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Abstract 

The main purpose of this paper is to show that photogrammetric bundle adjustment computations 

can be sequentially organized into modules. Furthermore, the chain rule can be used to simplify the 

computation of the analytical Jacobians needed by the adjustment. Novel projection models can be 

flexibly evaluated by inserting, modifying, or swapping the order of selected modules. 

As a proof of concept, two variants of the pin-hole projection model with Brown lens distortion were 

implemented in the open-source Damped Bundle Adjustment Toolbox (DBAT) and applied to 

simulated and calibration data for a non-conventional lens system. The results show a significant 

difference for the simulated, error-free, data but not for the real calibration data. 

The current flexible implementation incurs a performance loss. However, in cases where flexibility is 

more important, the modular formulation should be a useful tool to investigate novel sensors, data 

processing techniques, and refractive models. 
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1 Introduction 

1.1 Background 

In Photogrammetry and Computer Vision, Bundle Adjustment (BA) is a fine-tuning estimation 

process where some or all parameters that describe a scene are estimated simultaneously. Bundle 

adjustment was introduced to photogrammetry some sixty years ago (Brown, 1958). The technique 

became popular in the Computer Vision community after the paper by Triggs et al. (2000). 

Photogrammetric BA uses the collinearity equations to describe the world-to-camera projection. The 

typical presentation of the function and its linearization has been as a single, compact computation, 

see, e.g., Kraus (1993, Sec. 5.3.2), Wolf and Dewitt (2000, App. D-4), Mikhail et al. (2001, App. C.3), 

and Luhmann et al. (2014, Sec. 4.2.2). In contrast, the standard presentation of the world-to-camera 

projection in the Computer Vision community has been as a sequence of small operations (Tsai, 

1987) with the Jacobians described using the chain rule (Brown and Lowe, 2003; Fusiello, 2013). In 

both presentations, the lens distortion has been treated separately. Although both research 

communities refer to the same Brown (1971) paper, the details of the application has differed. 

Since its introduction, BA has evolved to be a central algorithm in photogrammetry and computer 

vision (Brown, 1976; Triggs et al., 2000; Luhmann et al., 2014). Originally, the procedure was used by 

a small research community that understood the algorithm in detail. With a broadening user base, 

the fraction of users with an intimate understanding of the inner workings of BA has declined. This 

development has further increased with the inclusion of BA into commercial, black-box, software. 

1.2 Related work 

The Damped Bundle Adjustment Toolbox (DBAT) was originally developed to illustrate the behaviour 

of different damping schemes known from non-linear optimization (Börlin and Grussenmeyer, 2013; 

2014). Later work has focused on the use to validate commercial black-box photogrammetric 

software, e.g., PhotoModeler and Photoscan (Börlin and Grussenmeyer, 2016), especially to provide 
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detailed diagnostics of the photogrammetric network (Dall'Asta et al., 2015; Murtiyoso et al., 2017; 

Börlin et al., 2018). Recently, the differential observation weighting capabilities of DBAT was used by 

Menna et al. (2018) to mitigate peripheral image quality degradation in underwater 

photogrammetry. 

The chain rule has been used to simplify geometrical computations in e.g., computer vision (Brown 

and Lowe, 2003; Fusiello, 2013), computer graphics (Barr, 1984; Piponi, 2004), imaging (Gallego and 

Yezzi, 2015), robotics (Koditschek and Rimon, 1990), and registration of TLS point clouds (Rabbani et 

al., 2007). 

In photogrammetry, the chain rule has been used for, e.g., modelling of reflected ray paths (Rupnik 

et al., 2015) and relative pose estimation (Cheng et al., 2017). To the authors' knowledge, the chain 

rule has not been used to express the photogrammetric world-to-camera projection model, 

including lens distortion, before. 

1.3 Aim 

The aim of this paper is to apply the sequential computation to the whole photogrammetric 

projection model, including lens distortion, and to use the chain rule to modularize the 

computations. Furthermore, to illustrate the flexibility of the modular approach, a non-conventional 

optical system – a tilt-shift lens – will be investigated. 

A first version of this approach was presented in Börlin et al. (2018). This paper is an extended 

version with an added emphasis on performance vs. flexibility. 

2 Disassembling collinearity 

2.1 The collinearity equations 

The mathematical problem that is solved by the BA process includes a residual between two 

components. One residual component is the simulated projection of an object point according to 
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the camera model at hand. The other component is computed from the corresponding image 

measurement. As a typical presentation, consider the collinearity equations as presented by 

Luhmann et al. (2014, equation (4.94)): 

𝑥′ = 𝑥0
′ + 𝑧′

𝑟11(𝑋 − 𝑋0) + 𝑟21(𝑌 − 𝑌0) + 𝑟31(𝑍 − 𝑍0)

𝑟13(𝑋 − 𝑋0) + 𝑟23(𝑌 − 𝑌0) + 𝑟33(𝑍 − 𝑍0)
+ ∆𝑥′,

𝑦′ = y0
′ + 𝑧′

𝑟12(𝑋 − 𝑋0) + 𝑟22(𝑌 − 𝑌0) + 𝑟32(𝑍 − 𝑍0)

𝑟13(𝑋 − 𝑋0) + 𝑟23(𝑌 − 𝑌0) + 𝑟33(𝑍 − 𝑍0)
+ ∆y′.

 

 

(1) 

Ignoring ∆x′ and ∆y′, equation (1) describes the projection of an object point at (𝑋, 𝑌, 𝑍) through a 

pinhole camera with principal point (𝑥0
′ , 𝑦0

′ ) and camera constant 𝑧′placed at (𝑋0, 𝑌0, 𝑍0) and with 

an orientation given by the matrix 𝑅. 

