0,0),

() = F5 () % 060 1) /f:nn VS ot — D)dE (7)

where the function fy, ,(f) can be numerically computed with high accuracy by a fourth-order Runge-
Kutta scheme from the expression

I () = Frnn(8) % g5,0(1), (8)
with
gfn,n (t) (Lt>m+n —4ut (mm":_n?’) o n\:?l T >
ST 2m+n+11—w( )F( + 1)

2
1 2
Sy 2(m+n+1) 2(m+n)+1—4t '
m+1l,n+l,m+n+1

2 (9)

In the above definition, I' is the Gamma special function and the generalized hypergeometric function

oF [17] is given by
a1,02; 2 . (a1)k(az)k k
F = z°, 10
2 3< b1, ba, b3 ) kZO E!(D1)r(b2)k (b3) (10)
with (a)y = a(a+1)...(a+ k —1), for £ > 1 and (a)g = 1. This is the inverse Laplace transform of
4—1s
W ((m,n), T)’ where

1 (m+n)!
2m+nzm+n+l mlnl

W((m,n),z) =

4F3< ;(m—i-n—kl) 2(m+n+1) 2(m+n)+1 2(m+n)+1 1 >’ (1)

m+1ln+lm+n+1

and z = (4 — vs)/2. The function 4F3 is the generalized hypergeometric function ,F, [17], with p =4
and ¢ = 3.

Let us consider now a finite rectangular computational domain and let us assume that the initial
data is zero outside the selected rectangular box, including its boundary. To simplify the presentation,
we suppose that the domain is the square L x L (see Fig. 1). The nodes at the boundary are labelled



counterclockwise, with the interior layer set as I, for 1 < k < 4L — 4, and the outer layer as J, with
1 <k <4L. Deriving a numerical artificial boundary condition consists in writing 15 () as a function
of the values of the wave field in the interior layer, completing hence the semi-discrete system (2) to
get a problem set in a finite computational region.

(51)  (52)  (53)  (54)

Jl, J], I J
(4j0)  (4)1) (42)  (4,3) (4/4) (45)
JL I I I, I J
(3i0) (EHD) (34)  (39)
J), 1), I J
(2,0)  (44) (44) (@)
J. 1 I J
oy ayn @2 @3 @4 @Gs5)
J. 1 I I I J

(a1 (Q2) (03) (94

J, J, J, J,

Figure 1: Discrete computational lattice (for L = 4): the red bullets represent the outer layer points,
the black ones correspond to the interior layer points, the yellow ones are the interior points and the
green ones stands for the corner points.

Let us consider that wi (t), for k = 1,--- ,4L — 4, are given values. Following [16], we first
decompose them as 4L — 4 unknown independent sources X7, (t)
414
UAGER DN i AAGESYAGN (12)
=1

4 —
For1§k§4L—4andz:TLs,wehave

4L—4

n W (Ik - IE? Z) ~
P s) = Y TR (), (13)
! ; W ((0,0),2) X

where X7, (s) is the Laplace transform of the function x7 (¢). From the asymptotic estimates

W((m’ n),z) 2 m—+n

7 A= —

W00, ~GT e
W (Ix — Iy, 2)
W ((0,0), 2)
is invertible, the functions xy,(s) exist and can be determined uniquely. One can also prove that
x7,(0) = 0. For a point (m,n) outside the inner boundary, we have

the matrix ( )k, is diagonally dominant for large values s. Consequently, the matrix

4L—4

. W ((mn) — Ir.%) _
0y uls) = £ (5). (14)
’ ; W((0,0,2)




For any inner boundary point Iy, a direct computation shows that

(4 =)W ((m,n) —Ip,z) =W ((m+1,n) —Ipz) + W ((m—1,n) — I, 2)

W (myn+1) = Tr,2) + W (myn— 1) — Ip, 2). (15)

Injecting the above relation into (14) gives

(4= 18)05,n(8) = V10 (8) + rm1.n(8) + Ui (8) + 951 (9), (16)

meaning that for any point (m,n) outside the inner boundary, vy, ,,(t) satisfies Eq. (2). It can also be
checked that 1y, ,(0) = 0. Once the sources x7,(t) have been obtained, an exact boundary condition
reads as follows, for 1 < ¢ < 4L,

