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Practical consensus of homogeneous sampled-data

multi-agent systems
Emmanuel Bernuau, Emmanuel Moulay, Patrick Coirault, and Fayrouz Isfoula

Abstract—The aim of this article is to study the second-
order practical consensus of homogeneous sampled-data multi-
agent systems. To do this, a new nonlinear emulation strategy
based on homogeneity is developed. It is then applied to multi-
agent systems under synchronously variable sampling. Finally,
a comparison with the classical linear strategy is provided in
the case of multi-agent systems under synchronously periodic
sampling.

Index Terms—Multi-agent systems, practical consensus,
sampled-data systems, homogeneous systems.

I. INTRODUCTION

The second-order consensus for multi-agent systems (MAS)

has been solved during the 2000’s by using linear controllers

[1]. The multi-agent formation control has then attracted a

lot of attention [2]. For real applications involving wireless

communications, the problem of the sampled-data inputs must

be taken into account [3]. So, the study of sampled-data

MAS has been developed in the 2010’s [4], [5], [6], [7],

[8], [9], [10], [11], [12]. There are four kinds of samplings

that appears for MAS: synchronously periodic sampling (SPS)

where all agents have the same periodic sampling on the input;

asynchronously periodic sampling (APS) where each agent has

its own periodic sampling on the input; synchronously variable

sampling (SVS) where all agents have the same aperiodic

sampling on the input; and asynchronously variable sampling

(AVS) where each agent has its own aperiodic sampling on

the input. The reader can find an overview on sampled-data

MAS in [13], [14].

To tackle the problem of stability of the double integrator

with a sampled-data input, a new nonlinear emulation strategy

based on homogeneous systems has been proposed in [15].

With the emulation method, the controller is first designed

in continuous time and then implemented as a sampled-data

controller [16], [3], [17]. The strategy proposed in [15] for ho-

mogeneous nonlinear systems with sampled-data inputs cannot

be directly used for MAS. Indeed, this paper only considers

control laws leading to asymptotic stability in continuous time,

whereas the consensus of MAS do not lead to asymptotic

stability in continuous time.
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The first task of this article is to adapt the result of [15]

and prove a new theoretical result for the set stability of

homogeneous nonlinear systems with sampled-data inputs and

relevant for MAS. Then, we use this new result to obtain

the practical consensus for homogeneous sampled-data MAS

[18] with undirected or directed graphs. We only ensure

practical consensus due to the sampling of the inputs which

can be arbitrary large. In practice, we need a controller for

the continuous plant which renders the closed-loop MAS

homogeneous of negative degree. This is precisely what is

done by some finite time controllers by using the notion

of finite time stability developed in [19]. The finite time

consensus of MAS has been studied for instance in [20],

[21] for double-integrator dynamics. In our article, we use

the homogeneous nonlinear controllers proposed in [21], [22]

in order to obtain the practical consensus of the second-order

MAS with SVS, which has been studied with linear controllers

in [23]. The main advantage of the proposed method relies

on the fact that the maximum distance between the agents

remains bounded when the sampling interval increases, unlike

linear strategies. The main drawback is the loss of the exact

consensus, replaced by a practical consensus; however, the

maximal distance between agents is bounded by an explicit

function on the maximum sampling period. The results are

illustrated in simulations with the controller proposed in [22]

in order to compare with emulated linear strategies, which fail

to maintain the consensus when the sampling periods are too

high.

The article is organized as follows. After some notations,

definitions and preliminary results given in Section II, the main

results are addressed in Section III. Then, they are illustrated

in simulation in Section IV. Finally, a conclusion is provided

in Section V.

II. PRELIMINARY

Let us introduce the following notations:

• R+ = {x ∈ R : x ≥ 0}, where R is the set of real

numbers.

• | · | denotes the absolute value in R, for p ≥ 1, ‖·‖p
denotes the p-norm on R

n and ‖·‖ = ‖·‖2 denotes the

Euclidean norm on R
n.

• For any closed set Z ⊂ R
n and any x ∈ R

n, we denote

dZ(x) = infz∈Z ‖x− z‖ the distance between x and the

closed set Z .

