QUANTITATIVE AND SPECIFIC RECOVERY OF ORGANIC AND MINERAL SULFUR FOR MULTI-ISOTOPE ANALYSIS

I. Jovovic, V. Grossi, P. Adam, F. Gelin, I. Antheaume, M. Ader & P. Cartigny

INTRODUCTION

BIOGEOCHEMICAL CYCLE OF SULFUR SPECIES

Lake Dziani Dzaha (Mayotte)

Green River Fm (USA)

SULFUR STABLE ISOTOPES

WHY SULFUR ISOTOPES ?

SULFUR MASS-DEPENDENT FRACTIONATION (MDF)

 $\Delta^{33}S = \delta^{33}S - 1000 \times \left[\left(1 + \delta^{34}S \right)^{0.515} - 1 \right]$

 $\Delta^{33}S = \delta^{33}S - 1000 \times \left[\left(1 + \delta^{34}S \right)^{0.515} - 1 \right]$

MAIN FORMS OF SULFUR COMPOUNDS

MAIN FORMS OF SULFUR COMPOUNDS

OBJECTIVE: Biosynthetic S-compounds To recover them all as specifically and quantitatively as possible.

MATERIAL & METHODS

SULFUR COMPOUNDS STUDY: ANALYTICAL APPROACHES

Many techniques have been developed and used. However, none allows to get quantitative and specific multi-isotopic values for all sulfur pools from a single sample.

SULFUR DISTILLATION: PRINCIPLE

EASILY DISTILLABLE SULFUR COMPOUNDS

EASILY DISTILLABLE SULFUR COMPOUNDS

ORGANIC SULFUR EXTRACTION: EXISTING METHODS

Raney Nickel Desulfurization

Non quantitative

Parr bomb/Eschka powder oxidation

Technically complex

EASILY DISTILLABLE SULFUR COMPOUNDS

EASILY DISTILLABLE SULFUR COMPOUNDS

Sample

Precipitated sulfates can easily be extracted with STRIP solution distillation.

INTEGRATED WORKFLOW

SAMPLES

Lake Dziani Dzaha (Mayotte); TOC~10%

Green River Fm (USA); TOC~28%

Rozel Point Oil (USA); TOC~50%

Limagne (Auvergne); TOC~13%

ANALYTICAL EQUIPMENT

Elementar Cube CS (ISA Lyon)

F₂-IRMS (Thermo MAT253, IPG Paris)

Elementar Vario Isotope Cube (LGL)

RESULTS & DISCUSSION

SULFUR RECOVERY EVALUATION

SULFUR RECOVERY EVALUATION

Bulk sulfur content evaluation (wt%S)

SULFUR RECOVERY EVALUATION

Organic matter sulfur content evaluation (wt%S)

SULFUR RECOVERY: RANEY NICKEL

METHOD REPLICABILITY (LAKE DZIANI)

SULFUR MULTI-ISOTOPY (LAKE DZIANI)

PERSPECTIVES: A SHORT PREVIEW

Tuttle & Goldhaber (1991)*

• S_{total} = 1.5 ±0.5%

This study

• S_{total} = 2.0 ±0.09%

Tuttle & Goldhaber (1991)*

- S_{total} = 1.5 ±0.5%
- S_{org} = 0.3 ±0.5%

- S_{total} = 2.0 ±0.09%
- S_{org} = 0.59 ±0.06%

Tuttle & Goldhaber (1991)*

- S_{total} = 1.5 ±0.5%
- S_{org} = 0.3 ±0.5%
- $S_{org}/S_{total} = 0.19 \pm 0.08$

- S_{total} = 2.0 ±0.09%
- S_{org} = 0.59 ±0.06%
- $S_{org}/S_{total} = 0.29 \pm 0.03$

Tuttle & Goldhaber (1991)*

- S_{total} = 1.5 ±0.5%
- S_{org} = 0.3 ±0.5%
- $S_{org}/S_{total} = 0.19 \pm 0.08$
- $\delta^{34}S_{sulfides} = 31.6 \pm 4.4\%$

- S_{total} = 2.0 ±0.09%
- S_{org} = 0.59 ±0.06%
- $S_{org}/S_{total} = 0.29 \pm 0.03$
- $\delta^{34}S_{sulfides} = 29.71 \pm 0.09\%$

Tuttle & Goldhaber (1991)*

- S_{total} = 1.5 ±0.5%
- S_{org} = 0.3 ±0.5%
- $S_{org}/S_{total} = 0.19 \pm 0.08$
- $\delta^{34}S_{sulfides} = 31.6 \pm 4.4\%$
- $\delta^{34}S_{org} = 28.7 \pm 1.1\%$

- S_{total} = 2.0 ±0.09%
- S_{org} = 0.59 ±0.06%
- $S_{org}/S_{total} = 0.29 \pm 0.03$
- $\delta^{34}S_{sulfides} = 29.71 \pm 0.09\%$
- $\delta^{34}S_{org} = 4.85 \pm 0.05\%$

TAKE HOME MESSAGES

- Sulfur isotopes can unveil biogeochemical cycles processes;
- This new method allows a multi-pool, multi-isotope approach;
- It is complementary to bulk and compound-specific methods;
- Multi-pool, multi-isotope approaches might bring new keys of interpretation to old case studies.

Acknowledgements: B. Killingsworth and A. Bouyon, for their precious suggestions and assistance in this work. Thank you !

