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Stability and convergence analysis of artificial boundary conditions

for the Schrödinger equation on a rectangular domain

Gang PANG1, Yibo YANG2, Xavier ANTOINE3, Shaoqiang TANG4

Abstract. Based on the discrete artificial boundary condition introduced in [16] for the two-dimensional
free Schrödinger equation in a computational rectangular domain, we propose to analyze the stability
and convergence rate of the resulting full scheme. We prove that the global scheme is L2-stable and
that the accuracy is second-order in time, confirming then the numerical results reported in [16].

Keywords: Schrödinger equation; artificial boundary condition; stability analysis; convergence anal-
ysis.
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1 Introduction

Time-dependent Schrödinger equations play a key role in many applications related to physics and
engineering [6, 14, 21, 22], including quantum physics, acoustics, electromagnetism and optics. In
many cases, the equation is set in the whole space Rd (d ≥ 1). Therefore, when one wants to simulate
the solution to the initial-value problem, we have to bound the computational domain to get a finite
number of spatial degrees of freedom. Doing this, one needs to fix a suitable boundary condition at the
fictitious interface of the domain that mimics the behavior of the wave field in the exterior domain.
If the physical solution is confined within a finite domain [6], trivially a homogeneous Dirichlet or
Neumann boundary condition can be considered. Nevertheless, this is insufficient in some situations.
A classical example is when the wave is outgoing, expanding then to infinity. More advanced boundary
conditions must be designed, considering transparent, artificial or absorbing boundary conditions,
according to the properties of the boundary condition. This usually requires a lot of mathematical
and numerical analysis to state well-suited boundary conditions that minimize the spurious reflection at
the boundary, but also to lead to accurate and stable numerical schemes. For the Schrödinger equation,
and over the past two decades, many contributions were done for the one- and two-dimensional cases,
for the linear or nonlinear Schrödinger equation, involving possibly some space and time variable
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potentials, with simple or complicate smooth convex fictitious boundaries. We refer to [4, 5, 7, 11,
13, 18] for some examples, the list of references being non exhaustive. Available review papers on
artificial boundary conditions are e.g. [12, 15, 23] for general PDEs, and [1, 3] more specifically for
Schrödinger-type problems. Many approaches can be developed to build these boundary conditions.
Some methods are based on directly working with the continuous PDE, building approximations to
the Dirichlet-to-Neumann (DtN) operators, others include constructions of boundary conditions for
the semi-discretized equation (in time or space), and finally other techniques are directly applied at
the full discrete level. For completeness, let us also mention that Perfectly Matched Layer (PML)
[8, 9, 10, 19, 24] can be used for truncating the computational domain.

Here, we consider the time-dependent linear free Schrödinger equation truncated in a rectangular
two-dimensional domain. The artificial boundary condition under consideration is the one proposed
in [16], based on an exact representation of the boundary operator for a rectangular shaped domain,
with a second-order spatial discretization of the Schrödinger equation. Therefore, the corresponding
boundary condition falls into the framework of semi-discrete artificial boundary conditions. From
some numerical simulations, we have shown in [16] that, based on a Crank-Nicolson scheme, the full
approximation is second-order in time. The aim of the present paper is to prove the stability of the
fully discrete scheme as well as the second-order error estimate in time. Since this paper is already
technical as well as [16], the authors strongly advise the reader to first understand the derivation in
[16] before entering into the details of the present paper.

The plan of the paper is the following. After the introduction (Section 1), Section 2 focuses on
the problem setting, its semi-discretization in space and some basic properties of the scheme. In
Section 3, we develop the results related to the exact artificial boundary condition for the discrete
spatial rectangular lattice. We also proceed to the full discretization of the initial boundary-value
problem. In Section 4, we prove the L2-stability of the fully discrete scheme. Section 5 is devoted to
the convergence analysis. Finally, we end by a conclusion in Section 6 and an Appendix.

2 Problem setting: semi-discretization and basic properties

Let us consider the two-dimensional linear Schrödinger equation with unknown u := u(x, y, t)

ιu̇ = −
(∂2u

∂x2
+
∂2u

∂y2

)
, (1)

where (x, y) ∈ R2 and t > 0 are the space and time variables, respectively. The time derivative is
denoted by u̇ := ∂tu. In addition, a compactly supported initial data u(x, y, t = 0) = u0(x, y) is added
to equation (1). Finally, the complex-valued number ι is such that ι :=

√
−1.

Let us now introduce the uniform spatial steps ∆x and ∆y in the x- and y-directions, respectively.
By discretizing (1) with a second-order five points stencil scheme for the laplacian (with ∆x = ∆y
here) and after rescaling the time variable through t = (∆x2)−1t, we obtain the following semi-discrete
system for the exact (e) solution ψe := (ψem,n)(m,n)∈Z2

ιψ̇em,n = −(ψem+1,n + ψem−1,n + ψem,n+1 + ψem,n−1 − 4ψem,n) = −∆ψem,n, (2)

with compactly supported initial data ψem,n(0) = u0(m∆x, n∆x) for the uniform lattice (m,n) ∈ Z2.
In the above equation, we define the discrete laplacian as: ∆ := ∆x + ∆y, with ∆x,y := ∆+

x,y∆
−
x,y and
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denoting by ∆+
x (∆−x , respectively) the forward (backward, respectively) finite-difference operator in

the x-direction. Similarly, the operators ∆+
y and ∆−y are introduced in the y-direction. Let us assume

that the initial data is square integrable, i.e. ‖ ψe(0) ‖∗,2< ∞, where the semi-discrete L2-norm on
the infinite lattice is defined by

‖ ψe ‖∗,2= (
∑

(m,n)∈Z2

|ψem,n|2)1/2.

We furthermore consider the following standard behavior of the solution at infinity

|ψem,n(t)| → 0 for |m|+ |n| → ∞.

We define ψ
e,(k)
m,n (t) as the k-th order time derivative of ψem,n(t). Then, we have |ψe,(k)

m,n (t)| → 0.

By multiplying Eq. (2) by ψem,n(t) (z̄ being the conjugate of a complex number z), taking the con-
jugate of Eq. (2) and multiplying it by −ψem,n(t), then summing up the two equations for (m,n) in Z2

and integrating by parts the resulting equation, one can prove the semi-discrete L2-norm conservation

∀t > 0, ‖ ψe(t) ‖∗,2=‖ ψe(0) ‖∗,2 .

In addition, taking the k-th derivative of the semi-discrete equation

iψ̇em,n = −(ψem,n−1 + ψem,n+1 + ψem+1,n + ψem−1,n − 4ψem,n),

we obtain
iψe,(k+1)
m,n = −(ψ

e,(k)
m,n−1 + ψ

e,(k)
m,n+1 + ψ

e,(k)
m+1,n + ψ

e,(k)
m−1,n − 4ψe,(k)

m,n ),

which means that

|ψe,(k+1)
m,n | ≤ |ψe,(k)

m,n−1|+ |ψ
e,(k)
m,n+1|+ |ψ

e,(k)
m+1,n|+ |ψ

e,(k)
m−1,n|+ 4|ψe,(k)

m,n |.

This leads to

|ψe,(k+1)
m,n |2 ≤ 5|ψe,(k)

m,n−1|
2 + 5|ψe,(k)

m,n+1|
2 + 5|ψe,(k)

m+1,n|
2 + 5|ψe,(k)

m−1,n|
2 + 80|ψe,(k)

m,n |2.

