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ODE-BASED DOUBLE-PRECONDITIONING FOR SOLVING
LINEAR SYSTEMS AαX = B AND F (A)X = B

XAVIER ANTOINE∗ AND EMMANUEL LORIN†

Abstract. This paper is devoted to the computation of the solution to fractional linear al-
gebraic systems using a differential-based strategy to evaluate matrix-vector products Aαx, with
α ∈ R∗+. More specifically, we propose ODE-based preconditioners for efficiently solving fractional
linear systems in combination with traditional sparse linear system preconditioners. Different types
of preconditioners are derived (Jacobi, Incomplete LU, Padé) and numerically compared. The ex-
tension to systems f(A)x = b is finally considered.

1. Introduction. In the present paper, we are interested in the numerical solu-
tion to Fractional Linear Systems (FLS) of the form

Aαx = b,(1)

for some α ∈ R∗+, where A ∈ Cn×n and b ∈ Cn are given, and extensions to equations
f(A)x = b. We assume that A is a diagonalizable matrix in R+ or C\R− (to avoid
the singularity line of arg(z)) which is sparse or is a (possibly random) perturbation
of a sparse matrix, with eigenvalues having positive real parts. Let us recall that Aα

is defined by the Cauchy integral formula (see e.g. Theorem 6.2.28 from [10])

Aα = (2πi)−1Ak
∫

ΓA

zα−k(zI −A)−1dz ,(2)

for k > 0, where ΓA is a closed contour in the complex plane enclosing the spectrum of
the matrix A. Even if A is a sparse diagonalizable matrix, Aα is generally dense. The
study of this class of systems is largely motivated by the numerical approximation of
Fractional Partial Differential Equations (FPDEs), including fractional diffusion and
fractional Schrödinger equations, which represents currently a very active research
area in computational science [3, 4, 7, 11, 12, 14]. In particular, solving such FPDEs
by some real-space approximations leads to FLS. For invertible matrices, we formally
have x = A−αb.

For α ∈ R, the n-dimensional differential system

y′(τ) = α(A− I)
(
I + τ(A− I)

)−1
y(τ), y(0) = b ,(3)

admits a solution y(τ) =
(
I + τ(A − I)

)α
b such that y(1) = Aαb, where I is the

identity matrix in Rn×n (see [5, 6, 8, 9]). By replacing α by −α in (3), we can
compute x = A−αb through an ODE. This approach is an alternative to the techniques
based on the Cauchy integral representation (2) as studied e.g. in [1, 2, 3, 11, 14].
Since Aα is unknown, computing Aαz, for any vector z (for example in an iterative
process), usually requires a non-trivial algorithm such as (3). In this paper, we are
most particularly interested in the derivation of efficient and low-cost preconditioners
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P for solving FLS as (1) by a Krylov subspace iterative solver. More precisely, we
propose to build some matrices P ∈ Cn×n such that

PAαx = Pb ,(4)

with κ(Aα) � κ(PAα), where κ(B) denotes the condition number of a given matrix
B. This preconditioning procedure will naturally provide a much faster convergence
rate of Krylov-type solvers applied to (1). As the construction of products of power
matrices with vectors that also include the application of the preconditioner will be
performed by using appproximate solutions to (3), preconditioners P will be referred
to as ODE-solver preconditioners. It is important to remark that, unlike usual linear
system preconditioners, the application of these ODE-solver preconditioners will not
be realized by only successively applying P and Aα but will rather be computed effi-
ciently by estimating PAαv based on approximate solutions to (1), for any vector v in
Cn×n. Different types of ODE-preconditioners (Jacobi or ILU-based preconditioners)
will be introduced later and their efficiency will be compared. Let us also notice that
the computation of approximate solutions to (1) also requires the numerical solution
of several linear systems by using preconditioned GMRES algorithms1, resulting in
an ODE-based double-preconditioning algorithm. More precisely, P arising in (4) is a
fractional algebraic linear system preconditioner (first preconditioning level), which
itself requires the use of preconditioners (second preconditioning level) for solving in-
termediate linear systems. Since the main objective of this paper is to derive some
ODE-solver preconditioners to efficiently solve (1), we propose here to focus on a de-
tailed study for the Crank-Nicolson scheme with uniform time discretization, even if a
fourth-order Runge-Kutta method will also be considered to illustrate some possible
extensions of our approach. Indeed, we insist on the fact that the purpose of this
paper is not to optimize the ODE-solver for a given matrix, but rather to develop
a general preconditioning methodology when using the ODE-solver approach. For
example, optimized high-order schemes and adaptive time-stepping strategies could
also be implemented in combination with an ODE-solver preconditioner but are out of
the scope of the present paper and require further studies. Even if the developments
are mainly focused on the case of FLS, we also generalize the proposed methodology
to systems of the form