AL—4 AL—4
W50 = D fi—n (1) * x5 (), W5,(8) = > f5,—1, () % X5, (0). (17)
=1 =1
For two sequences u = {u*} and v = {v¥}, let us now define the discrete convolution
i i At At
k 1, k-l 1, k=l 0,k k, 0
= Aty = At — — - —
(u*v) ;uv I ;uv UV U

through the trapezoidal quadrature rule, with At; = At/2 for [ = 0,k and At; = At otherwise. For
a fixed time step At, (ffn’n)k, (wfnn)k and (ann)k stand for the quantities f7, ,,(kAt), iy, ,(kAt)
and xy, ,(kAt), respectively. In addition, the numerical approximation of fy, ,(kAt), ¥y, ,(kA?),
Xon.n (kKAL) is designated by f,’fl’n, w,lf%n, Xffmn, respectively. In the present paper, the unknowns wfn,n
(1 <m,n < L) are computed by applying the Crank-Nicolson scheme [2] to Eq. (2)

wk _ wkfl 1 B 1
-t mmAt = = iA(d}fn,n + wfn,r%) = §(¢fn—1,n + wfn—l-l,n + wfn,n—l + ¢5@,n+1 - 4wfn,n) 18
1 k—1 k—1 k—1 k—1 k—1 ( )
+§( m—1,n + djm—l—l,n + ziz)m,n—l + ¢m,n+1 - 4d}m,n)7

for 1 < m,n < L. Concerning the boundary condition, Wfl and wz (1 < ¢ <4L) can be written from
relations (17) as

4L—4 AL—4
wlf@ = Z (f]/z—fz *Xfl)ka 1#% = Z (fJZ_Il *X]l)k' (19)
=1 =1

Finally, we can use the values @D]]‘; to complete the fully discretized system given by Eq. (18), for
1 <m,n < L, and then prove the stability of the whole system.

4 [*-stability analysis of the scheme

In this section, we prove the stability of the scheme (18)-(19). Le us first introduce the norm

L
1o llo= (D [omal"? (20)

m,n=1

6



and the Z-transform 4 of a sequence u := {u*} as

X u
u(z) = Z e (21)
k=0
If wk = (uxv)*, one directly gets
R > wk > 1 i 1 k—I N ~ OAtA OAtA
w(z) = Z g Z o Zu VETIAL = (2)0(2) At — u 71}(2) —v ?u(z) (22)
k=0 =07 1=0
From the relation (gfnn)k = (fmn *g&o)k and (22), one has
. ; e R At o At
Imn(2) = Fnin(2)96,0(2) At = 35,0(2) frnn(0) = = finn (2)96,0(0) -
leading to
~e ~e e At
~ gm,n(z) + g0,0(z) m,n(0>?
fnn(2) = — (23)
e 90,0( )
(90,0(2) T o JAt
If v% = (ux fynn)¥, with u® = 0, we have
e mn(0)At
R “ R . R At gm,n(z> + 4 R .
0(2) = fmn(2)W(2)At = [, 1 (0)a(2) - = : W(2) = hmn(2)a(z).  (24)
2 . 96.0(0)
(90,0(2) T o )

From the definition of the terms gy, ,(t), the quantities Ay, ,,(2) can be uniformly written as

R 1 7
Gmn(2) — 550,0 + ZAt(SO,l
hmn(z) = - i . (25)
QS,O(Z) -3

Here, d99 = 1 for (m,n) = (0,0), do,0 = 0 for other cases. In the same way, dp1 = 1 for (m,n) = (0,1),
00,1 = 0 otherwise.

Let us now introduce the index I, 1 < m < 4L, such that: I} = (1,m), I}, = (m,L),
Lo =L, L+1—m)and I} 4, = (L+1—m,1), for 1 <m < L. Therefore, I and J have both 4L
elements. Let us set 8 = eP® > 1, with p > 0. We use this term below to act like a phase change in
the spectral space of Z-transformation. Doing this, we have some integrals later (e.g. like for (34) or

(41)) which are not singular, simplifying the analysis. Taking Lplfmn = Bikwfn’n in Eq. (18), one obtains

2 k k—1 k k—1 2 k
_ _ _ _ = 2
txg P = Pinn) = AP + Pmn) + (8 = DA+ 0 )0mn (26)
and 5 5
. ko k=1 k k—1 . . kfl' 27
11 B mm = Pmn) = BA(Phn + Pmn) + (1= B)A = e )emn (27)



Let us now multiply the conjugate of Eq. (26) by cp’ﬁn’n and Eq. (27) by —p~ lcp'fn%, and sum over

1 <m,n < L. Then one gets

1 L L L L
b < -(1-3) )D D AP = (B0 > > ek

n=1m= 1 m=1n=1 m=1n=1

At P R _ - ke
ALY (5T + Bk ) 0 (il + B0k) —(hh + B )07 (P + B

~

L
At = _ - — ke
+ 5gtm my [(@fn,ol + Bk, VAT (g + Bho) — (O Ly + Bk, L )D, (Ph ]+ ngfn,L—i-l)} :
m=1
(28)
Summing up all these inequalities from £ = 1 to K and integrating by parts yield
4L K
1o 1B< 0 1 +5m L Bk V(b + Bk — it =80k L (29)
23 m m
m=1 k=1

where k = K is the index corresponding to the time of computation tx = KAt.
Let us now determine the sign of the second term appearing in the right-hand side of the above
inequality.