Another requirement for the bundle adjustment process is the linearization of equation (1) with 

respect to any parameter that is to be estimated, see, e.g., Kraus (1993, Sec. 5.3.2), Wolf and Dewitt 

(2000, App. D-4), or Mikhail et al. (2001, App. C.3). Some partial derivatives of equation (1) are 

presented by Luhmann et al. (2014, equation (4.96)) as 

𝜕𝑥′

𝜕𝑋
= −

𝑧′

𝑁2
(𝑟13𝑘𝑋 − 𝑟11𝑁),

𝜕𝑦′

𝜕𝑋
= −

𝑧′

𝑁2
(𝑟13𝑘𝑌 − 𝑟12𝑁),

𝜕𝑥′

𝜕𝑌
= −

𝑧′

𝑁2
(𝑟23𝑘𝑋 − 𝑟21𝑁),

𝜕𝑦′

𝜕𝑌
= −

𝑧′

𝑁2
(𝑟23𝑘𝑌 − 𝑟22𝑁),

𝜕𝑥′

𝜕𝑍
= −

𝑧′

𝑁2
(𝑟33𝑘𝑋 − 𝑟31𝑁),

𝜕𝑦′

𝜕𝑍
= −

𝑧′

𝑁2
(𝑟33𝑘𝑌 − 𝑟32𝑁),

 

 

(2) 

where 𝑘𝑋 and 𝑘𝑌 are the respective numerators of equation (1), and 𝑁 is the denominator. 

2.2 Basic functions 

If we group the parameters as 

𝑝 = (
𝑋
𝑌
𝑍

) , 𝑝0 = (
𝑋0

𝑌0

𝑍0

) , 𝑞 = (
𝑘𝑋

𝑘𝑌

𝑁

) ,

𝑢 = (
𝑥′

𝑦′) , 𝑢0 = (
𝑥0

′

𝑦0
′ ) , ∆𝑢 = (

∆𝑥′

∆𝑦′) ,

 

 

(3) 
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and introduce the basic functions 

𝑇3(𝑝, 𝑝0) = 𝑝 + 𝑝0, 3D translation

𝐿(𝑅, 𝑣) = 𝑅𝑣, 3D rotation

𝐻(𝑞) =
1

𝑞3
(

𝑞1

𝑞2
) , Pinhole projection

𝑆(𝑐, 𝑚) = 𝑐𝑚, Scaling 

𝑇2(𝑛, 𝑢0) = 𝑛 + 𝑢0, 2D translation

 

 

(4) 

where 𝑐 is scalar and 𝑚 and 𝑛 are 2-vectors, we may write equation (1) as the following 

composition: 

𝑢 = 𝑔(𝑝, 𝑝0, 𝑅, 𝑧′, 𝑢0) ≡ 𝑇2 (𝑆 (𝑧′, 𝐻 (𝐿(𝑅𝑇 , 𝑇3(𝑝, −𝑝0)))) , 𝑢0). (5) 

 

In the definition of the functions in equation (4), generality has been favoured over typical usage to 

simplify future extensions. For instance, the function 𝐿(𝑅, 𝑣) describes an arbitrary 3D linear 

transformation whereas the collinearity equations assumes 𝑅 to be a rotation matrix. Similarly, the 

translation 𝑇3(𝑝, 𝑝0) is defined with a positive sign on 𝑝0 whereas the collinearity equations use 

𝑇3(𝑝, −𝑝0). 

The algorithm corresponding to equation (5) is shown in Algorithm 1 with a graphical representation 

in Figure 1. 

2.3 Linearization 

The linearization of function compositions is governed by the chain rule, see, e.g., Magnus and 

Neudecker (2007). For example, the Jacobian of the projection function 𝑔 in equation (5) with 

respect to the object point coordinates 𝑝 is the matrix product of five Jacobians 

[
𝑑𝑔

𝑑𝑝
] = [

𝑑𝑇2

𝑑𝑛
]

𝑛=𝑆(… )
[

𝑑𝑆

𝑑𝑚
]

𝑚=𝐻(… )
[
𝑑𝐻

𝑑𝑞
]

𝑞=𝐿(… )

[
𝑑𝐿

𝑑𝑣
]

𝑣=𝑇3(… )
[
𝑑𝑇3

𝑑𝑝
], (6) 

where the brackets indicate a matrix and the subscript indicate the point at which the respective 

Jacobians are evaluated. A detailed inspection of equation (6) reveals that it is identical to equation 

(2). 
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2.4 A function as a module 

If we require that each basic function of equation (4) can compute both the function value and the 

Jacobians with respect to all its parameters, we may similarly extend Algorithm 1 to compute both 

its function value and its Jacobians. The extended Algorithm 2 illustrates the computation of 

equation (5) and the Jacobian of equation (6). In this way we can modularize the residual 

computations and use the modules as building blocks. Furthermore, as each module is self-

contained, it is possible to validate the analytical Jacobian of each module independently. 