f(A)x = b, A ∈ Cn×n, b ∈ Cn ,(5)

for some analytic functions f . We show that the method can be expected to work
well, but many improvements still need to be investigated in details for completeness.

The paper is organized as follows. In Section 2, we consider a direct Crank-
Nicolson discretization of the ODE-solver, i.e. without any preconditioner. In Section
3, we present a methodology based on the clustering of the spectrum of the matrix A
thanks to linear system preconditioners (called ODE-solver preconditioners), leading
to a strong reduction of the number of time steps for solving (3). Different types of
preconditioners such as the scaling approach, Jacobi method, Incomplete LU (ILU)
or Padé-type preconditioners are proposed and compared. The computational com-
plexity is also addressed. In Section 4, we develop an extension to some more general
systems of the form f(A)x = b. We finally conclude in Section 5.

2. Direct Crank-Nicolson (DCN) method for Aαx = b. In this section, we
derive a Crank-Nicolson algorithm for approximating the solution to (1), by using

1In the numerical experiments, we will use the standard GMRES algorithm from matlab.
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(3) but without any ODE-solver preconditioner. This approach will be referred to
as the Direct Crank-Nicolson (DCN) method. Let us introduce {τk}06k6KA as a
finite sequence of uniformly sampled discrete time steps such that τk = k∆τA, with
0 6 k 6 KA, setting τKA = 1. For α ∈ R∗+, we propose to approximate A−αb
iteratively by discretizing (3) with the second-order Direct Crank-Nicolson (DCN)
scheme

y
(A)
k+1 = y

(A)
k −

∆τA

2
α(A− I)

(
I + τk(A− I)

)−1
y

(A)
k

−
∆τA

2
α(A− I)

(
I + τk+1(A− I)

)−1
y

(A)
k+1 ,

where y
(A)
k is an approximation of y(τk). This leads to the 3-steps DCN algorithm

Step 1. Compute z
(A)
k solution to

(
I + τk(A− I)

)
z

(A)
k = y

(A)
k .

Step 2. Set w
(A)
k := y

(A)
k −

∆τA

2
α(I −A)z

(A)
k , and calculate ω

(A)
k+1 such that

(
I + τk+1(A− I)

)
ω

(A)
k+1 = w

(A)
k .

Step 3. Deduce y
(A)
k+1 solution to

(I + τk+1+α
2

(A− I))y
(A)
k+1 = ω

(A)
k+1 .

At each iteration k, 0 6 k 6 KA − 1, we need to solve three linear systems using
traditional iterative solvers combined with preconditioners. At the final time τKA = 1,

we obtain y
(A)
KA
≈ A−αb. More precisely, there exists a positive constant C > 0 such

that we have the error bound

‖y(A)
KA
−A−αb‖2 6 C∆τ2

A ,

where ‖v‖2 =
(∑n

j=1 |vj |2
)1/2

, for any vector v ∈ Cn. We do not detail the use
of other numerical ODE-solvers, which can directly be applied. Nevertheless, for
completeness, we consider an explicit Runge-Kutta-4 (RK4) method in Subsection
3.1 as an alternative solver for (3) to show what could be expected when increasing
the order of accuracy in time.