Lemma 1. Let us consider the scheme (18)-(19). Let p be a (relatively large) given positive constant
and let us set 3 = ePAt > 1. Then, there exists a time step Aty such that, for At < Atgy, one gets

4. K
> [(s@?fnl + B¢k )i+ B — @l = Beh, )| <0. (30)

m=1 k=1

Proof. For hy, , defined by Eq. (25), we can introduce the three following matrices A, A! and B with
elements

Ag(z)=hp_p(2), Ag(2) = hi—p(2) and Byy(2) = hy,—1,(2). (31)
The matrices A and B are of size 4L x (4L — 4) while A' is a (4L —4) x (4L — 4) matrix. Let us now
define the vectors

b (2) = [Wp b, p 17 (2) = [ by T X0(2) = Riys XX Ts - (32)

where 7 denotes the transposition operation. Therefore, the Z-transform of the boundary conditions
can be written in the compact form

Up(2) = AR)xi(2), di(z) = AM(2)%1(2),  $a(2) = B(2)xu(2). (33)
Following these notations, we obtain
AL K

> > Im [(w?fl + Bk (et + Bl — ot - Bw’i)]

=1 k=1

2 _
= %Im [ / |1+ Be? P07 (Be?) (dr (Be'?) — zﬁj(ﬂew))d(p] (34)
0

2
= ot | [ I BT (3 BT () A ) 1 ()
T 0

8



To conclude, we only need to prove that
Im [VTBT(56L¢)A(56L¢)V] <0, (35)

for any ¢ € [0,27] and V € C* %, The analysis is stated by considering three cases for ¢.
By definition [16]

Gmn(t) = 471r2/ / cos(ma) cos(ny)e (A=2cos(@)=2cosW)t g gy, (36)

and by using the definition of Z- transform, we obtain

Gmn(Be'?) = (2;)2 / / cos(m) cos(ny) Y e FOEIIE! (A0 dady

=0
’ e(Ko(:l:,y)+p)At+L¢ (37)

1 s s
— 7(2@2 /Tr /Tr cos(mz) COS(ny)e(Ko(x,y)+p)At+L¢> — 1dwdy,

with Ko(z,y) := 21(2 — cos(z) — cos(y)). We set a = p3 and z = Be'?.
Case 1: aAt < ¢ <7 —aAt or 1+ aAt < ¢ < 27w — aAt. Let us first write the following expansions

1

(36.0(2) %
(960(:) = 5)B" = Bi" At + By A + Ryt

)A = Ag+ A1At + R A,
(38)

The four matrices Ag, A1, B_lT and B_QT are computed explicitly below. The two residual terms R;
and Ry then must be estimated to be controlled. Therefore, one gets

12 -
Go(=) — 5| BT A = B\ AoAt + (BT A + B 40)AF°

(39)
+(R2A0 -+ B{Rl + BgAl)Atg + (BgRl + RQAl)At4 + RgRlAtE).

Now, because the coefficients of A and B are given through hy, () by expressions (31) which are
related to gy, ,(2) by Eq. (25), we must derive an expansion of Gm.n(Be'?) thanks to At. To this end,
let us compute the Taylor’s expansion

(Kokp) At 6. 1 At
e L
Formarrg —1 ~ g llg) Tyt Kot p)4sin2(¢)
2
coty ¢ ) )42 (40)
cos +
(Ko + p)2L72¢At2 (Ko +p) === AR (L 0(%)).
8sin%( L) 48sint(%)
2 2
Plugging (40) into the expression (37) needs the computation of the following integrals
1 s ™
@2 / / cos(mz) cos(ny)(Ko(z,y) + p)dzdy = (p + 4¢)d0,0 — td1,0 — tdo.1 (41)



and
1 / " / " 2 2
— cos(mx) cos(ny)(Ko(x,y) + p)“dzdy = (p~ + 8tp — 20)do,0
2m)? ) x) x (42)
—52,0 - 50,2 + (8 - 2Lp)5071 + (8 - 2Lp)5170 — 2(5171.
The matrices Ay, A1, By, By are given from expressions (95) to (99) of the Appendix. Let us analyze
the expansion (39) and its effect on stating the inequality (35) for Case 1.