2.5 Other photogrammetric modules 

In addition to the functions listed in equation (4), we add the computation of the rotation matrix 𝑅 

from the 𝜔 − 𝜙 − 𝜅 Euler angles (Förstner & Wrobel, 2004, equations (2.128)-(2.130)) 

𝑅(𝜔, 𝜙, 𝜅) = 𝑅3(𝜅)𝑅2(𝜙)𝑅1(𝜔), (7) 
 

the Brown (1971) lens distortion model 

𝐷(𝑢, 𝐾, 𝑃) = 𝑢 + 𝑑𝑟(𝑢, 𝐾) + 𝑑𝑡(𝑢, 𝑃), (8) 
 

and the 2D affine transformation 

𝐴2(𝑢, 𝑏) = (
1 + 𝑏1 𝑏2

0 1
) 𝑢. (9) 

 

In equation (8), the vectors 𝐾 and 𝑃 contain the radial and tangential distortion coefficients, 

respectively. In equation (9), the scalar 𝑏1 controls the aspect ratio and the scalar 𝑏2 controls the 

skew. For more details and derivation of the Jacobians, see (Börlin et .al (2018, App. B).  
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3 Reassembling collinearity 

3.1 The Damped Bundle Adjustment Toolbox (DBAT) 

The modular technique has been used in the open-source Damped Bundle Adjustment Toolbox 

(DBAT)1 package for Matlab (Börlin and Grussenmeyer, 2013; 2016). For instance, the modules 

presented in equation (4) and (7)-(9) were combined differently to implement two bundle pipelines 

that used different adaptations of the Brown (1971) lens distortion model. In the Photogrammetric 

formulation, the Brown polynomials are used to “correct” for the effect of lens distortion on the 

measured image coordinates. In contrast, the formulation largely adopted by the Computer Vision 

community uses the same polynomials to “add” lens distortion to the ideal projection of object 

points (Tsai, 1987; Heikkilä and Silvén, 1997; Zhang, 2000; Drap and Lefévre, 2016). The two 

pipelines are visually contrasted in figures Figure 2 and Figure 3. 

DBAT has the possibility to post-process files from two popular software: EOS Photomodeler and 

Agisoft Photoscan. DBAT version 0.8 was used in this paper. 

3.2 Extended pinhole models 

For this paper, we have used the modular technique used in DBAT to implement two extensions of 

the photogrammetric pipeline of Figure 2. The reference implementation (called Model 2) has no 

affinity. In Model 3, the affinity is applied before lens distortion. In Model 4, the affinity is applied 

after. The corresponding functions are: 

𝑟2 = 𝐷(𝑇2(𝑆(𝑠, 𝑢), −𝑢0), 𝐾, 𝑃),

𝑟3 = 𝐷(𝐴2(𝑇2(𝑆(𝑠, 𝑢), −𝑢0), 𝑏), 𝐾, 𝑃),

𝑟4 = 𝐴2(𝐷(𝑇2(𝑆(𝑠, 𝑢), −𝑢0), 𝐾, 𝑃), 𝑏),

 
(10) 

 

where 𝑠 is the pixel size and 𝑢 the measured image coordinates. The models are visually illustrated 

in Figure 4. The difference in the computation of the Jacobian with respect to the principal point 𝑢0 

                                                           
1 https://github.com/niclasborlin/dbat  

https://github.com/niclasborlin/dbat
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was limited to inserting the Jacobian [
𝑑𝐴2

𝑑𝑢
] at the proper place in the matrix product (in addition to a 

change in the evaluation points): 

[
𝑑𝑟2

𝑑𝑢0
] = − [

𝑑𝐷

𝑑𝑢
]

𝑢=𝑇2(… )
[
𝑑𝑇2

𝑑𝑢0
] ,

[
𝑑𝑟3

𝑑𝑢0
] = − [

𝑑𝐷

𝑑𝑢
]

𝑢=𝐴2(… )
[
𝑑𝐴2

𝑑𝑢
]

𝑢=𝑇2(… )
[
𝑑𝑇2

𝑑𝑢0
]

[
𝑑𝑟4

𝑑𝑢0
] = − [

𝑑𝐴2

𝑑𝑢
]

𝑢=𝐷(… )
[
𝑑𝐷

𝑑𝑢
]

𝑢=𝑇2(… )
[
𝑑𝑇2

𝑑𝑢0
] ,

, 
(11) 

 

3.3 Image-variant estimation 

A recent addition to DBAT allows IO parameters to be declared as block-invariant or image-variant 

(Moniwa, 1981) on an individual basis. Thus, some parameters can be the same for the full block 

whereas others can be individual for an image. 

4 Experiments and results 

4.1 Test case: The tilt-shift lens 

A tilt-shift lens is a non-conventional optical system that allows the following lens movements (Ray, 

2002) (Figure 5): 

 a tilt, i.e., a rotation of the optical axis about either the exit pupil or the centre of the sensor 

plane, 

 a shift, i.e., a translation of the optical axis, and 

 a rotation, i.e., a rotation about the optical axis. 

The projection of a tilt-shift camera lens system is not completely modelled by the classic 

photogrammetric projection model (pin-hole with Brown lens distortion) available in regular 

photogrammetric software, including DBAT. In order to illustrate the modularity of DBAT, we chose 

to investigate whether the ordering of the affine and lens distortion steps, described in Section 3.2, 

could improve the projection model. 



10 
 

One simulation experiment, two calibration experiments, and one performance experiment were 

designed. The purpose of the simulation experiment was to investigate whether the variants in the 

application of the affinity had any measurable effect. The purpose of the calibration experiments 

was to investigate whether any of the affinity variants could improve an actual calibration of the tilt-

shift lens, with or without image-variant camera parameters. Finally, the purpose of the 

performance experiment was to investigate the relative performance of the DBAT models.  
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4.2 Simulation experiment 

The first experiment was constructed to investigate the effect, if any, of the difference in the affine-

lens distortion ordering. Two sets of synthetic data were generated, where simulated error-free 

image observations were generated by back-projection of known 3D object coordinates and with 

known exterior orientation parameters (EO), and camera calibration parameters (IO) of a strong 

self-calibration network. The network consisted of 24 cameras at varying roll angles. About 100 

targets were simulated in a 3D configuration with a largest dimension of 1000 mm (Figure 6). 