• If x(t) is a curve in R
n, we will say that x(t) → Z as

t → +∞ when dZ(x(t)) → 0 as t → +∞.

• We denote 1n = (1, . . . , 1)T ∈ R
n and ∆n =

Span(1n) ⊂ R
n.
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• r = (r1, . . . , rn) is called a generalized weight if its

components are positive numbers.

• For any generalized weight r and for any λ >
0, we denote Λr(λ) = Diag(λr1 , . . . , λrn) where

Diag(a1, . . . , an) denotes the diagonal matrix of dimen-

sion n× n with kth diagonal entry ak.

• ⌊x⌉α = (|x1|α sign(x1), . . . , |xn|α sign(xn))
T

where

x = (x1, . . . , xn)
T ∈ R

n and α > 0.

• If A is an m× n matrix and B a p× q matrix, then the

Kronecker product A⊗B is the mp× nq block matrix

A⊗B =







a11B · · · a1nB
...

. . .
...

am1B · · · amnB






.

• In denotes the unit matrix of size n.

• If V ⊂ R
n, we define the orthogonal complement of V

by V ⊥ =
{

x ∈ R
n : xT y = 0 for all y ∈ V

}

.

Definition 1: Let η and h be positive numbers. An (η, h)-
sampling sequence is a sequence (tk)k≥0 such that t0 = 0 and

for all k ≥ 0, η ≤ tk+1 − tk ≤ h.

A. Graph theory

Let us recall some basic definitions about graph theory given

for instance in [1, Appendix B].

A directed graph GN = (VN , EN) consists of a finite

nonempty set of nodes VN = {1, 2, . . . , N} and a set of

edges EN ⊂ VN × VN which is a set of ordered pairs of

nodes. An edge (i, j) ∈ EN in a directed graph GN denotes

that node i communicates with node j, but not conversely. An

undirected graph GN = (VN , EN) also consists of a set of

nodes VN = {1, . . . , N} and a set of edges EN ⊂ VN × VN

which is an unordered set of pairs of nodes. An edge (i, j) ∈
EN in an undirected graph GN denotes that nodes i and j
obtain information from each other. An undirected path is a

sequence of edges in an undirected graph of the form (i1, i2),
(i2, i3),· · · . An undirected graph is connected if there is an

undirected path between every pair of distinct nodes.

The adjacency matrix of an undirected graph (VN , EN) is

defined by AN = [aij ] ∈ R
N×N where aij = aji = 1 if

(i, j) ∈ EN and aij = 0 otherwise. The Laplacian matrix

associated with adjacency matrix AN is given as LN = [ℓij ] ∈
R

N×N where ℓii =
N
∑

j=1,j 6=i

aij and ℓij = −aij if i 6= j.

B. Lyapunov stability

Consider the following system with f continuous

ẋ = f(x), x ∈ R
n. (1)

Let us extend to closed sets the definitions of Lyapunov set

stability given for instance in [24] for compact sets.

Definition 2: A closed set C ⊂ R
n is:

• stable w.r.t. the system (1) if for any ε > 0 there exists

η > 0 such that for any maximal solution x(t) of (1),

if there exists t0 such that dC(x(t0)) < η, then x(t) is

defined for all t ≥ t0 and dC(x(t)) < ε for all t ≥ t0;

• locally attractive w.r.t. the system (1) if there exists ε > 0
such that for any maximal solution x(t) of (1), if there

exists t0 such that dC(x(t0)) < ε, then x(t) is defined

for all t ≥ t0 and dC(x(t)) → 0 when t → +∞;

• globally attractive w.r.t. the system (1) if it is locally

attractive and if the previous point holds for any ε > 0;

• locally (resp. globally) asymptotically stable w.r.t. the

system (1) if it is stable and locally (resp. globally)

attractive w.r.t. the system (1);

• unstable if it is not stable.

C. Homogeneity

The most common notion of homogeneity is the weighted

homogeneity introduced in [25], based on a particular choice

of the coordinates, while the most generic one is the geometric

homogeneity, which is coordinate free [26], [27]. We use in

the sequel the framework of weighted homogeneity.