Summing up over all the indices m and n, we have∑
m,n

|ψe,(k+1)
m,n |2 ≤ 100

∑
m,n

|ψe,(k)
m,n |2.

Finally, we conclude that
‖ ψe,(k+1)(0) ‖∗,2≤ 10 ‖ ψe,(k)(0) ‖∗,2 (3)

and
‖ ψe,(k)(t) ‖∗,2=‖ ψe,(k)(0) ‖∗,2≤ 10k ‖ ψe(0) ‖∗,2 . (4)

One also gets the inequality: |ψe,(k)
m,n (0)| ≤ 10k ‖ ψe(0) ‖∗,2, meaning that each function ψem,n(t) is

analytic.

Remark 1. The discussion above extends to the case of the Schrödinger equation with a compactly
supported potential term given by V , i.e.

ιu̇ = −
(∂2u

∂x2
+
∂2u

∂y2

)
+ V (x, y, t)u, (5)

where each function V (m∆x, n∆x, t) is analytic with respect to t.
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3 Exact boundary conditions for the semi-discrete Schrödinger equa-
tion on a rectangular domain - full discretization

Let us introduce the Laplace transform

ψ̃em,n(s) :=

∫ ∞
0

ψem,n(t)e−stdt. (6)

Before presenting the construction of boundary conditions for general compact initial data, we start
with a special case, i.e., the so-called point-source problem. We assume that the wave function ψe

satisfies Eq. (2) and that ψem,n(0) = 0, for (m,n) 6= (0, 0). For a given function ψe0,0(t), we have, for
(m,n) 6= (0, 0),

ψem,n(t) = fem,n(t) ∗ ψe0,0(t) =

∫ t

0
fem,n(t̃)ψe0,0(t− t̃)dt̃, (7)

where the function fem,n(t) can be numerically computed with high accuracy by a fourth-order Runge-
Kutta scheme from the expression

gem,n(t) = fem,n(t) ∗ ge0,0(t), (8)

with

gem,n(t) = (ιt)m+ne−4ιt (m+ n)!

m!n!

√
π

2m+n+1Γ(
m+ n+ 1

2
)Γ(

m+ n

2
+ 1)
×

2F3

( 1

2
(m+ n+ 1),

1

2
(m+ n) + 1;−4t2

m+ 1, n+ 1,m+ n+ 1

)
.

(9)

In the above definition, Γ is the Gamma special function and the generalized hypergeometric function

2F3 [17] is given by

2F3

(
a1, a2; z
b1, b2, b3

)
=
∞∑
k=0

(a1)k(a2)k
k!(b1)k(b2)k(b3)k

zk, (10)

with (a)k = a(a + 1)...(a + k − 1), for k ≥ 1 and (a)0 = 1. This is the inverse Laplace transform of

W ((m,n),
4− ιs

2
), where

W ((m,n), z) =
1

2m+nzm+n+1

(m+ n)!

m!n!
×

4F3

( 1

2
(m+ n+ 1),

1

2
(m+ n+ 1),

1

2
(m+ n) + 1,

1

2
(m+ n) + 1;

4

z2

m+ 1, n+ 1,m+ n+ 1

)
,

(11)

and z = (4− ιs)/2. The function 4F3 is the generalized hypergeometric function pFq [17], with p = 4
and q = 3.

Let us consider now a finite rectangular computational domain and let us assume that the initial
data is zero outside the selected rectangular box, including its boundary. To simplify the presentation,
we suppose that the domain is the square L×L (see Fig. 1). The nodes at the boundary are labelled
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counterclockwise, with the interior layer set as Ik, for 1 ≤ k ≤ 4L− 4, and the outer layer as Jk, with
1 ≤ k ≤ 4L. Deriving a numerical artificial boundary condition consists in writing ψeJk(t) as a function
of the values of the wave field in the interior layer, completing hence the semi-discrete system (2) to
get a problem set in a finite computational region.
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Figure 1: Discrete computational lattice (for L = 4): the red bullets represent the outer layer points,
the black ones correspond to the interior layer points, the yellow ones are the interior points and the
green ones stands for the corner points.

Let us consider that ψeIk(t), for k = 1, · · · , 4L − 4, are given values. Following [16], we first
decompose them as 4L− 4 unknown independent sources χeIk(t)

ψeIk(t) =

4L−4∑
`=1

feIk−I`(t) ∗ χ
e
I`

(t). (12)

For 1 ≤ k ≤ 4L− 4 and z =
4− ιs

2
, we have

ψ̃eIk(s) =

4L−4∑
`=1

W (Ik − I`, z)
W ((0, 0), z)

χ̃eI`(s), (13)

where χ̃eI`(s) is the Laplace transform of the function χeI`(t). From the asymptotic estimates

W ((m,n), z)

W ((0, 0), z)
∼ (

2

z
)m+n, |z| → +∞,

the matrix (
W (Ik − I`, z)
W ((0, 0), z)

)k,` is diagonally dominant for large values s. Consequently, the matrix

is invertible, the functions χ̃I`(s) exist and can be determined uniquely. One can also prove that
χeI`(0) = 0. For a point (m,n) outside the inner boundary, we have

ψ̃em,n(s) =
4L−4∑
`=1

W ((m,n)− I`, z)
W ((0, 0), z)

χ̃eI`(s). (14)
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For any inner boundary point I`, a direct computation shows that

(4− ιs)W ((m,n)− I`, z) = W ((m+ 1, n)− I`, z) +W ((m− 1, n)− I`, z)
+W ((m,n+ 1)− I`, z) +W ((m,n− 1)− I`, z) .

(15)

Injecting the above relation into (14) gives

(4− ιs)ψ̃em,n(s) = ψ̃em+1,n(s) + ψ̃em−1,n(s) + ψ̃em,n+1(s) + ψ̃em,n−1(s), (16)

meaning that for any point (m,n) outside the inner boundary, ψem,n(t) satisfies Eq. (2). It can also be
checked that ψem,n(0) = 0. Once the sources χeI`(t) have been obtained, an exact boundary condition
reads as follows, for 1 ≤ ` ≤ 4L,

ψeI`(t) =
4L−4∑
l=1

feI`−Il(t) ∗ χ
e
Il

(t), ψeJ`(t) =
4L−4∑
l=1

feJ`−Il(t) ∗ χ
e
Il

(t). (17)

For two sequences u = {uk} and v = {vk}, let us now define the discrete convolution

(u ? v)k =

k∑
l=0

ulvk−l∆tl :=

k∑
l=0

ulvk−l∆t− u0vk
∆t

2
− ukv0 ∆t

2

through the trapezoidal quadrature rule, with ∆tl = ∆t/2 for l = 0, k and ∆tl = ∆t otherwise. For
a fixed time step ∆t, (fem,n)k, (ψem,n)k and (χem,n)k stand for the quantities fem,n(k∆t), ψem,n(k∆t)
and χem,n(k∆t), respectively. In addition, the numerical approximation of fem,n(k∆t), ψem,n(k∆t),

χem,n(k∆t) is designated by fkm,n, ψkm,n, χkm,n, respectively. In the present paper, the unknowns ψkm,n
(1 ≤ m,n ≤ L) are computed by applying the Crank-Nicolson scheme [2] to Eq. (2)

−ι
ψkm,n − ψk−1

m,n

∆t
=

1

2
∆(ψkm,n + ψk−1

m,n ) =
1

2
(ψkm−1,n + ψkm+1,n + ψkm,n−1 + ψkm,n+1 − 4ψkm,n)

+
1

2
(ψk−1

m−1,n + ψk−1
m+1,n + ψk−1

m,n−1 + ψk−1
m,n+1 − 4ψk−1

m,n ),
(18)

for 1 ≤ m,n ≤ L. Concerning the boundary condition, ψkI` and ψkJ` (1 ≤ ` ≤ 4L) can be written from
relations (17) as

ψkI` =

4L−4∑
l=1

(fI`−Il ? χIl)
k, ψkJ` =

4L−4∑
l=1

(fJ`−Il ? χIl)
k. (19)

Finally, we can use the values ψkI` to complete the fully discretized system given by Eq. (18), for
1 ≤ m,n ≤ L, and then prove the stability of the whole system.