4.2.1 Generation of synthetic data 

The following algorithms were used to simulate measurements generated by Model 3 and Model 4. 

Note that the sequence of the steps below is reversed compared to Figure 4 as we are building 

image observations. 

4.2.1.1 Model 3 

1. Apply the collinearity equations (3D translation, 3D rotation, pinhole projection and optical 

scaling). 

2. Introduce lens distortion (iterative, [mm]). 

3. Convert from mm to pixels using a non-square pixel size (𝑏1 = 0.01218). 

4. Introduce the principal point [pixels]. 

4.2.1.2 Model 4 

1. Apply the collinearity equations (3D translation, 3D rotation, pinhole projection and optical 

scaling). 

2. Apply an affine transformation to the image coordinates  (𝑏1 = 0.01218). 

3. Introduce lens distortion (iterative, [mm]). 

4. Convert from mm to pixels using a square pixel size. 

5. Introduce the principal point [pixel]. 
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Both simulations used a skew (shear) parameter of 𝑏2 = 0. The algorithms were implemented in 

software developed in-house at FBK and not by DBAT. 

4.2.2 Analysis of synthetic data 

Each synthetic data set was analysed by a self-calibration bundle adjustment using DBAT models 2, 

3, and 4. No control points were used. Instead, the datum problem was solved by fixing seven EO 

parameters. The prior weight for the image observations corresponded to a sigma of 0.1 pixels. The 

following parameters were estimated; the camera constant 𝑐, the principal point (𝑥0, 𝑦0), the radial 

distortion parameters 𝐾1 − 𝐾3, and the tangential distortion parameters 𝑃1 − 𝑃2. For models 3 and 

4, the affine parameters 𝑏1 − 𝑏2 were also estimated. The quality of each analysis was evaluated in 

image space (𝜎0 and 2D image point RMS) and object space (3D RMSE between the true and 

estimated OP coordinates). The results are given in Table 1. When the correct estimation model was 

used, the simulated 𝑏1 value was recovered to the number of available decimals and the internal 

and external residuals were effectively zero. When the wrong model was used, the residuals were 

significantly higher. 

4.3 Camera calibration  

In the second experiment, models 2, 3 and 4 were used to analyse calibration data for a camera with 

a tilt-shift lens. The data set from (Nocerino et al. (2016) was used for the calibration. The dataset 

was acquired in a controlled environment, with stable environmental conditions, consequently 

reducing the influences of uncontrolled factors on the calibration. Furthermore, high accuracy 

reference coordinates were available: A point precision vector length of 2.4 μm and an RMSE with 

respect to another photogrammetric system of 6 μm. The calibration target was a 3D 

photogrammetric calibration test object (Figure 7) with about 170 coded targets with a largest 

dimension of 900 mm. The used camera was a Nikon D750 full-frame DSLR camera with a PC-E Micro 

NIKKOR 45mm f/2.8D ED tilt-shift lens (Figure 5) in two different configurations: 

 NORMAL: The normal configuration where neither tilt nor shift was applied. 
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 TILTED: The lens was tilted in the vertical plane by 4 degrees. 

A high redundancy photogrammetric camera network was realized, consisting of up to 48 

convergent images with a diversity of camera roll angles to enhance the determinability of the IO 

parameters (Fraser, 2001). The ground sample distance (GSD) was about 0.13 mm. The image 

measurements were performed by PhotoModeler Scanner v.6 and exported as a text file that was 

imported to DBAT.  

The NORMAL data set was analysed and used as a reference for the processing of the TILTED data 

set. The TILTED data set was analysed by a self-calibration bundle adjustment in DBAT using models 

2, 3 or 4. The datum and prior weights were the same as in the synthetic experiment. Furthermore, 

the parameters 𝑏1, 𝑏2, 𝑃1, and 𝑃2 were individually included or excluded from the estimation (𝑃1 and 

𝑃2 were always estimated together). The quality of the estimation was evaluated as in the synthetic 

experiment with the results of the NORMAL data set used as the reference. The results are given in 

Table 2. 

From Table 2, we see that the difference between models 3 and 4 on this data is small. The internal 

and external residuals were small when the aspect parameter 𝑏1 and the decentering distortion 

parameters 𝑃1-𝑃2 were included in the estimation. In those cases, the 3D RMSE was about 0.09 GSD 

and the estimated 𝑏1 value was about 0.0019. This value is equal to the value in Nocerino et al. 

(2016, Table 3, column T-4S0R90) that was estimated by other software. In contrast, the inclusion of 

𝑏2 resulted in an estimated value of 𝑏2 was about 10−5 and had a negligible effect on the residuals. 

4.4 Image-variant calibration 

The best 𝑏2-free setup for model 3 from the second experiment was used as the reference for the 

third experiment. Three different sets of IO parameters were allowed to be image-variant. The first 

set consisted of the principal distance and point. The second set added the radial and tangential lens 

distortion parameter. The final set consisted of all IO parameters, including the aspect parameter 𝑏1. 

In order to avoid too weak networks, prior observations of the image-variant parameters were 
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added Tecklenburg et al. (2001). As the prior values, the posterior estimated values from the 

reference experiment were used. The prior weights were chosen to correspond to twice the 

posterior standard deviation from the reference experiment. The results are given in Table 3. 