Definition 3: Let V be a finite dimensional vector space

and A : V → V an endomorphism of V such that the real

part of each eigenvalue of A is positive. We will say that

a function V : V → V is A-homogeneous of degree d if

V (exp(As)x) = edsV (x), for all s ∈ R and x ∈ V . A

vector field f defined on V is A-homogeneous of degree

d if f(exp(As)x) = eds exp(As)f(x), for all s ∈ R and

x ∈ R
n. If r = (r1, . . . , rn) is a generalized weight, we

will simply say that a function or a vector field defined on

R
n is r-homogeneous of degree d if it is A-homogeneous of

degree d for the endomorphism defined for all i = 1, . . . , n by

A(ei) = riei, where ei denotes the ith vector of the canonical

basis of Rn.

Let us now give the definition of a homogeneous norm

detailed for instance in [15].

Definition 4: A r-homogeneous norm is a positive definite

and continuous mapping N : Rn → R that is r-homogeneous

of degree 1.

D. Technical lemmas

Lemma 5: Let M be a square matrix of size n and K a

compact subset of R
n such that K ⊂ imM . Then for any

curve x(t) ∈ R
n, we have Mx(t) → K if and only if x(t) →

M−1K . In particular, we have Mx(t) → 0 if and only if

x(t) → kerM .

Proof. If Mx(t) → K , there exists y(t) ∈ K such that

dK(Mx) = ‖Mx−y‖ → 0. Then, there exists z(t) ∈ M−1K
such that Mz = y and x− z ∈ (kerM)⊥. Therefore ‖M(x−
z)‖ → 0. Given that M is an isomorphism when restricted to

(kerM)⊥, we have ‖x − z‖ → 0 and then dM−1K(x) → 0,

that is x(t) → M−1K . Conversely, if x(t) → M−1K , there

exists z(t) ∈ M−1K such that ‖x − z‖ → 0. It yields that

‖Mx − Mz‖ → 0, which, given that Mz ∈ K , shows that

dK(Mx) → 0, that is Mx(t) → K . The last statement is

immediate taking K = {0}.

Lemma 6: For any curve x(t) ∈ R
n of coordinates xi(t),

i = 1, . . . , n, we have x(t) → ∆n if and only if for all i and

j we have xi(t)− xj(t) → 0.
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Proof. Let us denote Π the orthogonal projection matrix

onto ∆⊥
n . We easily see that Π = V V T with V ∈ R

n×(n−1)

a matrix of columns denoted vi and given by

vi =
1√

i+ i2

























1
...

1
−i
0
...

0

























where the −i is located on the (i+1)th line. Lemma 5 yields

x(t) → ∆n if and only if Πx(t) → 0. But we also have

Πx → 0 iff ∀i, vTi x → 0 iff ∀i, j, xi − xj → 0, which

concludes the proof.

III. MAIN RESULTS

Let us state the main theoretical result of this article.

Theorem 7: Let ẋ = f(x, u) be a continuous controlled

vector field. Assume that we know a continuous control u(x)
such that:

1) there exists a linear subspace E such that for any

x1, x2, z1, z2 ∈ R
n, if x1 − x2 ∈ E and z1 − z2 ∈ E,

then f(x1, u(z1))− f(x2, u(z2)) ∈ E;

2) the set E is globally asymptotically stable for ẋ =
f(x, u(x));

3) there exists an endomorphism of R
n denoted A such

that:

• the real part of each eigenvalue of A is positive;

• the linear subspaces E and E⊥ are invariant sub-

spaces of A;

• there exists κ < 0 such that for all x, z ∈ R
n and

all s ∈ R we have f(exp(As)x, u(exp(As)z)) =
eκs exp(As)f(x, u(z)).

Then, for any (η, h)-sampling sequence (tk)k∈N and any Ã-

homogeneous norm N , there exists C > 0 such that any

solution x(t) of

ẋ(t) = f(x(t), u(x(tk))), t ∈ [tk, tk+1) (2)

converges to {ξ ∈ E⊥ : N (ξ) ≤ Ch−1/κ} + E, where Ã
denotes the restriction of A to E⊥.