3. Preconditioned Crank-Nicolson (PCN) method for Aαx = b. In this
Section, we propose some preconditioning techniques for solving the ODE-based al-
gorithm. The first approach is actually a simple scaling, introduced in Subsection
3.1. Analytical arguments to justify why the double-preconditioning approach is ex-
pected to be efficient are developed in Subsection 3.2. In Subsection 3.3, we consider
some more elaborated preconditioners (Jacobi/ILU) for efficiently solving (3), i.e. to
reduce the number of time steps to compute the solution for the ODE-solver with a
prescribed accuracy. An analysis of the computational cost of the procedure is de-
tailed in Subsection 3.4. Finally, a Padé’s approximants preconditioning technique is
introduced for comparison in Subsection 3.5. In all the subsections, we propose some
simulations to fairly illustrate the behavior of the different approaches.

3.1. Scaling ODE-preconditioning. We discuss now a Preconditioned Crank-
Nicolson (PCN) method based on the scaling matrix M = I/‖A‖2, where ‖A‖2 is the
2-norm of the matrix A. Let us assume here that A is a diagonally dominant matrix.
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Since M is a scaling matrix, we trivially have the identity A−α = Mα(MA)−α.

We then compute the finite sequence {y(MA)
k }06k6KMA of vector solutions, setting

τKMA = τKA = KMA∆τMA = 1, following the PCN algorithm

Step 1. Compute z
(MA)
k such that:

(
I + τk(MA− I)

)
z

(MA)
k = y

(MA)
k .

Step 2. Define w
(MA)
k := y

(MA)
k −

∆τMA

2
α(I−MA)z

(MA)
k , and obtain ω

(MA)
k+1

as the solution to the preconditioned linear system(
I + τk+1(MA− I)

)
ω

(MA)
k+1 = w

(MA)
k .

Step 3. Deduce y
(MA)
k+1 solution to

(I + τk+1+α
2

(MA− I))y
(MA)
k+1 = ω

(MA)
k+1 .

Each of these linear systems is solved by using an iterative method and an additional
classical preconditioner. At the final time τKMA , we get an estimate of (MA)−αb, and
therefore we deduce x = Mα(MA)−αb through

y
(MA)
KMA

≈ Mα(MA)−αb = A−αb,

where there exists a constant C > 0 such that: ‖y(MA)
KA

−A−αb‖2 6 C∆τ2
MA.

Experiment 1. Let us solve the system Aαx = b, where A = B +BT +D ∈ Rn×n,
with n = 400. The matrix B = {bij}16ij6n is such that bij = rand(0, 1), and
D = {dij}16ij6n is the diagonal matrix defined by dii = 15 + rand(0, 1), 1 6 i 6 n.
The value of α is fixed to 0.5. The right-hand side b is given in Rn. We report in Fig. 1
(Right) the convergence graph of ‖A−αb−A−αh b‖∞, where A−αb is the exact solution
to the linear system, and A−αh b (the index h refers to as an approximate value of A−α)
is computed by solving (3) with a DCN scheme, DRK4 (Direct RK4) scheme, and
scaled PCN and PRK4 (Preconditioned RK4) schemes, as described in Subsections (2)
and (3.1). In Fig. 1 (Left), we report the spectrum of A and MA. These results show
the efficiency of the scaling technique for accelerating the computation of A−αb. In
particular, we notice the fourth- (resp. second-)order convergence of the RK4 (resp.
CN) schemes. The scaling approach is more specifically interesting for efficiently
evaluating A−αb, but not necessarily useful as a preconditioner as seen below.
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Fig. 1. Experiment 1. (Left) Spectrum of A and MA. (Right) Convergence rate of the
DCN/DRK4 and scaled PCN/PRK4 schemes.
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Experiment 1bis. This test is similar to the previous one except that A = B+D ∈
Rn×n (n = 400), which has a complex spectrum with eigenvalues having positive real
parts. The results are reported in Fig. 2, where we again observe an improvement of
the convergence of the preconditioned ODE-solvers vs the non-preconditioned ones.
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Fig. 2. Experiment 1bis. (Left) Spectrum of A and MA. (Right) Convergence rate of the
DCN/DRK4 and scaled PCN/PRK4 schemes.