The internal assessment suggests a slight improvement in accuracy. However, the comparison with 

the reference 3D coordinates instead suggests that the accuracy slightly worsens for all image-

variant experiments. 

4.5 Performance 

To investigate the relative performance between the models, the St-Pierre-le-Jeune data set from 

Murtiyoso et al. (2017) was used. The data set consisted of 239 images and about 18000 object 

points. DBAT model 1, a previous, more optimized implementation of Model 2, was used as a 

performance reference. A self-calibration bundle adjustment process was applied to the St-Pierre 

data set. The timings were performed using an HP EliteDesk 800 with Quad Intel Core 

i7-4790 CPU at 3.60GHz with 32 GB RAM running Matlab R2018b under Ubuntu Linux 14.04.5. In all 

cases, the models required the same number of iterations and produced the same results to the 

reported number of digits. The average bundle execution time over five repeated runs was about 13 

seconds for Model 1. The corresponding times for models 2-4 were 53-56% higher. 

5 Discussion and conclusion 

The primary goal of this paper was to apply the sequential presentation to the whole 

photogrammetric projection model, including lens distortion, and to use the chain rule to 

modularize the computations. Previous presentations have left out the camera-internal 

operations, notably lens distortion. The presentation in this paper does show that the residual 

computations used by bundle adjustment can be split into modules. If each module is responsible for 

computing Jacobians with respect to each parameter, in addition to the function value proper, the 

chain rule can be used to combine the analytical Jacobians of the simple operations into analytical 
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Jacobians of complex expressions. Furthermore, the presentation illustrates how the Brown (1971) 

lens distortion model is treated differently by the photogrammetry and computer vision 

communities. 

The tilt-shift lens is a complex design whose projection model is not yet rigorously supported by 

regular photogrammetric software, including DBAT. In a previous paper, it was found that some of 

the deviation of the tilt-shift lens from the classic photogrammetric projection model (pin-hole with 

Brown lens distortion) could be mitigated by including the affine distortion parameter 𝑏1 in the 

estimation (Nocerino et al., 2016). The modularity of DBAT presented an opportunity to investigate 

further modifications of the projection model. As such, two models with different placement of the 

affine transformation compared to lens distortion were implemented with minimal effort. 

An experiment on synthetic image observations verified that the relative placement of the affine 

transformation and lens distortion can be detected by DBAT on synthetic, error-free data. A 

calibration experiment was constructed to test the hypothesis that either ordering could explain 

more of the tilt-shift distortion of a real tilt-shift lens. Furthermore, an image-variant bundle 

adjustment (Moniwa, 1981; Tecklenburg et al., 2001) was tested to verify if it would be possible to 

better model the distortions introduced by gravity effects and the tilt angle. The results did not 

support either hypothesis. Compared to other, possibly unmodelled effects, the ordering does not 

significantly contribute to the observed residuals and the addition of image-variant camera 

parameters did not improve the results. Instead, the results support the conclusion in Nocerino et al. 

(2016) that the aspect parameter 𝑏1 and the decenter parameters 𝑃1-𝑃2 are significant but the skew 

parameter 𝑏2 is not. 

From the results, we may conclude that the standard pinhole camera model with Brown lens 

distortion cannot fit the tilted data better, even with the image-variant approach. However, if an 

RMSE of 0.09 times the GSD is considered satisfactory, standard photogrammetric formulations and 
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software can be used in 3D modelling application that require the tilt-shift lens system. We believe 

that to improve on those results, a proper mathematical projection model of the tilt-shift lens is 

required. In relation to the main goals of this paper, we conclude that the modularity of DBAT can 

indeed be used to test novel projection models with minimal implementation effort. 

The performance results in this paper show an increase of about 50% in computation time on a 

medium-sized problem for the flexible implementation compared to the original implementation in 

DBAT. A potential explanation is if the computation of the composed Jacobian as a chained 

multiplication of simpler Jacobians is inefficient. Another possible explanation is if some of the 

computations that depend on the same parameters are distributed over multiple sub-expressions. In 

that case, the expressions may need to be jointly considered in order to be fully optimized. If true, 

either case would highlight a limitation of the chain rule approach. 

The reported increase in execution time would hardly be acceptable for production code, where 

speed is essential. However, the driving force behind the development of DBAT has been to provide 

an open-source, statistically rigorous, reference implementation of Bundle Adjustment. Performance 

has been important, but never the primary focus. Furthermore, the code for the original projection 

model has gone through several optimization iterations whereas the flexible chain rule code has not. 

It remains to be seen how much performance can be recovered in the future. 

In some cases, flexibility is more important than performance. The flexibility of the chain rule 

formulation should allow researchers to investigate novel and non-standard sensors or data 

processing techniques. Furthermore, several new photogrammetric applications, including 

underwater applications, need refined refractive models. In teaching, the flexibility should allow 

students to experiment with both existing and novel computations. 

In summary, the presentation and results in this paper show that it is possible to use the chain rule 

to modularize the bundle adjustment computations, including lens distortion. Currently, there is a 
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performance loss associated with the modular implementation. In cases where flexibility is more 

important than performance, we argue that DBAT with the chain rule formulation can be a useful 

tool to investigate novel sensors, data processing techniques, and refractive models. 

Future work include optimization of the flexible models, complementing the pin-hole module with a 

fish-eye module, complementing the omega-phi-kappa rotation model by, e.g. azimuth-tilt-swing, 

and extensions to refractive models to handle the tilt-shift lens or multimedia projection models in, 

e.g., underwater photogrammetry.  