4 L2-stability analysis of the scheme

In this section, we prove the stability of the scheme (18)-(19). Le us first introduce the norm

‖ ψ ‖2= (
L∑

m,n=1

|ψm,n|2)1/2 (20)
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and the Z-transform û of a sequence u := {uk} as

û(z) =

∞∑
k=0

uk

zk
. (21)

If wk = (u ? v)k, one directly gets

ŵ(z) =

∞∑
k=0

wk

zk
=

∞∑
k=0

1

zk

k∑
l=0

ulvk−l∆tl = û(z)v̂(z)∆t− u0 ∆t

2
v̂(z)− v0 ∆t

2
û(z). (22)

From the relation (gem,n)k = (fm,n ? g
e
0,0)k and (22), one has

ĝem,n(z) = f̂m,n(z)ĝe0,0(z)∆t− ĝe0,0(z)fem,n(0)
∆t

2
− f̂em,n(z)ge0,0(0)

∆t

2
,

leading to

f̂m,n(z) =
ĝem,n(z) + ĝe0,0(z)fem,n(0)

∆t

2

(ĝe0,0(z)−
ge0,0(0)

2
)∆t

. (23)

If vk = (u ? fm,n)k, with u0 = 0, we have

v̂(z) = f̂m,n(z)û(z)∆t− fem,n(0)û(z)
∆t

2
=
ĝem,n(z) +

fem,n(0)∆t

4

(ĝe0,0(z)−
ge0,0(0)

2
)

û(z) = hm,n(z)û(z). (24)

From the definition of the terms gem,n(t), the quantities hm,n(z) can be uniformly written as

hm,n(z) =
ĝem,n(z)− 1

2
δ0,0 +

i

4
4tδ0,1

ĝe0,0(z)− 1

2

. (25)

Here, δ0,0 = 1 for (m,n) = (0, 0), δ0,0 = 0 for other cases. In the same way, δ0,1 = 1 for (m,n) = (0, 1),
δ0,1 = 0 otherwise.

Let us now introduce the index I1
m, 1 ≤ m ≤ 4L, such that: I1

m = (1,m), I1
L+m = (m,L),

I1
m+2L = (L,L+1−m) and I1

m+3L = (L+1−m, 1), for 1 ≤ m ≤ L. Therefore, I1 and J have both 4L
elements. Let us set β = eρ∆t > 1, with ρ > 0. We use this term below to act like a phase change in
the spectral space of Z-transformation. Doing this, we have some integrals later (e.g. like for (34) or
(41)) which are not singular, simplifying the analysis. Taking ϕkm,n = 1

βk
ψkm,n in Eq. (18), one obtains

− ι 2

∆t
(ϕkm,n − ϕk−1

m,n) = ∆(ϕkm,n + ϕk−1
m,n) + (β − 1)(∆ + ι

2

∆t
)ϕkm,n (26)

and

− ι 2

∆t
β(ϕkm,n − ϕk−1

m,n) = β∆(ϕkm,n + ϕk−1
m,n) + (1− β)(∆− ι 2

∆t
)ϕk−1

m,n . (27)
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Let us now multiply the conjugate of Eq. (26) by ϕkm,n and Eq. (27) by −β−1ϕk−1
m,n , and sum over

1 ≤ m,n ≤ L. Then one gets

L∑
n=1

L∑
m=1

(|ϕkm,n|2 − |ϕk−1
m,n |2) ≤ −(1− 1

β
)

L∑
m=1

L∑
n=1

|ϕk−1
m,n |2 − (β − 1)

L∑
m=1

L∑
n=1

|ϕkn|2

+
∆t

2β
Im

L∑
n=1

[
(ϕk−1

0,n + βϕk0,n)4+
x (ϕk−1

0,n + βϕk0,n) −(ϕk−1
L+1,n + βϕkL+1,n)4−x (ϕk−1

L+1,n + βϕkL+1,n)
]

+
∆t

2β
Im

L∑
m=1

[
(ϕk−1

m,0 + βϕkm,0)4+
y (ϕk−1

m,0 + βϕkm,0)− (ϕk−1
m,L+1 + βϕkm,L+1)4−y (ϕk−1

m,L+1 + βϕkm,L+1)
]
.

(28)
Summing up all these inequalities from k = 1 to K and integrating by parts yield

‖ ϕK ‖22≤‖ ϕ0 ‖22 +
∆t

2β
Im

4L∑
m=1

K∑
k=1

[
(ϕk−1

Jm
+ βϕkJm)(ϕk−1

I1
m

+ βϕkI1
m
− ϕk−1

Jm
− βϕkJm)

]
, (29)

where k = K is the index corresponding to the time of computation tK = K∆t.
Let us now determine the sign of the second term appearing in the right-hand side of the above

inequality.

Lemma 1. Let us consider the scheme (18)-(19). Let ρ be a (relatively large) given positive constant
and let us set β = eρ∆t > 1. Then, there exists a time step ∆t0 such that, for ∆t ≤ ∆t0, one gets

4L∑
m=1

K∑
k=1

[
(ϕk−1

Jm
+ βϕkJm)(ϕk−1

I1
m

+ βϕkI1
m
− ϕk−1

Jm
− βϕkJm)

]
≤ 0. (30)

Proof. For hm,n defined by Eq. (25), we can introduce the three following matrices A, A1 and B with
elements

A`,l(z) = hI1
`−Il

(z), A1
`,l(z) = hI`−Il(z) and B`,l(z) = hJ`−Il(z). (31)

The matrices A and B are of size 4L× (4L− 4) while A1 is a (4L− 4)× (4L− 4) matrix. Let us now
define the vectors

ψ̂I1(z) = [ψ̂I1
1
, ψ̂I1

2
, ...ψ̂I1

4L
]T , ψ̂J(z) = [ψ̂J1 , ψ̂J2 , ...ψ̂J4L

]T , χ̂I(z) = [χ̂I1 , χ̂I2 , ...χ̂I4L−4
]T , (32)

where T denotes the transposition operation. Therefore, the Z-transform of the boundary conditions
can be written in the compact form

ψ̂I1(z) = A(z)χ̂I(z), ψ̂I(z) = A1(z)χ̂I(z), ψ̂J(z) = B(z)χ̂I(z). (33)

Following these notations, we obtain

4L∑
l=1

K∑
k=1

Im
[
(ϕk−1

Jl
+ βϕkJl)(ϕ

k−1
I1
l

+ βϕkI1
l
− ϕk−1

Jl
− βϕkJl)

]
=

1

2π
Im

[∫ 2π

0
|1 + βeιφ|2 ¯̂

ψTJ (βeιφ)(ψ̂I1(βeιφ)− ψ̂J(βeιφ))dφ

]
=

1

2π
Im

[∫ 2π

0
|1 + βeιφ|2 ¯̂χTI (βeιφ)B̄T (βeιφ)A(βeιφ)χ̂I(βe

ιφ)dφ

]
.