3.2. Justification of the ODE-solver preconditioning. To emphasize on
the need to include a preconditioning strategy into the ODE-solver methodology, we
develop an analysis based on error estimates explaining the improvement in term
of convergence rate. More precisely, for a fixed number of basic operations, a PCN
method leads to a more accurate evaluation of A−αb compared to the DCN method.
By construction, we naturally have ρ(MA − I) � ρ(A − I), since M ≈ A−1. The
matrix MA is therefore expected to have a spectrum localized around 1 ∈ C.

The following proposition holds.

Proposition 3.1. Let us consider the DCN and PCN algorithms described in
Subsection 3.1, where we assume that the linear systems are solved exactly. Then,
there exists a constant c > 0 such that

‖y(A)
KA
−A−αb‖2 6 c∆τ2

A

eα(ρ(A)−1) − 1

α
.

Moreover, we have the following estimates:
1. If we assume that ρ(MA− I) > 1, then we have

‖y(MA)
KMA

−A−αb‖2 6 c∆τ2
MA

eα(ρ(MA)−1) − 1

α
.

.
2. If 1 > ρ(MA− I) > ε, for some ε ∈ (0, 1), one gets

‖y(MA)
KMA

−A−αb‖2 6 c∆τ2
MA

eα(1−ε)−1 − 1

α
.

From this proposition, we expect a much better error estimate for PCN than for DCN
since ρ(A)� 1 and ρ(A)� ρ(MA) by construction of the preconditioner M .
Proof. Let us define the two functions

fA(α, τ) = −α(A− I)(I + τ(A− I))−1,

fMA(α, τ) = −α(MA− I)(I + τ(MA− I))−1.
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We then introduce ρ(·) as the spectral radius function and we define

ρfA(α) = max
τ∈[0,1]

ρ
(
fA(α, τ)

)
= α max

τ∈[0,1]
ρ
(
(A− I)(I + τ(A− I))−1

)
,

ρfMA(α) = max
τ∈[0,1]

ρ
(
fMA(α, τ)

)
= α max

τ∈[0,1]
ρ
(
(MA− I)(I + τ(MA− I))−1

)
.

Assuming that the linear systems in DCN and PCN are solved exactly, then the overall
2-norm errors at time T = 1 are such that

‖y(A)
KA
−A−αb‖2 6 t(∆τA)

eρfA (α) − 1

ρfA(α)
,

while

‖y(MA)
KMA

−A−αb‖2 6 t(∆τMA)
eρfMA (α) − 1

ρfMA(α)
,

where t(∆τ)→∆τ→0 0 is the truncation error which is second-order for CN, i.e. equal
to c∆τ2 for some c > 0.

To get an estimate of ρfA(α), we assume that ρ(A) � 1 and ρ(MA − I) > 1.
Therefore, we obtain

α 6 ρfA(α) 6 α(ρ(A)− 1), α 6 ρfMA(α) 6 α(ρ(MA)− 1).

For some c > 0, we then have

‖y(A)
KA
−A−αb‖2 6 c∆τ2

A

eα(ρ(A)−1) − 1

α

and

‖y(MA)
KMA

−A−αb‖2 6 c∆τ2
MA

eα(ρ(MA)−1) − 1

α
.

If we assume now that 1 > ρ(MA− I) > ε > 0, we obtain

α 6 ρfMA(α) 6 α(1− ε)−1 ,

resulting in the estimate

‖y(MA)
KMA

−A−αb‖2 6 c∆τ2
MA

eα(1−ε)−1 − 1

α
,

ending hence the proof. �
Based on the above proposition and since ρ(A) � ρ(MA), it is reasonable to

choose ∆τMA � ∆τA in PCN. This implies that KMA � KA, thus leading to a much
faster algorithm. More specifically, for a given error and assuming for instance that
ρ(MA− I) > 1, we can estimate that the time step for PCN is roughly such that

∆τMA ≈ ∆τA
eα(ρ(A)−1) − 1

eα(ρ(MA)−1) − 1
.