First, since BlTAO is given by a real-valued diagonal matrix, it does not contribute to (35). Next,
the diagonal elements of (BT A; + BI A) are given by

pcotQ(g) 3cot2(§) pcot2(§) 3(:0‘52(%)
— L— = or — L— = :
8sin2(§) 251112(%) 1631n2(§) 4sm2(§)

the off-diagonal elements consisting in terms cot*(¢/2)* and cot?(¢/2) sin™2(¢/2) multiplied by real-
valued constants. Therefore, only the imaginary part of the diagonal elements of (BY A; + B% A)
contribute to the inequality (35). Concerning (RaAg + BT Ry + BY A1)At3, an analysis shows that
its coefficients satisfy

cos ¢ cot? ¢ cot2 [
(2) O(pg)At3 _ t (2)0(p3) At3 - t (2)O(p3)At2_ ”
s’ () sin2(2) ) T g2y @
2 2 9

Finally, the order of the coefficients of | (B2 Ry + RY A;)At* | is at most

¢) o?

-2 v
sin (2

At?

while the order of the elements of | RY R At® | is

C0t2(§) O(p5)
¢

2Py«
s1n(2)

A2,

From the above discussion, if p is large enough and At small enough, we have, for any vector
Ve ci,

c0t2(?)
Gio(z) — 5| [VTBTAV] < £ 2 A2 VP2
| 16sin2(?)
¢ i (449)
cot2(§) ) 03 ot P ,
g At <O()+O(a2)+0(3)) V2 <0
sin (5)



Case 2: —aAt < ¢ < aAt. Any angle ¢ can be written as ¢ = pa;At, where —a < par < a. When
At — 0, we can write

22 / / cos(mx) cos(ny) Z e Ko@w)int (P Hoa) AT Apdady — 750 oAt + 50 1At
)
m™J =T =0 (45)

cos(mx cos(ny) 9 p+Ltdat 2
dxd At?) = — — 42 At
_WP+L¢A1€+KO( ) O 2LW(m’n’ 2 YOG

—T

uniformly for —aAt < ¢ < aAt, with an error O(A#?).
Now for p large enough, there exists Atq such that if At < Atg and I}, — I, = (k,£), we have

P+ LA [P 2 k041 ( ( 1 >>
(o == P A~ g O G v ) T b+ )

Let us define I as the (4L — 4) x (4L — 4) unitary matrix. Then we have

1 1 1

At(Go(=) = 5)A = o0 )+ 0a) (46)
e At (d60(2) — 5 )B = L L(I+0(——— )+ O(A) (47)
004%) ™ 3 (0 + u(dar + 42" p+ (par+4) ‘

Since I{Il = I, where I is given by formula (100) in the Appendix, then one gets

—p+ (4+ dar) 1

2 §

’ BTA = ) + O(AL2), (48)

and finally Im [VTBTAV] <0.
Case 3: m — aAt < ¢ < 1+ aAt. Let us assume that: ¢ = 7 + Atpa,. If we take

K :Ko—i—p-i—quAt and K2:p+b(4+¢)At),

then we can write

gm’n (6pAt+¢L) e Cos(m;v) Cos(ny) Z e_KOJAt/(e(p+L¢At)At)](—1)Jdl'dy
1 | K .
27r /7r /7r cos(mz) cos(ny) ;g a7 1 4+ e KiAt drdy = 7500 + (72)50 0At — 15071At (49)
_751 QAt — (K2(50 0 — 3K50 2 — 3K50 0+ 103 o+ 100 3+ 19— 3K2)51 0

At?
+0(9 — 3K2)50,1 + 3L51,2 + 3L(5271 — 6K2(5171 12K2)78 + O(At4)

which means that

(60(=) - %)A _ At%ll +O(AR) (50)
and
(d6.0(2) f)B At3(Lf621 +0(1)) +O(at). (51)

11



This leads to

LKQ

g 112
96,0(2) — 5’ BTA = —AtY(p* + (44 dar)®)—— o1

(12 +O(= )) +O(AD). (52)

In this case, for any small enough At, we have : Im [VTBTAV] <0.
Collecting the results from the three above cases, we conclude that

4L K

>3 [T+ BT + iy - o = Bidh)] <o (53)

=1 k=1

By using the previous inequality, we can state the following L2-stability result.