(34)
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To conclude, we only need to prove that

Im
[
V̄T B̄T (βeιφ)A(βeιφ)V

]
≤ 0, (35)

for any φ ∈ [0, 2π] and V ∈ C4L−4. The analysis is stated by considering three cases for φ.
By definition [16]

gm,n(t) =
1

4π2

∫ π

−π

∫ π

−π
cos(mx) cos(ny)e−i(4−2 cos(x)−2 cos(y))tdxdy (36)

and by using the definition of Z- transform, we obtain

ĝm,n(βeιφ) =
1

(2π)2

∫ π

−π

∫ π

−π
cos(mx) cos(ny)

∞∑
j=0

e−K0(x,y)j4t/(e(ρ4t+ιφ))jdxdy

=
1

(2π)2

∫ π

−π

∫ π

−π
cos(mx) cos(ny)

e(K0(x,y)+ρ)4t+ιφ

e(K0(x,y)+ρ)4t+ιφ − 1
dxdy,

(37)

with K0(x, y) := 2ι(2− cos(x)− cos(y)). We set α = ρ3 and z = βeιφ.
Case 1: α∆t ≤ φ ≤ π−α∆t or π+α∆t ≤ φ ≤ 2π−α∆t. Let us first write the following expansions(

ĝe0,0(z)− 1

2

)
A = A0 + A1∆t+ R1∆t2,(

¯̂ge0,0(z)− 1

2

)
B̄
T

= B̄1
T

∆t+ B̄2
T

∆t2 + R2∆t3.
(38)

The four matrices A0, A1, B̄1
T

and B̄2
T

are computed explicitly below. The two residual terms R1

and R2 then must be estimated to be controlled. Therefore, one gets∣∣∣ĝe0,0(z)− 1

2

∣∣∣2B̄T
A = B̄1

T
A0∆t+ (BT

1 A1 + BT
2 A0)∆t2

+(R2A0 + BT
1 R1 + BT

2 A1)∆t3 + (BT
2 R1 + R2A1)∆t4 + R2R1∆t5.

(39)

Now, because the coefficients of A and B are given through hm,n(z) by expressions (31) which are
related to ĝem,n(z) by Eq. (25), we must derive an expansion of ĝm,n(βeιφ) thanks to ∆t. To this end,
let us compute the Taylor’s expansion

e(K0+ρ)4t+ιφ

e(K0+ρ)4t+ιφ − 1
= − ι

2
cot(

φ

2
) +

1

2
+ (K0 + ρ)

∆t

4 sin2(
φ

2
)

+(K0 + ρ)2ι
cot(

φ

2
)

8 sin2(
φ

2
)

∆t2 − (K0 + ρ)3 cos(φ) + 2

48 sin4(
φ

2
)

∆t3(1 +O(
ρ

α
)).

(40)

Plugging (40) into the expression (37) needs the computation of the following integrals

1

(2π)2

∫ π

−π

∫ π

−π
cos(mx) cos(ny)(K0(x, y) + ρ)dxdy = (ρ+ 4ι)δ0,0 − ιδ1,0 − ιδ0,1 (41)
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and
1

(2π)2

∫ π

−π

∫ π

−π
cos(mx) cos(ny)(K0(x, y) + ρ)2dxdy = (ρ2 + 8ιρ− 20)δ0,0

−δ2,0 − δ0,2 + (8− 2ιρ)δ0,1 + (8− 2ιρ)δ1,0 − 2δ1,1.
(42)

The matrices A0, A1, B1, B2 are given from expressions (95) to (99) of the Appendix. Let us analyze
the expansion (39) and its effect on stating the inequality (35) for Case 1.

First, since B̄1
T
A0 is given by a real-valued diagonal matrix, it does not contribute to (35). Next,

the diagonal elements of (BT
1 A1 + BT

2 A0) are given by

−
ρ cot2(

φ

2
)

8 sin2(
φ

2
)

ι− 3

2

cot2(
φ

2
)

sin2(
φ

2
)

or −
ρ cot2(

φ

2
)

16 sin2(
φ

2
)

ι− 3

4

cot2(
φ

2
)

sin2(
φ

2
)

,

the off-diagonal elements consisting in terms cot4(φ/2)4 and cot2(φ/2) sin−2(φ/2) multiplied by real-
valued constants. Therefore, only the imaginary part of the diagonal elements of (BT

1 A1 + BT
2 A0)

contribute to the inequality (35). Concerning (R2A0 + BT
1 R1 + BT

2 A1)∆t3, an analysis shows that
its coefficients satisfy∣∣∣∣∣∣∣

cos(
φ

2
)

sin5(
φ

2
)

O(ρ3)∆t3

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
cot2(

φ

2
)

sin2(
φ

2
)

O(ρ3)
∆t3

sin(φ)

∣∣∣∣∣∣∣ ≤
cot2(

φ

2
)

sin2(
φ

2
)

O(ρ3)

α
∆t2. (43)

Finally, the order of the coefficients of | (BT
2 R1 + RT

2 A1)∆t4 | is at most

cot2(
φ

2
)

sin2(
φ

2
)

O(ρ4)

α2 ∆t2

while the order of the elements of | RT
2 R1∆t5 | is

cot2(
φ

2
)

sin2(
φ

2
)

O(ρ5)

α3 ∆t2.

From the above discussion, if ρ is large enough and ∆t small enough, we have, for any vector
V ∈ C4L−4,

∣∣∣ĝe0,0(z)− 1

2

∣∣∣2Im
[
V̄T B̄

T
AV

]
≤ − ρ

16

cot2(
φ

2
)

sin2(
φ

2
)

∆t2 |V|2

+
cot2(

φ

2
)

sin2(
φ

2
)

∆t2
(
O(

ρ3

α
) +O(

ρ4

α2
) +O(

ρ5

α3
)

)
|V|2 ≤ 0.

(44)
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Case 2: −α∆t ≤ φ ≤ α∆t. Any angle φ can be written as φ = φ∆t∆t, where −α ≤ φ∆t ≤ α. When
∆t→ 0, we can write

1

(2π)2

∫ π

−π

∫ π

−π
cos(mx) cos(ny)

∞∑
j=0

e−K0(x,y)j4t/(e(ρ+ιφ∆t)∆t)j∆tdxdy − 1

2
δ0,0∆t+

ι

4
δ0,1∆t2

=
1

(2π)2

∫ π

−π

∫ π

−π

cos(mx) cos(ny)

ρ+ ιφ∆t +K0(x, y)
dxdy +O(∆t2) =

1

2ι
W (m,n,

ρ+ ιφ∆t

2ι
+ 2) +O(∆t2)

(45)

uniformly for −α∆t ≤ φ ≤ α∆t, with an error O(∆t2).
Now for ρ large enough, there exists ∆t0 such that if ∆t ≤ ∆t0 and I1

m − In = (k, `), we have

W (m,n,
ρ+ ιφ∆t

2ι
+ 2) ∼ 1

2k+`
Ckk+`(

2ι

ρ+ ι(φ∆t + 4)
)k+`+1

(
1 +O

(
1

ρ+ ι(φ∆t + 4)

))
.