Proof. We will denote π the orthogonal projection onto E⊥.

From assumption 3, we have A ◦ π = π ◦A.

We define, for ξ1, ξ2 ∈ E⊥ the controlled vector field

g(ξ1, u(ξ2)) = π(f(ξ1, u(ξ2))). Remark that assumption 1

yields that, for any ζ1, ζ2 ∈ E, we have g(ξ1, u(ξ2)) =
g(ξ1 + ζ1, u(ξ2 + ζ2)). Let us first show that we can apply

Theorem 12 in [15] to g.

From assumption 3, for ξ1 and ξ2 ∈ E⊥ we get

g(exp(Ãs)ξ1, u(exp(Ãs)ξ2)) = π(f(exp(Ãs)ξ1, u(exp(Ãs)ξ2)))

= π(f(exp(As)ξ1, u(exp(As)ξ2)))

= π(eκs exp(As)f(ξ1, u(ξ2)))

= eκs exp(As)π(f(ξ1, u(ξ2)))

= eκs exp(Ãs)g(ξ1, u(ξ2)).

Consider ξ(t) ∈ E⊥ a solution of ξ̇ = g(ξ, u(ξ)) such

that ξ(0) = ξ0 ∈ E⊥. The vector field being continuous, ξ
is absolutely continuous1. Now, denoting p⊥E the orthogonal

projection onto E, consider a solution of ζ̇ = p⊥Ef(ξ+ζ, u(ξ+
ζ)) such that ζ(0) = 0. Clearly, ζ(t) ∈ E.

The curve ξ(t) + ζ(t) is a solution of ẋ = f(x, u(x)).
Indeed, ξ̇ + ζ̇ = g(ξ, u(ξ)) + p⊥Ef(ξ + ζ, u(ξ + ζ)) =
πf(ξ+ζ, u(ξ+ζ))+p⊥Ef(ξ+ζ, u(ξ+ζ)) = f(ξ+ζ, u(ξ+ζ)).
This shows that, for any solution ξ(t) ∈ E⊥ of ξ̇ = g(ξ, u(ξ)),
there exists a solution x of ẋ = f(x, u(x)) such that πx = ξ.

Now, considering a curve x(t) ∈ R
n such that πx(t) = ξ(t)

and ẋ = f(x, u(x)), by assumption 2 we have x(t) → E and

Lemma 5 yields that ξ(t) = πx(t) → 0. We conclude that the

vector field defined by ξ̇ = g(ξ, u(ξ)) is Ã-homogeneous and

0 ∈ E⊥ is a globally attractive equilibrium, which implies it

is a globally asymptotically stable equilibrium. Thus, we can

apply Theorem 12 in [15] and there exists a constant C > 0
such that the solution of

ξ̇(t) = g(ξ(t), u(ξ(tk))), t ∈ [tk, tk+1) (3)

converges to the compact set {ξ ∈ E⊥ : N (ξ) ≤ Ch−1/κ}.

Finally, given a solution x(t) of (2), by assumption 1, πx(t)
is a solution of (3) and therefore πx(t) → {ξ ∈ E⊥ : N (ξ) ≤
Ch−1/κ} which in turn shows, by Lemma 5, that x(t) →
π−1{ξ ∈ E⊥ : N (ξ) ≤ Ch−1/κ} = {ξ ∈ E⊥ : N (ξ) ≤
Ch−1/κ}+ E which concludes the proof.

Our aim is to apply Theorem 7 to MAS with control laws

found in the literature. Let us first set some notations. The

system under consideration is given by
{

q̇i = pi
ṗi = ui

(4)

with qi, pi ∈ R
n and i = 1, . . . , N . Usually, a family of control

laws ui(q, p) is said to achieve the consensus of the agents if

in closed loop, for any i, j, qi − qj → 0 and pi − pj → 0.