Theorem 1. For the scheme (18)-(19), if p is a given and large enough positive constant, then there
exists Aty such that, if At < Aty and Tx = KAt,

|5 Jl2< T | 40 ||z (54)

Proof. From || & |2<|| ¢° |13, we have: e PEAL || K ||5<|| ¥¥ ||z which gives (54). O

5 Error analysis of the scheme

For two analytic functions u(t) and v(t), we have the following equalities, by using iterated integration
by parts,

t k=1
(u*v)¥ = /OkA u(s)v(kAt — s)ds — = /A v(kAt — )" (s + IAt)s(s — At)ds

kAt
:/0 u(s)o (k:At—s)ds—4/0 (u () (kA — )" (s)s(s — At)ds

At

—I-i/ (u(-)v(kAt — )" (kAt + s)s(s — At)ds (55)
1 OAt kAt " 1

—%/0 km( u( Yokt =)' (s + m)drs(s — At)ds

—1-4/0 (/0 (u(-)o(kAt — )" (s + 7)7(1 — kAt)dT)s(s — At)dsKt

= (u*v)(kAL) + r(kAt, At)At?

for k > 0, where

1
r(t, At) = A4t (u(-)u(t — )" (sAt)s(s — 1)ds + % /0 (u( vt =) (t + sAt)s(s — 1)ds
! /1 f o(t — )" (sAt + 7)drs(s — 1)ds (56)
A
7 /0 (/0 u(o(t — )" (sAt + 7)1 (1 — t)dT)s(s — 1)ds

12



has a series expansion thanks to At, with coefficients which are analytic functions with respect to t.
For any analytic functions uq(t),..., u,(t), by induction, one has

(% . (uz * (g % u1)) ) = (wy % .. (ug * (ug % up))...) (KAL) + o (kAL At)AL2. (57)

Let us now state the following lemma.

Lemma 2. If p is a given and large enough positive real-valued constant, then there exists Atg, such
that, for any At < Atg, for any angle ¢ and z = et one gets, for 1 < m,n < L, the representation

founl2) = () + R (58)
B0z — 5
where Ty (t, At) is an analytic function such that there exists a constant Cp, p , with
P (7 Atl) < Cronp. (59)
go,o(z) 9
We also have
hm.n(2)] < Cn,p- (60)

Proof. By using the representation given by Eq. (55) we have
(KAL) = (fr % 96,0) (RAL) = (f1,0 % 95,0)" + rmn(kAL A AL,

gm,n

which leads to
At

I ) =
A:mn(z) = gm’"( )+g00( )1 (0 2 + rm,n(z,Atl)At
(96,0(2) — 5)At G5 0(2) — )

which is nothing else than Eq. (58) since we have the representation (23) for fy,..(2).

Now, let u(t) be a real analytic function such that its Laplace transform u(s) is analytic at s = oo
and can be written as a(s) = Y 5o urs *. Let us remark here that Gm,n(t) and 7y, (¢, At) fullfil
these properties. Let us consider 1 and p as two large enough real-valued constants, with p > n, and
z = A9 Then we have

0 1 n+woo X skAt 0 1 n+woo X 1 —(p—s)At—up
ﬂ(z)—wz— Zﬂ(s)e ds—wz— Uk L C ds
2 27L 2k 2 Ao f, skl _ o—(p—s)At—1ep
n—Loo n—Loo € (61)
1 dk 1+ es—pAt—LqS .
kl dsk 1— esprthqﬁ upAt”.
s=0
Some computations show that, for any [ > 1, we have
Atl 1 dl 1 +€s—pAt—Lq§ Atl l 6 pAt—Ld))m 1
() -y S L @
2 lldst \ 1 = gs—PAt=o 9 (1 — e PAI—1Gymt1 ol
s=0 m:]- \a|=l,042'21
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setting |a| := > "%, oy and al := oq!...ap,!, for a multi-index « := (a1, ..., ). In addition, one gets

2

1 1 1 1 m
D R DI e B (UL A
la|=l,0;>1 |a|=l (63)
1 1 mz 1 o me® —1(1-1)0
= —e™dz = — e dg <e™
21 ‘zl 1 ZH_1 2 0

Case 1. 7 —aAt < ¢ < 7+ aAt. Let us introduce ¢ = 7+ dpa; At and take a = p3 as in the previous
section. For At small enough and from the inequalities (62)-(63), we have

A l 1 1 1 s—pAt—1¢p A ! —pAtym
Avld ( te = (") m < (et (64)
s=0

2 lldst \ 1 — es—PAt—td |1 + e PAL- L¢>AtAt|m+1

Frn(z, At) in Eq. (61) (with z = e/2) using Eqs. (62)-(63) and noticing

Now, taking 4(z) :=
= 0 (by setting ¢ = 0 in Eq. (56)) leads to

that 7, ,(0, At)