Let us define I as the (4L− 4)× (4L− 4) unitary matrix. Then we have

∆t
(
ĝe0,0(z)− 1

2

)
A =

1

ρ+ ι(φ∆t + 4)
I1(I +O(

1

ρ+ ι(φ∆t + 4)
)) +O(∆t2) (46)

and

∆t
(
ĝe0,0(z)− 1

2

)
B =

ι

(ρ+ ι(φ∆t + 4))2
I1(I +O(

1

ρ+ ι(φ∆t + 4)
)) +O(∆t2). (47)

Since IT1 I1 = I2, where I2 is given by formula (100) in the Appendix, then one gets

∆t2
∣∣∣ĝe0,0(z)− 1

2

∣∣∣2B̄TA =
−ιρ+ (4 + φ∆t)

((φ∆t + 4)2 + ρ2)2
(I2 +O(

1

ρ+ ι(φ∆t + 4)
)) +O(∆t2), (48)

and finally Im
[
V̄T B̄TAV

]
≤ 0.

Case 3: π − α∆t ≤ φ ≤ π + α∆t. Let us assume that: φ = π + ∆tφ∆t. If we take

K1 = K0 + ρ+ ιφ∆t and K2 = ρ+ ι(4 + φ∆t),

then we can write

ĝm,n(eρ∆t+φι) =
1

(2π)2

∫ π

−π

∫ π

−π
cos(mx) cos(ny)

∞∑
j=0

e−K0j4t/(e(ρ+ιφ∆t)∆t)j(−1)jdxdy

=
1

(2π)2

∫ π

−π

∫ π

−π
cos(mx) cos(ny)

1

1 + e−K1∆t
dxdy =

1

2
δ0,0 + (

K2

4
)δ0,0∆t− ι

4
δ0,1∆t

− ι
4
δ1,0∆t− (K3

2δ0,0 − 3K2δ0,2 − 3K2δ2,0 + ιδ3,0 + ιδ0,3 + ι(9− 3K2
2 )δ1,0

+ι(9− 3K2
2 )δ0,1 + 3ιδ1,2 + 3ιδ2,1 − 6K2δ1,1 − 12K2)

∆t3

48
+O(∆t4),

(49)

which means that (
ĝe0,0(z)− 1

2

)
A = ∆t

K2

4
I1 +O(∆t2) (50)

and (
ĝe0,0(z)− 1

2

)
B = ∆t3

( ιK2
2

16
I1 +O(1)

)
+O(∆t4). (51)
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This leads to ∣∣∣ĝe0,0(z)− 1

2

∣∣∣2B̄TA = −∆t4(ρ2 + (4 + φ∆t)
2)
ιK2

64

(
I2 +O(

1

ρ
)
)

+O(∆t5). (52)

In this case, for any small enough ∆t, we have : Im
[
V̄T B̄TAV

]
≤ 0.

Collecting the results from the three above cases, we conclude that

Im

4L∑
l=1

K∑
k=1

[
(ϕk−1

Jl
+ βϕkJl)(ϕ

k−1
I1
l

+ β1ϕ
k
I1
l
− ϕk−1

Jl
− β1ϕ

k
Jl

)
]
≤ 0. (53)

By using the previous inequality, we can state the following L2-stability result.

Theorem 1. For the scheme (18)-(19), if ρ is a given and large enough positive constant, then there
exists ∆t0 such that, if ∆t ≤ ∆t0 and TK = K∆t,

‖ ψK ‖2≤ eρTK ‖ ψ0 ‖2 . (54)

Proof. From ‖ ϕK ‖22≤‖ ϕ0 ‖22, we have: e−ρK∆t ‖ ψK ‖2≤‖ ψ0 ‖2 which gives (54).

5 Error analysis of the scheme

For two analytic functions u(t) and v(t), we have the following equalities, by using iterated integration
by parts,

(u ? v)k =

∫ k∆t

0
u(s)v(k∆t− s)ds− 1

2

∫ ∆t

0

k−1∑
l=0

(u(·)v(k∆t− ·))′′(s+ l∆t)s(s−∆t)ds

=

∫ k∆t

0
u(s)v(k∆t− s)ds− 1

4

∫ ∆t

0
(u(·)v(k∆t− ·))′′(s)s(s−∆t)ds

+
1

4

∫ ∆t

0
(u(·)v(k∆t− ·))′′(k∆t+ s)s(s−∆t)ds

−1

2

∫ ∆t

0

∫ k∆t

0
(u(·)v(k∆t− ·))′′(s+ τ)dτs(s−∆t)ds

1

∆t

+
1

4

∫ ∆t

0
(

∫ k∆t

0
(u(·)v(k∆t− ·))′′′′(s+ τ)τ(τ − k∆t)dτ)s(s−∆t)ds

1

∆t
= (u ∗ v)(k∆t) + r(k∆t,∆t)∆t2,

(55)

for k ≥ 0, where

r(t,∆t) = −∆t

4

∫ 1

0
(u(·)v(t− ·))′′(s∆t)s(s− 1)ds+

∆t

4

∫ 1

0
(u(·)v(t− ·))′′(t+ s∆t)s(s− 1)ds

−1

2

∫ 1

0

∫ t

0
(u(·)v(t− ·))′′(s∆t+ τ)dτs(s− 1)ds

+
1

4

∫ 1

0
(

∫ t

0
(u(·)v(t− ·))′′′′(s∆t+ τ)τ(τ − t)dτ)s(s− 1)ds

(56)
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has a series expansion thanks to ∆t, with coefficients which are analytic functions with respect to t.
For any analytic functions u1(t),..., un(t), by induction, one has

(un ? ...(u3 ? (u2 ? u1))...)k = (un ∗ ...(u3 ∗ (u2 ∗ u1))...)(k∆t) + rn(k∆t,∆t)∆t2. (57)

Let us now state the following lemma.

Lemma 2. If ρ is a given and large enough positive real-valued constant, then there exists ∆t0, such
that, for any ∆t ≤ ∆t0, for any angle φ and z = eρ∆t+ιφ, one gets, for 1 ≤ m,n ≤ L, the representation

f̂em,n(z) = f̂m,n(z) +
r̂m,n(z,∆t)

ĝe0,0(z)− 1

2

∆t, (58)

where rm,n(t,∆t) is an analytic function such that there exists a constant Cm,n,ρ with∣∣∣∣∣∣∣
r̂m,n(z,∆t)

ĝe0,0(z)− 1

2

∣∣∣∣∣∣∣ ≤ Cm,n,ρ. (59)

We also have
|hm,n(z)| ≤ Cm,n,ρ. (60)

Proof. By using the representation given by Eq. (55) we have

gem,n(k∆t) = (fem,n ∗ ge0,0)(k∆t) = (fem,n ? g
e
0,0)k + rm,n(k∆t,∆t)∆t2,

which leads to

f̂em,n(z) =
ĝem,n(z) + ĝe0,0(z)fem,n(0)

∆t

2

(ĝe0,0(z)− 1

2
)∆t

+
r̂m,n(z,∆t)

ĝe0,0(z)− 1

2

∆t

which is nothing else than Eq. (58) since we have the representation (23) for f̂m,n(z).
Now, let u(t) be a real analytic function such that its Laplace transform ũ(s) is analytic at s =∞

and can be written as ũ(s) =
∑∞

k=1 uks
−k. Let us remark here that gm,n(t) and rm,n(t,∆t) fullfil

these properties. Let us consider η and ρ as two large enough real-valued constants, with ρ > η, and
z = eρ∆t+ιφ. Then we have

û(z)− u(0)

2
=

1

2πι

∫ η+ι∞

η−ι∞

∞∑
k=0

ũ(s)
esk∆t

zk
ds− u(0)

2
=

1

4πι

∫ η+ι∞

η−ι∞

∞∑
k=0

uk
sk+1

1 + e−(ρ−s)∆t−ιφ

1− e−(ρ−s)∆t−ιφds

=
1

2

∞∑
k=0

1

k!

dk

dsk

(
1 + es−ρ∆t−ιφ

1− es−ρ∆t−ιφ

)
s=0

uk∆t
k.