Equivalently, for a fixed error, and since CN is a second-order scheme, the number of
iterations (linearly related to the computational complexity) for PCN is reduced by
a factor √

(eα(ρ(A)−1) − 1)/(eα(ρ(MA)−1) − 1)
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compared to DCN. In other words, the matrix scaling does not increase the conver-
gence order, but provides a better precision. After KA = b1/∆τAc iterations, we get
a fixed error E for a number of iterations

KMA =
⌊
1/∆τMA

⌋
≈ KA

⌊√eα(ρ(MA)−1) − 1

eα(ρ(A)−1) − 1

⌋
.(6)

If we are now in the situation where 1 > ρ(MA− I) > ε, then we conclude that

KMA =
⌊
1/∆τMA

⌋
≈ KA

⌊√ eα(1−ε)−1 − 1

eα(ρ(A)−1) − 1

⌋
.(7)

Let us remark that from the parallel computing point of view, the ODE approach is
expected to be less efficient than the Cauchy integral approach based on (2) which is
obviously embarrassingly parallel. However, a parareal approach could certainly be
adapted [13].

3.3. Jacobi/ILU ODE-preconditioning. We propose now to use a Jacobi
ODE-preconditioner to solve Aαx = b. The main difference with the scaling approach
is that in general [M,A] 6= 0, implying that Mα(MA)−α 6= A−α. However, we expect
that Mα(MA)−α ≈ A−α. As a consequence, we propose to use P = Mα(MA)−α as
an ODE-solver preconditioner in (4). Rather than solving (3), we consider

Mα(MA)−αAαx = Mα(MA)−αb .(8)

The resulting algorithm is then
• Step 1. Compute (MA)−αb as above, and then multiply by Mα which is a

diagonal matrix, to get the new right-hand side vector.
• Step 2. To solve (8), use an iterative linear solver, requiring hence the

computation of sequences vk+1 = Mα(MA)−αAαvk, for vk ∈ Cn given, as
follows

1. Compute wk = Aαvk, for Aα given.
2. Compute zk = (MA)−αwk by using the ODE algorithm (a matrix scal-

ing could be used here to accelerate this step).
3. Deduce vk+1 = Mαzk.

An ILU ODE-preconditioner can be used as well to efficiently solve (1). First, we

implement an ILU ODE-preconditioner M for A, i.e. A ≈ L̃Ũ . We formally denote
by M the inverse of L̃Ũ . We then compute (MA)−αb. To this end, we numerically
solve

L̃Ũy′(τ) = −α(A− L̃Ũ)
(
L̃Ũ + τ(A− L̃Ũ))−1y(τ), y(0) = b,(9)

by a PCN and next calculate Mα(MA)−αb from

L̃Ũy′(τ) = α(I − L̃Ũ)(L̃Ũ + τ(I − L̃Ũ))−1y(τ), y(0) = (MA)−αb .(10)

The above system is solved iteratively, which requires the computation of sequences
{vk+1}k defined by vk+1 = Mα(MA)−αAαvk, similarly to the Jacobi preconditioner.
Experiment 2. We consider the linear system Aαx = b, for A = B + δB + D ∈
Rn×n (n = 150). We define B = {bij}16ij6n, with bij = rand(0, 1). In addition,
D = {dij}ij is a diagonal matrix such that dii = 2.5 + rand(0, 1). The parameter
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δ is fixed to δ = 0, 0.5, 1 in the following examples, and α = 0.5. The vector b is
given in Rn and we take ∆τA = 10−2 (KA,MA = 100). For δ = 0, we report in
Fig. 3 (Bottom-Right) the residual history vs the iteration number, for the GMRES
algorithm with a restart parameter equal to 20, respectively for: the DCN scheme
and for the PCN method with scaling, Jacobi and ILU (for a tolerance equal to
10−3) ODE-preconditioners. In Fig. 3 (Bottom/Top-Left, Top-Right), we report the
spectrum of A and MA for δ = 0, where M is chosen as a scaling matrix, Jacobi or
ILU ODE-preconditioner. We conclude that the ILU ODE-preconditioner provides
the best convergence rate, although Jacobi is also quite efficient. The scaling matrix
is clearly not a good preconditioner and should rather be used for a fast and direct
evaluation of A−αb. The same tests as above are repeated but with δ = 1 (resp.
δ = 0.5). The results are available in Fig. 4 (Left) (resp. (Right)), with the same
conclusion.
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Fig. 3. Experiment 2. For δ = 0 : Spectrum of A and MA with scaling matrix (Top-
Left), Jacobi (Top-Right) and ILU ODE-preconditioner (Botton-Left). (Bottom-Right) Convergence
history of GMRES without/with various preconditioners.