[ (2, A <D Cr(eAt)Frp (kAL At) = O(AL). (65)
k=1

In addition, a direct computation yields

1 11— —pAt—1paL At 2) —pAt—1pa At
Goolerhirdy - o= 20 - At + O(A1?)
, 2 21+ eprtfuﬁAtAt (]_ + eprth(j)AtAt)Q (66)
= (%@At - 1>At +O(AL?,

giving then the inequality (59).
Case 2. —aAt < ¢ < aAt. We again set: ¢ = Atpa;. For small enough At and by using (62)-(63),
we obtain

A1 dl (14 espAImd At 1
‘Qudsz (H,,AM,>_ )SQZ >
) la|=l,0;>1 (67)

!
e 1 e

< C, mAL™ < O ,

T ZNEY mz_:l( o+ ¢At!) = 71— empAlmidaiAl] (!p + ¢At!>

6 pAt)m
1 — e—PAL— L¢)m+1

which means

1 1 1
o pAt+Lp — .
Fmn(e A = T e (rm’"(o’ A0S |¢At|) o 0+ dacl? )> '

We use 7, (2, At) to denote the first-order derivative of r,, ,,(z, At) with respective to z.
We also have

1 1 (1+ ePAI=9) L
~e pPAt+LpY _ — 0
Jo.(e e R < 2 * O(p+ \¢At|)

14



leading to (59).
Case 3. aAt < ¢ <71 —alt or m+ aAt < ¢ < 27 — aAt. From the inequality (with o = p?)

At At e (1 — emPAY) - 1 p C
= 1 <C=(1 IN< =
'1—6PNL¢ '1—6“15 ( + 1—e ¢ ) - Ca( +O(a)) ~a’ (68)
we deduce that
Atl 1 dl 14+ esprtfuﬁ B Atl l (eprth(b)m 1
2 lldst \1—es—pBi=eo ) |~ 2 2 (1 — e—PAt-td)m+1 >
N " o =heizt (69)

Lo 1 lele)

1 m l—m
< C|1 _ e*PAt*L¢’| mz_:l aTAt < 11— eprth¢>| al ’

which means

; —pAt—
P (P20, Ay = — (rm’"(O’Aﬂe PAI A 1).

1 — e~PAt—9 2(1 — e—PAL—1d) a

Furthermore, we also have

1 1 (14 e PAt=L9) 1
~e pAt+Ldy —
90,0(6 ) 2 - 1 o eprtfb(z) < 2 + O(O[) I

finally leading to (59).
Concerning the inequality (60), a similar proof can be adapted, starting from the definition of hy, p
given by Eq. (25).
O

Let now us introduce the following indices: N}n’n =1, — I, and N%,n = Jm — I,,. We also define
I, 1%, ---1—fo5 as the ordered indices Iy, I ... I4;_4 excluding the k-th one (1 < k < 4L —4). Finally,
let us set N,},{ﬁ{l =1k I,

From the boundary condition (17), we have by Laplace transform

4L—-4

0. () =Y fi 1. (5)X0, (5), 1<m<4L -4,

:Ij—lzx (70)
U5, () = D 15 1 (X5, (5), 1<m<A4L.

n=1

We define A€ as the (4L — 4) x (4L — 4) matrix such that the (m,n)-th matrix element of A is
fir - Inasimilar way, B¢ is a 4L x (4L — 4) matrix such that its (m, n)-th element is equal to f{. .

As a consequence, system (70) leads to

05 = BY(AL)THf = Ff. (71)
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(The inversion of the matrix A€ can be obtained from the expression (10).) Let us denote by
o415 the set of all permutations of the indices 1 to 4L — 5, an element of the set being written as
i:= (i1,%2,...,345—5) € 041—5. Following Cramer’s rule, for 1 <1 < 4L, one can write that

"/;31 = Z (Be)l,m((‘&17e)_1)m,n@/~}§n
1<m,n<4L—4
4L—5 (72)

= ) Y= (Ale)fN2 —)m Y 51erlnm’

1<m,n<4L—4 i€o4r,—5 mr

where ' is the signature of the permutation for a given index i € o47_5. Let us now define UEL_ 4 as
the set o474 excluding (1,2, ...,4L — 4). Multiplying by det(Al’e) on both sides of Eq. (72), then
inverting by Laplace transform, one has