(61)

Some computations show that, for any l ≥ 1, we have

∆tl

2

1

l!

dl

dsl

(
1 + es−ρ∆t−ιφ

1− es−ρ∆t−ιφ

)
s=0

=
∆tl

2

l∑
m=1

(e−ρ∆t−ιφ)m

(1− e−ρ∆t−ιφ)m+1

∑
|α|=l,αi≥1

1

α!
, (62)
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setting |α| :=
∑m

i=1 αi and α! := α1!...αm!, for a multi-index α := (α1, ..., αm). In addition, one gets

∑
|α|=l,αi≥1

1

α!
≤
∑
|α|=l

1

α!
=

1

2πι

∮
|z|=1

1

zl+1
(1 + z +

z2

2!
+ ...)mdz

=
1

2πι

∮
|z|=1

1

zl+1
emzdz =

1

2π

∫ 2π

0
eme

ιθ−ι(l−1)θdθ ≤ em.
(63)

Case 1. π−α∆t ≤ φ ≤ π+α∆t. Let us introduce φ = π+φ∆t∆t and take α = ρ3 as in the previous
section. For ∆t small enough and from the inequalities (62)-(63), we have

∆tl

2

1

l!

dl

dsl

(
1 + es−ρ∆t−ιφ

1− es−ρ∆t−ιφ

)
s=0

≤ ∆tl

2

l∑
m=1

(e−ρ∆t)m

|1 + e−ρ∆t−ιφ∆t∆t|m+1
em ≤ Cl(e∆t)l. (64)

Now, taking û(z) := r̂m,n(z,∆t) in Eq. (61) (with z = eρ∆t+ιφ), using Eqs. (62)-(63) and noticing
that rm,n(0,∆t) = 0 (by setting t = 0 in Eq. (56)) leads to

|r̂m,n(z,∆t)| ≤
∞∑
k=1

Ck(e∆t)
krm,n(k∆t,∆t) = O(∆t). (65)

In addition, a direct computation yields

ĝe0,0(eρ∆t+ιφ)− 1

2
=

1

2

1− e−ρ∆t−ιφ∆t∆t

1 + e−ρ∆t−ιφ∆t∆t
− 2e−ρ∆t−ιφ∆t∆t

(1 + e−ρ∆t−ιφ∆t∆t)2
∆t+O(∆t2)

=
(ρ+ ιφ∆t

4
− 1
)

∆t+O(∆t)2,

(66)

giving then the inequality (59).
Case 2. −α∆t ≤ φ ≤ α∆t. We again set: φ = ∆tφ∆t. For small enough ∆t and by using (62)-(63),
we obtain

∣∣∣∣∆tl2

1

l!

dl

dsl

(
1 + es−ρ∆t−ιφ

1− es−ρ∆t−ιφ

)
s=0

∣∣∣∣ ≤ ∆tl

2

l∑
m=1

∣∣∣∣ (e−ρ∆t)m

(1− e−ρ∆t−ιφ)m+1

∣∣∣∣ ∑
|α|=l,αi≥1

1

α!

≤ Cl
1

|1− e−ρ∆t−ιφ∆t∆t|

l∑
m=1

(
e

|ρ+ φ∆t|
)m∆tl−m ≤ Cl

1

|1− e−ρ∆t−ιφ∆t∆t|

(
e

|ρ+ φ∆t|

)l
,

(67)

which means

r̂m,n(eρ∆t+ιφ,∆t) =
1

1− e−ρ∆t−ιφ

(
ṙm,n(0,∆t)O(

1

ρ+ |φ∆t|
) +O(

1

|ρ+ φ∆t|2
)

)
.

We use ṙm,n(z,∆t) to denote the first-order derivative of rm,n(z,∆t) with respective to z.
We also have

ĝe0,0(eρ∆t+ιφ)− 1

2
=

1

1− e−ρ∆t−ιφ

(
(1 + e−ρ∆t−ιφ)

2
+O(

1

ρ+ |φ∆t|
)

)
,
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leading to (59).
Case 3. α∆t ≤ φ ≤ π − α∆t or π + α∆t ≤ φ ≤ 2π − α∆t. From the inequality (with α = ρ3)∣∣∣∣ ∆t

1− e−ρ∆t−ιφ

∣∣∣∣ =

∣∣∣∣ ∆t

1− e−ιφ

∣∣∣∣
∣∣∣∣∣
(

1 +
e−ιφ(1− e−ρ∆t)

1− e−ιφ

)−1
∣∣∣∣∣ ≤ C 1

α
(1 +O(

ρ

α
)) ≤ C

α
, (68)

we deduce that∣∣∣∣∆tl2

1

l!

dl

dsl

(
1 + es−ρ∆t−ιφ

1− es−ρ∆t−ιφ

)
s=0

∣∣∣∣ =
∆tl

2

l∑
m=1

∣∣∣∣ (e−ρ∆t−ιφ)m

(1− e−ρ∆t−ιφ)m+1

∣∣∣∣ ∑
|α|=l,αi≥1

1

α!

≤ C 1

|1− e−ρ∆t−ιφ|

l∑
m=1

Cm
αm

∆tl−m ≤ 1

|1− e−ρ∆t−ιφ|
CCl
αl

,

(69)

which means

r̂m,n(eρ∆t+ιφ,∆t) =
1

1− e−ρ∆t−ιφ

(
ṙm,n(0,∆t)e−ρ∆t−ιφ∆t

2(1− e−ρ∆t−ιφ)
+O(

1

α2
)

)
.

Furthermore, we also have

ĝe0,0(eρ∆t+ιφ)− 1

2
=

1

1− e−ρ∆t−ιφ

(
(1 + e−ρ∆t−ιφ)

2
+O(

1

α
)

)
,

finally leading to (59).
Concerning the inequality (60), a similar proof can be adapted, starting from the definition of hm,n

given by Eq. (25).

Let now us introduce the following indices: N1
m,n = Im − In and N2

m,n = Jm − In. We also define

Ik1 , Ik2 , ...Ik4L−5 as the ordered indices I1, I2 ... I4L−4 excluding the k-th one (1 ≤ k ≤ 4L−4). Finally,

let us set N1,k,l
m,n = Ikm − I ln.

From the boundary condition (17), we have by Laplace transform

ψ̃eIm(s) =

4L−4∑
n=1

f̃eIm−In(s)χ̃eIn(s), 1 ≤ m ≤ 4L− 4,

ψ̃eJm(s) =

4L−4∑
n=1

f̃eJm−In(s)χ̃eIn(s), 1 ≤ m ≤ 4L.

(70)

We define A1,e as the (4L − 4) × (4L − 4) matrix such that the (m,n)-th matrix element of A1,e is
feN1

m,n
. In a similar way, Be is a 4L× (4L−4) matrix such that its (m,n)-th element is equal to feN2

m,n
.