The problem with this definition is that it does not allow us

to talk about stability. Let us find an equivalent formulation

of the consensus. Given that, for any i = 1, . . . , N , qi and

pi ∈ R
n, let us write the coordinates of the vector qi (resp.

pi) as qki (resp. pki ) for k = 1, . . . , n. For a given k, let us

denote rk = (qk1 , . . . , q
k
N ) ∈ R

N . Clearly, qi − qj → 0 for

all i, j is equivalent to rki − rkj → 0 for all i, j, k. From

Lemma 6, this is equivalent to rk → ∆N for all k. Now, let

us remark that, denoting q = (qT1 , q
T
2 , . . . , q

T
N )T ∈ R

nN , we

have q =
∑n

k=1 r
k⊗ek. Hence rk → ∆N for all k rewrites as

q → Span(1N⊗ei, i = 1, . . . , n). The same reasoning applied

to p = (pT1 , p
T
2 , . . . , p

T
N )T ∈ R

nN leads to the following

reformulation of the consensus in the classical sense.

Definition 8 (Attractive consensus): The system (4) with

control laws ui(q, p) is said to achieve the attractive consensus

if

(

q
p

)

→ E where

E = Span

((

1N
0N

)

⊗ ei,

(

0N
1N

)

⊗ ej , i, j = 1, . . . , n

)

,

(5)

1See [28, Page 198]
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with 1N = (1, . . . , 1)T ∈ R
N and (ei)1≤i≤n the canonical

base of Rn.

Definition 9 (Stable consensus): The system (4) with control

laws ui(q, p) is said to achieve the stable consensus if the set

E defined in (5) is globally asymptotically stable.

Definition 10 (Practical consensus): The system (4) with

control laws ui(q, p) is said to achieve the practical consensus

if there exists a non empty compact set K ⊂ R
2nN such that

(

q
p

)

→ K + E.

Remark 1: Let us stress that consensus (attractive, stable or

practical) does not necessarily imply the convergence of the

states of the individual agents. Only the differences between

the agents have to decrease and it is very common in practice

for the states of the agents to diverge.

Remark 2: For continuous linear controllers which render

the closed-loop MAS linear as in [29], the attractivity implies

the global asymptotic stability and is enough for defining the

consensus [1]. With continuous nonlinear systems, though,

we know that the mere attractivity does not imply Lyapunov

stability [30, Subsection 40]. In the sequel, we will only

consider continuous controllers which render the closed-loop

system homogeneous and we know that the attractivity implies

the global asymptotic stability for homogeneous systems [26,

Proposition 6.1]. In this framework of continuous homoge-

neous systems, Definition 8 is equivalent to Definition 9.

Finally, the definition of practical consensus is an extension of

the notion of practical consensus used in the literature [18].

We can now state the main result of this article dedicated

to MAS.

Corollary 11: Let us consider the MAS (4). Assume known

a family of continuous control laws ui(q, p) such that:

1) ui depends only on qi − qj and pi − pj ;

2) the control laws ui(q, p) applied to (4) achieve stable

consensus;

3) there exists 1/2 < r < 1 such that ui(λq, λ
rp) =

λ2r−1ui(q, p).

Consider an (η, h)-sampling sequence (tk)k∈N. We also define

A the endomorphism given in the canonical base of R2nN by

the matrix
(

1 0
0 r

)

⊗ InN

and Ã the restriction of A on E⊥. Then, for any Ã-

homogeneous norm N , there exists C > 0 such that the vector

(qT1 , . . . , q
T
N , pT1 , . . . , p

T
N)T ∈ R

2nN converges to {ξ ∈ E⊥ :
N (ξ) ≤ Ch−1/κ}+ E, where qi and pi denote the solutions

of
{

q̇i(t) = pi(t)
ṗi(t) = ui(q(tk), p(tk))

, t ∈ [tk, tk+1). (6)

Thus the the control laws ui(q, p) applied to (6) achieve

practical consensus.