W+ Y 5th1 xRy, xYG))
j€al 4 (73)
= > fre, (= I O N A O I ) B
1<m,n<4L—4 icour_s 1,41 4L—5)i41_5

From Eq. (73) and by using (57), one gets

e k
le Z 5J le * (fNiL 4,541, *d]‘]l)m)}
j€aY; 4
= D R, GO YD Ay R * (o x05) )] + HikAL ADAR,
1<m,n<4L—4 i€oar_s 4L=5/41—5

(74)
where H;(t, At) is an analytic function of ¢ and At which can be expanded thanks to At, the coefficients
being some analytic functions of ¢. From the relation

. 0 0

(ux0)(2) = a(2)(2) At — ﬂ(z)%At - f)(z)%At,

and applying a Z-transform on both sides of Eq. (74) leads to

4L—-4
G +ise 3 8] (Fiy, (18015, @)at72)
j€odr 4
- > m(z) (f,iim(zmt ~ fip (0)A42) (<1 (75)
1<mn<4L—4

4L—-5
St Fe nm (2) At — FEm (0)AL/2) + Hy(z, At)AL2.
5 0 IT (Fipn (980 = Fiprn 001/2) 4 iz, 80

. D,
i€oyr—5  p=1 P
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Now, thanks to (58), one has

4L—4
B+ X0 TT (g, Ga0- 1 ©ar2)
J€U4L 4 p=1
= Y 9L (fe, @8- fr ©AL2) (-1

1<m,n<4L—4 (76)
4L—5

5> 1T (fagr @13~ fyn010/2)
i€oar—5 p=1 Prp psip
+( ) Grima(z, ADPE (2)) AL + Gau(z, A)YG,(2)AE + Hy(z, At) AL,
1<m,n<4L—4

where G 1 m n (2, At) and Go (2, At) are some analytic functions equal to linear combinations of prod-

ucts of the functions h,, and
Tp,q(2, At)

§0,0(2) — 90,0(0)/2"

Next, by using Lemma 2, we can prove the following bounds

‘Gl,l,m,n(zv At)‘ < Cl,l,m,n,,m ‘G2,l(27 At)| S CQ,l,pa (77)

for some well-chosen positive real-valued constants C1 .5, and Cy ,.
Now, by using (31), Eq. (76) is

G = Y Blaw((A) madf, (2) + Rilz, A)AL

1<mmn<4L—-4 (78)

= Y (F)adf, (2) + Ri(z, AAL,

1<n<4L—4

where F(z) is defined by

and

Rz, At) = Y Grimm(z AU (2) + Gog(z, AYG (2) + Hy(z,At) | . (80)

1<m,n<4L—4

1
det(A1)

Let us also remark that, if p is a given large enough positive constant, then there exists Atg, such
that, for At < Atg, F being given by (79), for any vector V of size 4L — 4 and angle ¢, we have

Im [VTFT(ePNW)IlV <0. (81)

Let us now prove the following error estimate.
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Theorem 2. Let us consider the scheme (18)-(19). Let p be a large enough given positive constant,
following Theorem 1. Then there exists Atg, such that, for any At < Aty and tx = KAt < T, we
have the following estimate

I 9" = v8(tK) ll2< C(L, T, 4°(0)At?, (82)
where the positive constant C depends on the length L, the mazimal time T' and the initial data 1¢(0).
Proof. Let us fix p1 > p, where p is given in Theorem 1. We define the local error: efn,n =( fnn)k -
¢§@,n- Then one can see that

2
(e — ey = Ak e )+ (83)

m,n m,n,k—%’

where r_ 1 is the local residual. From Eq. (78), the Z-transform of the boundary conditions leads
(A4 2

to
4L—4

4L —

e (2 Z ()07, (2) + R(2, A) AL — Z o (2)1, (2)
a7 (84)
Z (2) + Rin(z, At) AL,

where 1 < m < 4L —4. If we define nm n= = g37F m ns With 3 = eP12%and after some long calculations,
one obtains the following expression for the discrete L2-norm of the error

1™ 113<

K L L
At 4
ol +Z[ﬁ S mhas k\rmnk“’ + 0B k+1|rmnk—f‘)]
= k=1 n=1m=1 (85)
"X

Z >l + BnJm)(n]IZl + By, —nlyt = Bl

k=1m=1

Now, based on Eq. (84), one gets

K 4L

fm Y (o5, + Bl )+ By — it = Bnl)]

k=1m=1

1 27
=Im— /
2 0

1 2

= —Im
21

1 2
—1
+ 2m m/o

The first integral of the above last equality does not contribute to the computation since it is less than

L

4
1+ e ¢( Can(Be'?) (En, (Be'?) - éJm(56L¢))] do

=1

1+ g & (Be“’)FT(BeLd’)(Il— F(Be'?))ér(Be?)de

2
1+ Be'® dp A2

4L
S R(Bet?, At)er (Be)
m=1
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zero. This then leads to

K 4L
Attm > S5+ B, )+ By — bt = Bl
m=1
k=1 1 , L (87)
<At327T /0 ‘1+ﬁe“" ;Rm(ﬁe@,At)é%(ﬁe“z’)dqﬁ.