Experiments 3. We next compare the convergence of the GMRES algorithm with
Jacobi and ILU ODE-preconditioners, and without preconditioner, for different val-
ues of the fractional exponent α = 0.3, 0.6, 0.9. We solve the system Aαx = b, where
A = B + D ∈ Rn×n (n = 150), for B = {bij}16ij6n such that bij = rand(0, 1), and
where D = {dij}16ij6n is a diagonal matrix such that dii = 3 + rand(0, 1). We take
KA = KMA = 100, i.e. ∆τA,MA := 10−2. We report the convergence graphs in Fig.
5, showing that the ILU ODE-preconditioner is by far, the most efficient precondi-
tioner when the drop tolerance is 10−3. In addition, it is not α-dependent. In Fig. 6,
we report the convergence graph for the ILU ODE-preconditioner with α = 0.5, and
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Fig. 4. Experiment 2. Convergence history of GMRES without/with various preconditioners:
(Left) δ = 1 and (Right) δ = 0.5.

a drop tolerance of 10−1, 10−2, 10−3, 10−4. As expected, the smaller the tolerance,
the faster the GMRES algorithm.
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Fig. 5. Experiment 3. Convergence history of GMRES without/with various preconditioners,
for α = 0.3, 0.6, 0.9.

Experiment 4. Let Aαx = b, where A is a sparse random matrix A ∈ Rn×n with
n = 1000 and α = 0.75 (resp. n = 2500 and α = 0.5) (see the sparsity pattern of A
in Fig. 8 (Top-Left) (resp. Fig. 9 (Left))), with spectrum reported in Fig. 8 (Top-
Right). We choose KA = KMA = 16 and the drop tolerance in the ILU preconditioner
is fixed to 5× 10−2. We plot the different convergence rates in Fig. 8 (Bottom) (resp.
Fig. 9 (Right)). As expected, we first observe that the convergence is much faster
than for the non-sparse matrices, and yet the ILU-ODE preconditioner is the most
efficient.

3.4. About the computational complexity. The key question addressed now
is the computational cost for solving a fractional linear system, either directly or by
using a differential-based preconditioning. We assume that A ∈ Rn×n is a sparse
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Fig. 6. Experiment 3. Convergence history for the ILU ODE-preconditioned solver with drop
tolerance equal to 10−1, 10−2, 10−3, 10−4.
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Fig. 7. Experiment 4. For A ∈ R1000×1000 and α = 0.75 (Top-Left) Sparse matrix structure
A. (Top-Right) Spectrum of A. (Bottom) Convergence history.

matrix or the perturbation of a sparse matrix, with eigenvalues having a positive real
part, while Aα is a full matrix, where n is assumed to be large and α ∈ R. We
alternatively consider that Aα is either known or unknown. In both cases, we have to
compute Aαx for any vector x.
Direct and preconditioned solver. If Aα is given, any iterative (preconditioned or not)
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solver applied to Aαx = b would naturally require c0n
3 operations, with possibly a

large prefactor if Aα is ill-conditioned. Moreover, deriving a parallel scalable algorithm
is not a priori straightforward. If Aα is not given, we then need to compute A−αb by

using (3). Let us denote by K
(p)
A the number of time iterations for computing A−αx,

where p represents the order of the ODE-solver (the larger p, the smaller K
(p)
A ). Each

time iteration requires the computation of several preconditioned linear systems for a

large (sparse) matrix. Hence, the computational complexity is given by O(K
(p)
A nγ),

with 1 < γ < 3, and γ close to 1 for a well-conditioned matrix A.