Proof. Let us apply Theorem 7. A direct computation shows

that the assumption 1 of Corollary 11 implies the assumption

1 of Theorem 7, and we have obviously assumption 2 of Theo-

rem 7 from assumption 2 of Corollary 11. The endomorphism

A is clearly such that −A is Hurwitz. It is also straightforward

to show that E is a stable space for A and given that A is

symmetric, so is E⊥. Only the last point of assumption 3 of

Theorem 7 remains to check. But indeed
(

ersp
u(esq̄, ersp̄)

)

=

(

ersp
e(2r−1)su(q̄, p̄)

)

= e(r−1)s

(

esp
ersu(q̄, p̄)

)

= e(r−1)s exp(As)

(

p
u(q̄, p̄)

)

which, setting κ = r − 1 < 0, concludes the proof.

Remark 3: Let us recall that we assume all agents to update

their control simultaneously.

No assumption is made on the graph of the agents, and the

result holds for undirected as well as directed graphs, as long

as the three assumptions of Corollary 11 are verified.

Assumption 3 of Theorem 7 and Corollary 11 states that the

closed loop system is homogeneous of negative degree. Such

systems have been notably studied in the literature for their

finite-time stability properties. It is easy to see that, should we

take h = 0, that is continuous time control, we would recover

these finite-time stability properties. Linear control laws would

verify Assumption 3 provided that we allow r = 1. In addition,

if the control laws are designed such that, in the assumption 3,

r > 1, it is possible to show that we get local consensus instead

of practical consensus (that is, exact consensus is achieved

provided that the initial states of the agents are close enough).

However, in practice, when the sampling period becomes large,

this requires the initial states of the agents to be very close

to consensus, hence drastically limiting the usefulness of this

extension.

Remark 4: Let us denote (εi)1≤i≤N the canonical base of

R
N and

M q
ij = ((εTi , 0

T
N )− (εTj , 0

T
N))⊗ In,

Mp
ij = ((0TN , εTi )− (0TN , εTj ))⊗ In.

Denoting x = (qT , pT )T , a direct computation shows that

M q
ijx = qi − qj and Mp

ijx = pi − pj . Moreover, the set E
defined in (5) verifies E ⊂ ⋂

i,j kerM
p
ij ∩kerM q

ij . Therefore,

for any compact set K ⊂ E⊥, we have x(t) → K + E ⇒
M q

ijx(t) = qi − qj → M q
ijK and then lim supt→+∞ ‖qi −

qj‖ ≤ 2 supz∈K ‖z‖. Similarly, lim supt→+∞ ‖pi − pj‖ ≤
2 supz∈K ‖z‖. This ensures that, under the conclusions of

Corollary 11, the states of the agents remain asymptotically

bounded by a class K function of h−1/κ.

Example 12: Suppose that we have an undirected and

connected graph and consider the control laws for (4) given

in [22]

ui = −ℓ1









N
∑

j=1

aij(qi − qj)









α

− ℓ2









N
∑

j=1

aij(pi − pj)









2α
(1+α)

(7)

with 0 < α < 1, ℓ1 > 0 and ℓ2 > 0. The conclusions

of Corollary 11 apply to these control laws. The second

assumption of Corollary 11 is the only non-trivial to show.

First notice that
∑

j aij(qi − qj) = ((LN ⊗ In)q)i and
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∑

j aij(pi − pj) = ((LN ⊗ In)p)i, which allows us to rewrite

the system under the form
{

q̇ = p

ṗ = −ℓ1⌊(LN ⊗ In)q⌉α − ℓ2⌊(LN ⊗ In)p⌉
2α

(1+α)
.

(8)

Let us now define the function

V (q, p) = ℓ1
‖(LN ⊗ In)q‖1+α

1+α

1 + α
+

pT (LN ⊗ In)p

2
.

A direct computation yields

V̇ = ℓ1((LN ⊗ In)p)
T ⌊(LN ⊗ In)q⌉α + pT (LN ⊗ In)

×
(

− ℓ1⌊(LN ⊗ In)q⌉α − ℓ2⌊(LN ⊗ In)p⌉
2α

(1+α)

)

= −ℓ2((LN ⊗ In)p)
T ⌊(LN ⊗ In)p⌉

2α
(1+α)

= −ℓ2‖(LN ⊗ In)p‖ββ
≤ 0,

with β = 3α+1
1+α . We now use the version of the LaSalle

principle given in [21, Lemma 1]: V̇ ≡ 0 ⇒ (LN ⊗ In)p ≡
0 ⇒ (LN ⊗ In)ṗ ≡ 0 ⇒ (LN ⊗ In)q ≡ 0. Therefore E is

globally asymptotically stable and Corollary 11 can be applied.