As a consequence, system (70) leads to

ψ̃eJ = B̃e(Ã1,e)−1ψ̃eI = F̃eψ̃eI . (71)
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(The inversion of the matrix Ã1,e can be obtained from the expression (10).) Let us denote by
σ4L−5 the set of all permutations of the indices 1 to 4L − 5, an element of the set being written as
i := (i1, i2, ..., i4L−5) ∈ σ4L−5. Following Cramer’s rule, for 1 ≤ l ≤ 4L, one can write that

ψ̃eJl =
∑

1≤m,n≤4L−4

(B̃e)l,m((Ã1,e)−1)m,nψ̃
e
In

=
∑

1≤m,n≤4L−4

ψ̃eIn
1

det(Ã1,e)
f̃eN2

l,m
(−1)m+n

∑
i∈σ4L−5

δi
4L−5∏
p=1

f̃e
N1,n,m
p,ip

,
(72)

where δi is the signature of the permutation for a given index i ∈ σ4L−5. Let us now define σ0
4L−4 as

the set σ4L−4 excluding (1, 2, ..., 4L − 4). Multiplying by det(Ã1,e) on both sides of Eq. (72), then
inverting by Laplace transform, one has

ψeJl +
∑

j∈σ0
4L−4

δjfeh1
1,j1

∗ (... ∗ (feN1
4L−4,j4L−4

∗ ψeJl)...)

=
∑

1≤m,n≤4L−4

feN2
l,m

(−1)m+n ∗ (
∑

i∈σ4L−5

δife
N1,n,m

1,i1

∗ (...(fe
N1,n,m

4L−5,i4L−5

∗ ψeIn)...)).
(73)

From Eq. (73) and by using (57), one gets

(ψeJl)
k +

∑
j∈σ0

4L−4

δj[feN1
1,j1

? (... ? (feN1
4L−4,j4L−4

? ψeJl)...)]
k

=
∑

1≤m,n≤4L−4

[feN2
l,m

(−1)m+n ? (
∑

i∈σ4L−5

δife
N1,n,m

1,i1

? (...(fe
N1,n,m

4L−5,i4L−5

? ψeIn)...))]k +Hl(k∆t,∆t)∆t2,

(74)
where Hl(t,∆t) is an analytic function of t and ∆t which can be expanded thanks to ∆t, the coefficients
being some analytic functions of t. From the relation

(̂u ? v)(z) = û(z)v̂(z)∆t− û(z)
v0

2
∆t− v̂(z)

u0

2
∆t,

and applying a Z-transform on both sides of Eq. (74) leads to

ψ̂eJl(z) + ψ̂eJl(z)
∑

j∈σ0
4L−4

δj
4L−4∏
p=1

(
f̂eh1

p,jp

(z)∆t− feh1
p,jp

(0)∆t/2

)
=

∑
1≤m,n≤4L−4

ψ̂eIn(z)
(
f̂eh2

l,m
(z)∆t− feh2

l,m
(0)∆t/2

)
(−1)m+n

∑
i∈σ4L−5

δi
4L−5∏
p=1

(
f̂e
h1,n,m
p,ip

(z)∆t− f̂e
h1,n,m
p,ip

(0)∆t/2

)
+ Ĥl(z,∆t)∆t

2.

(75)
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Now, thanks to (58), one has

ψ̂eJl(z) + ψ̂eJl(z)
∑

j∈σ0
4L−4

δj
4L−4∏
p=1

(
f̂h1

p,jp
(z)∆t− feh1

p,jp

(0)∆t/2

)
=

∑
1≤m,n≤4L−4

ψ̂eIn(z)
(
f̂h2

l,m
(z)∆t− feh2

l,m
(0)∆t/2

)
(−1)m+n

∑
i∈σ4L−5

δi
4L−5∏
p=1

(
f̂
h1,n,m
p,ip

(z)∆t− f̂
h1,n,m
p,ip

(0)∆t/2

)
+(

∑
1≤m,n≤4L−4

G1,l,m,n(z,∆t)ψ̂eIn(z))∆t2 +G2,l(z,∆t)ψ̂
e
Jl

(z)∆t2 + Ĥl(z,∆t)∆t
2,

(76)

where G1,l,m,n(z,∆t) and G2,l(z,∆t) are some analytic functions equal to linear combinations of prod-
ucts of the functions hp,q and

r̂p,q(z,∆t)

ĝ0,0(z)− g0,0(0)/2
.

Next, by using Lemma 2, we can prove the following bounds

|G1,l,m,n(z,∆t)| ≤ C1,l,m,n,ρ, |G2,l(z,∆t)| ≤ C2,l,ρ, (77)

for some well-chosen positive real-valued constants C1,l,m,n,ρ and C2,l,ρ.
Now, by using (31), Eq. (76) is

ψ̂eJl(z) =
∑

1≤m,n≤4L−4

(B)l,m((A1)−1)m,nψ̂
e
In(z) +Rl(z,∆t)∆t

2

=
∑

1≤n≤4L−4

(F)l,nψ̂
e
In(z) +Rl(z,∆t)∆t

2,
(78)

where F(z) is defined by

ψ̂J(z) = F(z)ψ̂I(z) := B(z)(A1(z))−1ψ̂I(z) (79)

and

Rl(z,∆t) =
1

det(A1)

 ∑
1≤m,n≤4L−4

G1,l,m,n(z,∆t)ψ̂eIn(z) +G2,l(z,∆t)ψ̂
e
Jl

(z) + Ĥl(z,∆t)

 . (80)

Let us also remark that, if ρ is a given large enough positive constant, then there exists ∆t0, such
that, for ∆t ≤ ∆t0, F being given by (79), for any vector V of size 4L− 4 and angle φ, we have

Im
[
V̄T F̄T (eρ∆t+ιφ)I1V

]
≤ 0. (81)

Let us now prove the following error estimate.
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Theorem 2. Let us consider the scheme (18)-(19). Let ρ be a large enough given positive constant,
following Theorem 1. Then there exists ∆t0, such that, for any ∆t ≤ ∆t0 and tK = K∆t ≤ T , we
have the following estimate

‖ ψK − ψe(tK) ‖2≤ C(L, T, ψe(0))∆t2, (82)

where the positive constant C depends on the length L, the maximal time T and the initial data ψe(0).

Proof. Let us fix ρ1 > ρ, where ρ is given in Theorem 1. We define the local error: ekm,n = (ψem,n)k −
ψkm,n. Then one can see that

− 2ι

∆t
(ekm,n − ek−1

m,n) = ∆(ek−1
m,n + ekm,n) + rm,n,k− 1

2
, (83)

where rm,n,k− 1
2

is the local residual. From Eq. (78), the Z-transform of the boundary conditions leads
to

êJm(z) =
4L−4∑
n=1

Fm,n(z)ψ̂eIn(z) +Rm(z,∆t)∆t2 −
4L−4∑
n=1

Fm,n(z)ψ̂In(z)

=
4L−4∑
n=1

Fm,n(z)êIn(z) +Rm(z,∆t)∆t2,

(84)

where 1 ≤ m ≤ 4L−4. If we define ηkm,n = β−kekm,n, with β = eρ1∆t, and after some long calculations,
one obtains the following expression for the discrete L2-norm of the error

‖ ηK ‖22≤
1− β2

β2

K−1∑
k=0

‖ ηk ‖22 +

K∑
k=1

[
∆t

2β

L∑
n=1

L∑
m=1

(ηk−1
m,nβ

−k|rm,n,k− 1
2
|+ ηkm,nβ

−k+1|rm,n,k− 1
2
|)]

+Im
∆t

2β2

K∑
k=1

4L∑
m=1

[(ηk−1
Jm

+ βηkJm)(ηk−1
I1
m

+ βηkI1
m
− ηk−1

Jm
− βηkJm)].