18 
 

6 References 

Barr A. H. 1984. Global and local deformations of solid primitives, ACM SIGGRAPH Computer 

Graphics 18(3):21-30. DOI: 10.1145/964965.808573. 

Börlin N. and P. Grussenmeyer 2013. Bundle adjustment with and without damping, 

Photogrammetric Record 28(144):396-415. DOI: 10.1111/phor.12037. 

Börlin N. and P. Grussenmeyer 2014. Camera calibration using the damped bundle adjustment 

toolbox, ISPRS Annals of the Photogrammetry, Remote Sensing, and Spatial Information 

Sciences II(5):89-96. DOI: 10.5194/isprsannals-II-5-89-2014. 

Börlin N. and P. Grussenmeyer 2016. External verification of the bundle adjustment in 

photogrammetric software using the damped bundle adjustment toolbox, International 

Archives of Photogrammetry, Remote Sensing, and Spatial Information Sciences XLI(B5):7-14. 

DOI: 10.5194/isprs-archives-XLI-B5-7-2016. 

Börlin N. A. Murtiyoso P. Grussenmeyer F. Menna and E. Nocerino 2018. Modular bundle adjustment 

for photogrammeric computations, International Archives of Photogrammetry, Remote 

Sensing, and Spatial Information Sciences XLII(2):133-140. DOI: 10.5194/isprs-archives-XLII-2-

133-2018. 

Brown D.C. 1958. A solution to the general problem of multiple station analytical stereotriangulation 

RCA Data reduction technical report 43 Ballistic Research Laboratories Aberdeen Proving 

Ground Maryland USA. 

Brown D.C. 1971. Close-range camera calibration, Photogrammetric Engineering 37(8):855-866. 

Brown D.C. 1976. The bundle adjustment - progress and prospects, International Archives of 

Photogrammetry and Remote Sensing 21(3):1-33. 



19 
 

Brown M. and D.G. Lowe 2003. Recognising panoramas, 9th IEEE International Conference on 

Computer Vision (ICCV 2003) 14-17 October 2003 Nice France pp. 1218-1227. DOI: 

10.1109/ICCV.2003.1238630. 

Cheng C. X. Hao and J. Li 2017. Relative camera pose estimation method using optimization on the 

manifold, International Archives of the Photogrammetry, Remote Sensing and Spatial 

Information Sciences XLII(1/W1):41-46. DOI: 10.5194/isprs-archives-XLII-1-W1-41-2017. 

Dall'Asta E. K. Thoeni M. Santise G. Forlani A. Giacomini and R. Roncella 2015. Network design and 

quality checks in automatic orientation of close-range photogrammetric blocks, Sensors 

15(4):7985-8008. DOI: 10.3390/s150407985. 

Drap P. and J. Lefévre 2016. An exact formula for calculating inverse radial lens distortions, Sensors 

16(6):807. DOI: 10.3390/s16060807. 

Förstner W. and B. Wrobel 2004. Mathematical concepts in photogrammetry Manual of 

Photogrammetry 5th ed. (C. McGlone E. Mikhail and J. Bethel editors) ASPRS Bethesda 

Maryland pp. 15-180. 

Fraser C.S. 2001. Photogrammetric camera component calibration: A review of analytical techniques 

Calibration and Orientation of Cameras in Computer Vision (A. Gruen and T.S. Huang 

editors), Springer Heidelberg Germany pp. 95-121. 

Fusiello A. 2013. Visione computazionale. Tecniche di ricostruzione tridimensionale. Franco Angeli 

Milano Italy 340 p. 

Gallego G. and A. Yezzi 2015. A compact formula for the derivative of a 3-d rotation in exponential 

coordinates, Journal of Mathematical Imaging and Vision 51(3):378-384. DOI: 

10.1007/s10851-014-0528-x. 

Heikkilä J. and O. Silvén 1997. A four-step camera calibration procedure with implicit image 

correction, Proceedings of IEEE Computer Society Conference on Computer Vision and 



20 
 

Pattern Recognition (CVPR) 17-19 June 1997 San Juan Puerto Rico USA pp. 1106-1112. DOI: 

10.1109/CVPR.1997.609468. 

Koditschek D.E. and E. Rimon 1990. Robot navigation functions on manifolds with boundary, 

Advances in Applied Mathematics 11(4):412-442. DOI: 10.1016/0196-8858(90)90017-S. 

Kraus K. 1993. Photogrammetry 4th edition Dümmler Verlag Bonn Germany 397 p. 

Luhmann T. S. Robson S. Kyle and J. Boehm 2014. Close-range photogrammetry and 3D Imaging 2nd 

edition De Gruyter Berlin Germany 684 p. 

Magnus J.R. and H. Neudecker 2019. Matrix differential calculus with applications in statistics and 

econometrics 3rd edition John Wiley New York 470 p. 

Menna F. E. Nocerino P. Drap F. Remondino A. Murtiyoso P. Grussenmeyer and N. Börlin 2018. 

Improving underwater accuracy by empirical weighting of image observations, International 

Archives of Photogrammetry, Remote Sensing, and Spatial Information Sciences XLII(2):699-

705. DOI: 10.5194/isprs-archives-XLII-2-699-2018. 

Mikhail E.M. J.S. Bethel and J.C. McGlone 2001. Introduction to Modern Photogrammetry John Wiley 

New York 496 p. 