Remark 5: If the graph is supposed to be oriented, the

method used in Example 12 does not work anymore. Indeed,

the matrix LN is not symmetric and the function V is therefore

not positive anymore.

Example 13: Suppose that we have an undirected and

connected graph and consider the control laws for (4) given

in [21]

ui = −ℓ1

N
∑

j=1

aij ⌊qi − qj⌉α − ℓ2

N
∑

j=1

aij ⌊pi − pj⌉
2α

(1+α) . (9)

The conclusions of Corollary 11 apply to these control laws.

This is straightforward, given that the article [21] proves the

consensus for this control laws family.

IV. SIMULATIONS

Consider the second-order MAS (6) with N = 5 and n = 2,

i.e. 5 agents in the plane whose communications are described

by the undirected graph given on Figure 1. In the following,

1

2

53

4

Fig. 1. Undirected graph of the 5 agents MAS

we choose constant sampling periods

tk = kT, T > 0, k ∈ N. (10)

The initial positions qi0 are chosen randomly in the square

[0, 100]× [0, 100]. Consider the linear controllers

ui(q, p) = −
5

∑

j=1

aij (qi − qj)−
5

∑

j=1

aij (pi − pj) (11)

with qi = (qix , qiy ) and pi = (pix , piy ) for i = 1, . . . , 5
which ensure the stable consensus (see for instance [31]).

The trajectories of the sampled-data closed-loop MAS (6)–(11)

with SPS (10) are drawn in Figure 2 in the plane (qix , qiy )
for T = 0.1s. After a while, the trajectories turns into uniform

linear motions. The evolutions of positions qix of the 5 agents

are given in Figure 3 and the evolutions of velocities pix of

the 5 agents are given in Figure 4.

40 60 80 100 120 140 160 180 200 220 240

q i
x

50

100

150

q
i y

Fig. 2. Trajectories of the 5 agents in two-dimensional space (qix , qiy ) with
linear controllers (11) and T = 0.1s
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Fig. 3. Positions qix of the 5 agents with linear controllers (11) and T = 0.1s
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Fig. 4. Velocities pix of the 5 agents with linear controllers (11) and T = 0.1s

We know that the linear closed-loop MAS (6)–(11) with SPS

(10) is asymptotically stable if and only if the matrix Λ(T )
of the linear difference equation associated with (6)–(11)–(10)

and defined in [3] is Schur. For our 5 agents, Λ(T ) is Schur if

and only if T < TSchur = 0.4795s. It means that the fleet of

5 agents with the linear controllers (11)–(10) is unstable and

disperses into the space when T > 0.4795s.
By using the controllers (7) with ℓ1 = ℓ2 = 1, α = 0.5 and

SPS (10) we obtain the practical consensus of the 5 agents as

shown in Figures 5-6-7 for T = 0.5s. In this case, the behavior

of the 5 agents reaching the practical consensus is very close

to the behavior of the 5 agents reaching the stable consensus.

We obtain a result of practical consensus for higher sam-

pling periods, as shown in Figures 8-9-10 for T = 2s, but the
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Fig. 5. Trajectories of the 5 agents in two-dimensional space (qix , qiy ) with
homogeneous controllers (7) and T = 0.5s
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Fig. 6. Positions qix of the 5 agents with homogeneous controllers (7) and
T = 0.5s

trajectories of the 5 agents are no more uniform linear motions

and the velocities fluctuate. However, the fleet of 5 agents with

the homogeneous controllers (7)–(10) is not unstable and does

not disperse into the space.

V. CONCLUSION

In the article, the second-order practical consensus of MAS

under synchronously variable sampling is developed by using

a new nonlinear emulation strategy based on homogeneity. The

results obtained with this nonlinear strategy are compared in

simulation with the linear one.
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