(85)

Now, based on Eq. (84), one gets

Im
K∑
k=1

4L∑
m=1

[(ηk−1
Jm

+ βηkJm)(ηk−1
I1
m

+ βηkI1
m
− ηk−1

Jm
− βηkJm)]

= Im
1

2π

∫ 2π

0

[∣∣∣1 + βeιφ
∣∣∣2 4L∑
m=1

¯̂eJm(βeιφ)(êI1
m

(βeιφ)− êJm(βeιφ))

]
dφ

=
1

2π
Im

∫ 2π

0

∣∣∣1 + βeιφ
∣∣∣2 ¯̂eTI (βeιφ)F̄T (βeιφ)(I1 − F(βeιφ))êI(βe

ιφ)dφ

+
1

2π
Im

∫ 2π

0

∣∣∣1 + βeιφ
∣∣∣2 [ 4L∑

m=1

R̄m(βeιφ,∆t)êI1
m

(βeιφ)

]
dφ∆t2.

(86)

The first integral of the above last equality does not contribute to the computation since it is less than
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zero. This then leads to

∆tIm
K∑
k=1

4L∑
m=1

[(ηk−1
Jm

+ βηkJm)(ηk−1
I1
m

+ βηkI1
m
− ηk−1

Jm
− βηkJm)]

≤ ∆t3
1

2π

∣∣∣∣∣
∫ 2π

0

∣∣∣1 + βeιφ
∣∣∣2 4L∑
m=1

R̄m(βeιφ,∆t)êI1
m

(βeιφ)dφ

∣∣∣∣∣ .
(87)

From relations (77), (80) and (4), we conclude that

∆t3
∣∣∣∣ 1

2π

∫ 2π

0

∣∣∣1 + βeιφ
∣∣∣2 R̄l(βeιφ,∆t)êI1

l
(βeιφ)dφ

∣∣∣∣ ≤ β2 − 1

4β2

K∑
k=0

∣∣∣ηkI1
l

∣∣∣2
+
C∆t5β2

(β2 − 1)
( max
1≤m,n≤4L−4

‖ (det F̂1(βeιφ))−1G1,l,m,n(βeιφ,∆t) ‖L∞[0,2π]

+ ‖ (det F̂1(βeιφ))−1G2,l(βe
ιφ,∆t) ‖L∞[0,2π] + ‖ (F̂1(βeιφ))−1 ‖L∞[0,2π])

2

×( max
1≤m≤4L

∆t
K∑
k=0

∣∣∣ψe,kJm∣∣∣2 + max
1≤n≤4L

∆t
K∑
k=0

∣∣∣ψe,kIn ∣∣∣2 + ∆t
K∑
k=0

∣∣∣Hk
l

∣∣∣2)

≤ β2 − 1

4β2

K∑
k=0

∣∣∣ηkI1
l

∣∣∣2 + ∆t4C(L, T, ψe(0)),

(88)

which provides

∆tIm
K∑
k=1

4L∑
m=1

[(ηk−1
Jm

+ βηkJm)(ηk−1
I1
m

+ βηkI1
m
− ηk−1

Jm
− βηkJm)]

≤ β2 − 1

2β2

K∑
k=0

‖ ηk ‖22 +∆t4C(L, T, ψe(0)).

(89)

To get (89) from (88), we use the following estimate for three sequences {an}, {bn} and {cn}, where
their Z- transforms are â(z), b̂(z) and ĉ(z), respectively,

1

2π

∫ 2π

0
|â(eiϕ)b̂(eiϕ)ĉ(eiϕ)|dϕ ≤ 1

2π
‖ â(eiϕ) ‖L∞[0,2π]‖ b̂(eiϕ) ‖L2[0,2π]‖ ĉ(eiϕ) ‖L2[0,2π]

=
1

2π
‖ â(eiϕ) ‖L∞[0,2π]‖ b ‖l2‖ c ‖l2≤ ε ‖ c ‖2l2 +C(ε)(‖ â(eiϕ) ‖L∞[0,2π]‖ b ‖l2)2,

(90)

setting ‖ a ‖2l2=
∑K

k=0 |ak|2. The terms with indices I1
l belong to the computational domain, 1 ≤

m,n ≤ L, and so they can be controlled by ‖ ηk ‖2 The indices ηJl are not in the computational
domain. However, the terms which contain an index ηJl are negative in (86), so they do not need
to be estimated in L2-norm [20]. By using Eq. (4), we obtain: |rm,n,k+ 1

2
| ≤ C(ψe(0))∆t2. Then, by

combining with (85), one gets

‖ ηK ‖22≤
1− β2

β2

K−1∑
k=0

‖ ηk ‖22 +
β2 − 1

2β2

K∑
k=0

‖ ηk ‖22 +C(L,ψe(0))∆t4

+
β2 − 1

2β2

K∑
k=0

‖ ηk ‖22 +
C∆t2

(β2 − 1)

K∑
k=1

∑
1≤m,n≤L

∣∣∣rm,n,k− 1
2

∣∣∣2 . (91)
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Finally, we have
‖ ηK ‖22≤ C(L, T, ψe(0))∆t4, (92)

yielding
‖ ψK − ψe(K∆t) ‖2≤ C(L, T, ψe(0))∆t2. (93)

6 Conclusion

In this paper, we proved the L2-stability of the Crank-Nicolson discretization of the Schrödinger
equation with the artificial boundary condition derived in [16]. In addition, the full scheme is proved
to be second-order in time. These results confirm the numerical simulations presented in [16].

A Appendices

The matrix I1 can be written as

I1 =



1
IL−2

12

IL−2

12

IL−2

12

IL−2

1


, (94)

where IL−2 is the identity matrix of order (L − 2), 12 = [1 1]T , and all other entries are zero. In
addition, some computations show that

A0 = −
i cot(

φ

2
)

2
I1, B1 = −

i cot2(
φ

2
)

4
I1

(95)

and

A1 =



a1 b1 b1
C1

b1 a1 b1
b1 a1 b1

C1

b1 a1 b1
b1 a1 b1

C1

b1 a1 b1
b1 a1 b1

C1

a1 b1 b1



, (96)
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with

a1 = − ρ+ 4i

4 sin2(
φ

2
)

, b1 = −
i cot2(

φ

2
)

4
,

and the (L− 2)× L matrix C1 is given by

C1 =



b1 a1 b1
b1 a1 b1

b1 a1 b1
.
.
.

b1 a1 b1


. (97)

We also can prove that the matrix B2 is such that

B2 =



a2 2b2 b2
C2

2b2 a2 b2
b2 a2 2b2

C2

2b2 a2 b2
b2 a2 2b2

C2

2b2 a2 b2
b2 a2 2b2

C2

a2 b2 2b2



, (98)

with

a2 = −
(2ρ+ 8i) cot(

φ

2
)

8 sin2(
φ

2
)

, b2 = −
i cot(

φ

2
)

8 sin2(
φ

2
)

.

The (L− 2)× L matrix C2 has the following form

C2 =



2b2 a2 2b2
2b2 a2 2b2

2b2 a2 2b2
.
.
.

2b2 a2 2b2


. (99)
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It is finally easy to get IT1 I1 = I2. The matrix I2 can be written as

I2 =



2
IL−2

2
IL−2

2
IL−2

2
IL−2


. (100)
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