Moniwa H. 1981. The concept of photo-variant self-calibration and its application in block 

adjustment with bundles, Photogrammetria 36(1):11-29. DOI: 10.1016/0031-8663(81)90006-

5. 

Murtiyoso A. P. Grussenmeyer and N. Börlin 2017. Reprocessing close range terrestrial and UAV 

photogrammetric projects with the DBAT toolbox for independent verification and quality 

control, International Archives of the Photogrammetry, Remote Sensing and Spatial 

Information Sciences XLII(2/W8):171-177. DOI: 10.5194/isprs-archives-XLII-2-W8-171-2017. 



21 
 

Murtiyoso A. P. Grussenmeyer N. Börlin J. Vandermeerschen and T. Freville 2018. Open source and 

independent methods for bundle adjustment assessment in close-range UAV 

photogrammetry, Drones 2(1):3. DOI: 10.3390/drones2010003. 

Nocerino E. F. Menna R. Remondino J.-A. Eraldin L. Cournoyer and G. Reain 2016. Experiments on 

calibrating tilt-shift lenses for close-range photogrammetry, International Archives of 

Photogrammetry, Remote Sensing, and Spatial Information Sciences XLI(B5):99-105. DOI: 

10.5194/isprsarchives-XLI-B5-99-2016. 

Piponi D. 2004. Automatic differentiation, C++ templates, and photogrammetry, Journal of Graphics 

Tools 9(4):41-55. DOI: 10.1080/10867651.2004.10504901. 

Rabbani T. S. Dijkman F. van den Heuvel and G. Vosselman 2007. An integrated approach for 

modelling and global registration of point clouds, ISPRS Journal of Photogrammetry and 

Remote Sensing 61(6):355-370. DOI: 10.1016/j.isprsjprs.2006.09.006. 

Ray S.F. 2002. Applied photographic optics 3rd edition Focal Press London U.K. 680 p. 

Rupnik E. J. Jansa and N. Pfeifer 2015. Sinusoidal wave estimation using photogrammetry and short 

video sequences, Sensors 15(12):30784-30809. DOI: 10.3390/s151229828. 

Tecklenburg W. T. Luhmann and H. Hastedt 2001. Camera modelling with image-variant parameters 

and finite elements Optical 3-D measurement techniques V (A. Gruen and H. Kahmen editors) 

Wichmann Verlag Heidelberg Germany pp. 328-335. 

Triggs B. P. McLauchlan R. Hartley and A. Fitzgibbon 2000. Bundle adjustment - A modern synthesis 

Vision Algorithms: Theory and Practice, Proceedings of the International Workshop on Vision 

Algorithms (B. Triggs A. Zisserman and R. Szeliski editors) Springer Berlin Germany pp. 298-

372. DOI: 10.1007/3-540-44480-7_21. 



22 
 

Tsai R.Y. 1987. A versatile camera calibration technique for high-accuracy 3d machine vision 

metrology using off-the-shelf tv cameras and lenses, IEEE Journal of Robotics and 

Automation 3(4):323-344. 

Wolf P.R. and B.A. Dewitt 2000. Elements of Photogrammetry 3rd edition McGraw-Hill New York USA 

608 p. 

Zhang Z. 2000. A flexible new technique for camera calibration, IEEE Transactions on Pattern Analysis 

and Machine Intelligence 22(11):1330-1334. DOI: 10.1109/34.888718. 

 

  



23 
 

7 Algorithms 

Algorithm 1 The pinhole projection (5) is evaluated by a sequence of function calls. 

procedure PinholeNoJac(𝑝, 𝑝0, 𝑅, 𝑐, 𝑢0) 

 𝑎1 ← 𝑇3(𝑝, −𝑝0) 

 𝑎2 ← 𝐿(𝑅𝑇 , 𝑎1) 

 𝑎3 ← 𝐻(𝑎2) 

 𝑎4 ← 𝑆(𝑐, 𝑎3) 

 𝑎5 ← 𝑇2(𝑎4, 𝑢0) 

 return 𝑎5 

end procedure 

Algorithm 2: The pinhole projection and one of its Jacobians computed by the same sequence of function calls as in 
Algorithm 1. Each called function computes both the function value and the necessary Jacobians. The complete analytical 
Jacobian 𝐽 is formed by multiplying the component Jacobians. 

procedure PinholeWithJac(𝑝, 𝑝0, 𝑅, 𝑐, 𝑢0) 

 (𝑎1, 𝐽𝑝) ← 𝑇3(𝑝, −𝑝0),   𝐽𝑝 = [
𝑑𝑇3

𝑑𝑝
], 

 (𝑎2, 𝐽𝑣) ← 𝐿(𝑅𝑇 , 𝑎1),   𝐽𝑣 = [
𝑑𝐿

𝑑𝑣
]

𝑣=𝑎1

, 

 (𝑎3, 𝐽𝑞) ← 𝐻(𝑎2),   𝐽𝑞 = [
𝑑𝐻

𝑑𝑞
]

𝑞=𝑎2

, 

 (𝑎4, 𝐽𝑚) ← 𝑆(𝑐, 𝑎3),   𝐽𝑚 = [
𝑑𝑆

𝑑𝑚
]

𝑚=𝑎3

, 

 (𝑎5, 𝐽𝑛) ← 𝑇2(𝑎4, 𝑢0),   𝐽𝑛 = [
𝑑𝑇2

𝑑𝑛
]

𝑛=𝑎4

, 

 𝐽 ← 𝐽𝑛𝐽𝑚𝐽𝑞𝐽𝑣𝐽𝑝,    𝐽 = [
𝑑𝑔

𝑑𝑝
], 

 return (𝑎5, 𝐽) 

end procedure 
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8 Figures 

 

Figure 1: The computational chain corresponding to equation (5). The grey rectangles indicate bundle adjustment 
parameters. The white circles indicate component functions from equation (4). The arrows indicate how the parameters and 
results are propagated. The arrow labels indicate the name of the formal (input) parameter of the corresponding function. 