From relations (77), (80) and (4), we conclude that

1 21
),

CAt5B2 . s .
(132 _ 1) (1<mH%2§L74 | (det F1(Be ¢)) 1G1,l,m,n(ﬂe ¢>7 At) HL°°[0,2rr]

+ || (det By (8e')) "' Ga(Be?, Al) || pcjo.0m) + || (F1(8'?) ™ [l oof0,27))? (88)

A3 1+ Be?

K
* Ri(Ber?, At)e (Be) dqb' 7P S
k=0

K
2 2 2
ek ek k
(s, A+ e, e[t
. Z * f ARC(L, T, v
<Z Y I C(L,T,(0)),
which provides
K AL
Attm >~ S (G Bl 0+ By =t = Bl
k=1m=1
89
N (59)

K

1 e
< g D 11" 13 +AEC(L, T, 9%(0)).
25 k=0
To get (89) from (88), we use the following estimate for three sequences {a,}, {b,} and {c,}, where
their Z- transforms are a(z), b(z) and ¢é(z), respectively,

1 2ﬂ-AigoAig0Aigo 1 YR ) 1/ ,0p N
o /. [a(e)ble™)e(e)ldp < o | a(e™) llzopo.om Il 6(€™) ll2p0,2n] 1l €(€") Nl 210,27

Loyo ol
= 5 [1a(e™) lzpan b izl e e< e [l e [z +C)(1| @) llpo2mll b li2)?,

setting || a ||%= Z/If:o lag|?. The terms with indices I} belong to the computational domain, 1 <
m,n < L, and so they can be controlled by || n* |2 The indices 7, are not in the computational
domain. However, the terms which contain an index 7 are negative in (86), so they do not need
to be estimated in L?-norm [20]. By using Eq. (4), we obtain: |Tm,n,k+%| < C(1*(0))At?. Then, by
combining with (85), one gets

1™ 13<

2 K—-1
Z I 113 + 2ﬂ2 Z 0" 113 +C(L, v°(0)) At

QBZZH% Z > \mnk,

k 11<m,n<L

(91)
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Finally, we have

yielding

| ™ |I3< C(L, T, v°(0)) At?, (92)
| F — (KAL) [|2< C(L, T,1%(0)) At (93)
O

6 Conclusion

In this paper, we proved the L2-stability of the Crank-Nicolson discretization of the Schrédinger
equation with the artificial boundary condition derived in [16]. In addition, the full scheme is proved
to be second-order in time. These results confirm the numerical simulations presented in [16].

A Appendices

The matrix I; can be written as
[ 1

I

1

where Iy_5 is the identity matrix of order (L —

addition, some computations show that

icot(%)
Ap = — 5 I,
and _
al bl
Cq
bt a1
bl al
A=
_al bl

12 )
I,

(94)

I

2), 1o = [I 1]7, and all other entries are zero. In

, ¢
icot?(%)
B - 2'p, (95)
4
by |
by
b1
Cy
b1 aq b1
b a b : (96)
Cy
bl al bl
b1 aq b1
C
b1 |

20



with

p+4i
a1 = ==/

4sin2(§)

and the (L — 2) x L matrix C; is given by

[ b1 al bl
bl al bl
b1 al

Cy

We also can prove that the matrix Bs is such that

i as  2by
Co
262 a9 bQ
b2 a9 2()2
C,
B 2by
B, = by
| a2 by
with
(2p + 8i) cot(?)
ag = — ¢ 2 y
8sin?(~
sin (2)
The (L — 2) x L matrix Cs has the following form
[ 262 ag 2b2
2b2 a9 262
262 a9

C,

21

icotg(?)
b= — 2
4
by
(97)
by a1 b
by |
ag bg
GQ 2b2 Y (98)
Co
2b2 as bg
by as  2bsy
Cy
209
icot(?)
by = — 2
2 %
209
8sin (2)
209
(99)
2by as 2by ]




It is finally easy to get I Ty = Iy. The matrix I can be written as

[ 2

I — T2 . (100)
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