 

Figure 2: The computational chain implemented in DBAT. In the photogrammetric formulation, the optical scaling in the 
camera results in image coordinates expressed in physical units, e.g., mm. The image coordinates are scaled from pixels to 
mm before the (Brown D. C., 1971) polynomials are used to “correct” the measured image coordinates for lens distortion. 
The    residual (thick circle) is computed as the difference between the projected ideal point and the corrected point. 

 

Figure 3: The DBAT implementation of the Computer Vision formulation of the (Brown D. C., 1971) lens distortion model. 
The Brown polynomials are used to introduce lens distortion to the projected ideal point in normalized units before the 
coordinates are scaled directly to pixels. The residual (thick circle) is computed between the measured point and the 
“distorted” projected point. The same modules have been used as in Figure 2. 
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Figure 4: Two versions of the right-hand side of Figure 2 with different relative placement of the affine transformation with 
respect to lens distortion. In Model 3 (left), the affine distortion was applied before lens distortion removal. In Model 4 
(right), the affine distortion was applied after lens distortion removal. In both cases, the digital scaling uses square pixel 
sizes. Any non-unit aspect ratio is handled by the affine step. 

 

Figure 5: The Nikon D750 DSLR camera with the PC-E Micro NIKKOR 45 mm f/2.8D ED tilt-shift lens used in this paper. 

 

Figure 6: The synthetic network consisted of 24 cameras at varying roll angles. The simulated targets were in a 3D 
configuration with a largest dimension of 1000 mm. 
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Figure 7: The 3D test object with about 170 coded targets had a largest dimension of 900 mm. 
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9 Tables 

Table 1: Assessment of the analysis of the synthetic data sets. The IO parameters columns indicate what IO parameters and 

how many (𝑛) were included in the estimation. The RMS is the point residual over all image observations. The RMSE is the 

3D error over all object points. The 𝑏1̂ column shows the estimated 𝑏1 value. The rows with the smallest residuals are 

indicated in grey. 

Simulated DBAT IO parameters Internal/external assessment 
Dataset model parameters 𝑛 𝑏1̂ 𝜎0̂ RMS (px) RMSE (μm) 

3 2 𝑏1𝑏2𝑃 8 0 34.2847 4.56 620.60 
 3 𝑏1𝑏2𝑃 10 0.01218 00.0003 0.00 000.01 
 4 𝑏1𝑏2𝑃 10 0.01223 00.3773 0.05 008.26 

4 2 𝑏1𝑏2𝑃 8 0 34.1330 4.54 616.59 
 3 𝑏1𝑏2𝑃 10 0.01212 00.3697 0.05 008.33 
 4 𝑏1𝑏2𝑃 10 0.01218 00.0003 0.00 000.01 

 

Table 2: Assessment of DBAT estimation models 2, 3, and 4 on the TILTED data set. The IO parameters and assessment are 

as in Table 1, except that the target coordinates computed from the NORMAL data set were used as the true data. The 

redundancy (number of observation minus number of parameters) was around 7800. The smallest residuals were obtained 

when 𝑏1 and P were estimated (gray rows). 

DBAT IO parameters Internal/external assessment 
Model 𝑏1 𝑏2 𝑃 𝑛 𝜎0 RMS (px) RMSE (μm) 

2   𝑃 8 5.9 0.79 82.3 
    6 5.9 0.80 92.9 

3 𝑏1  𝑃 9 1.1 0.15 11.9 
 𝑏1 𝑏2 𝑃 10 1.1 0.15 11.9 
 𝑏1   7 3.0 0.41 72.9 
 𝑏1 𝑏2  8 3.0 0.41 73.2 
  𝑏2  7 5.9 0.80 92.6 
  𝑏2 𝑃 9 5.9 0.79 82.3 

4 𝑏1  𝑃 9 1.1 0.15 11.9 
 𝑏1 𝑏2 𝑃 10 1.1 0.15 11.9 
 𝑏1   7 3.0 0.41 73.3 
 𝑏1 𝑏2  8 3.0 0.41 73.3 
  𝑏2 𝑃 9 5.9 0.79 82.3 
  𝑏2  7 5.9 0.80 92.8 
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Table 3: Results of the image-variant experiments for DBAT model 3 without 𝑏2 with three different sets of image-variant 

parameters. The number of IO parameters increase from 𝑛 = 9 for the fully block-invariant case to 𝑛 = 432 for the fully 

image-variant case. Since a corresponding number of prior observations are added, the redundancy remains around 7800. 

The grey row corresponds to the first model 3 row of Table 2. 

IO parameters Internal/external assessment 
Image-variant params 𝑛 𝜎0̂ RMS (px) RMSE (μm) 

None 9 1.1 0.15 11.9 
𝑐, 𝑥0, 𝑦0 150 1.0 0.14 12.0 
𝑐, 𝑥0, 𝑦0, 𝐾𝑖 , 𝑃𝑖 385 1.0 0.13 12.1 
𝑐, 𝑥0, 𝑦0, 𝐾𝑖 , 𝑃𝑖, 𝑏1 423 1.0 0.13 12.1 

 