Jacobi ODE-preconditioner. Let K
(p)
MA be the number of time iterations for computing

Mα(MA)−αx with an order-p ODE-solver. Using a matrix scaling allows to decrease

K
(p)
MA as well (see Subsection 3.1), i.e. K

(p)
MA � K

(p)
A . Each time iteration of the

differential-based solver requires the computation of several preconditioned sparse

linear systems, for a total of O(K
(p)
MAn

γ) operations. The latter represents the costs
for preconditioning the linear system Aαx = b into Mα(MA)−αAαx = Mα(MA)−αb.
This is a full linear system, which however is potentially very well preconditioned,
and hence requires much less iterations than a direct method. We expect a total cost

of about c1K
(p)
MAn

γ + c2n
3 operations, with c2 � c0.

ILU ODE-preconditioner. The ILU ODE-preconditioned algorithm is a little bit more
computationally complex than for the Jacobi preconditioned method. The main dif-
ference comes from the need for solving sparse triangular linear systems to com-
pute vk+1 = Mαzk, for all k. Again, this cost is relatively small and naturally
leads to a drastic reduction of the number of GMRES iterations. Globally, we have

c3K
(p)
MAn

γ + c4n
3 operations, with c1 < c3. However, compared to the Jacobi ap-

proach, less GMRES iterations are expected, i.e. c4 � c2 � c0.

Experiment 5. To illustrate the computational complexity of the proposed pre-
conditioning technique, we consider A1/2x = b, with A = B + BT + D ∈ Rn×n,
where B = {bij}16ij6n is such that bij = rand(0, 0.1), and D = {dij}16ij6n is the
diagonal matrix dii = 5 + rand(0, 1). We report in Fig. 7 the convergence rate of
DCN method, and PCN scheme with scaling, Jacobi and ILU ODE-preconditioning
techniques, with a drop tolerance equal to 10−1, 10−2, 10−3, for n = 50, 100, 200 (from
Top-Left to Bottom). To compare the performance of the different approaches, we
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Fig. 9. Experiment 5. 2-norm error as a function of the time step for DCN, PCN with
scaling, Jacobi ODE-preconditioning and ILU ODE-preconditioning with a drop tolerance equal to
10−1, 10−2, 10−3. (Top-Left) n = 50, (Top-Right) n = 100, (Bottom) n = 200.

need to fix the error and estimate for each preconditioning a corresponding time step
(e.g. the number of iterations). More specifically, let us recall that ∆τA is the time
step of the DCN method, that is without ODE-preconditioning. Based on the above
tests, we see that the time steps for both the scaling, Jacobi and ILU (with drop
tolerance 10−1) preconditioned algorithms can be taken roughly 64 times larger than
for DCN, since the error for PCN with ∆τMA = 1/23 is about the same as for DCN
but where ∆τA = 1/29 for this latter solver. Hence for the same error, it corresponds
to 64 times less iterations. Let us remark that this is consistent with the analysis
proposed in Subsection 3.2, where we numerically find: KMA/KA ≈ 59 from (6) for
the Jacobi preconditioning which is in relatively good agreement. Regarding the ILU
ODE-preconditioning, the gain is even much higher, since very few iterations lead to
a high precision.

3.5. Comparison with Padé’s preconditioners. As an alternative to ODE-
preconditioners, it is natural to use Padé’s approximants to construct a so-called
Padé-preconditioner, when Aα is known. These preconditioners can then be seen as
an alternative to the ODE-preconditioner P = Mα(MA)−α in (4). More concretely,

we introduce a mth-order Padé approximation p
(α)
m , for z ∈ C, such that zα ≈ p(α)

m (z).

12



For instance if α = 1/2, the θ-rotating Padé approximants are defined by

√
z ≈ p(1/2)

m (z) =

m∑
k=0

a
(m)
k −

m∑
k=1

a
(m)
k d

(m)
k

z + d
(m)
k

,

where the coefficients are given, for θ ∈ [0, π/2), by

a
(m)
0 = 0, a

(m)
k =

eiθ

m cos2
( (2k + 1)π

4m

), d
(m)
k = eiθ tan2

( (2k + 1)π

4m

)
.(11)

A natural preconditioner in (4) for A1/2 is then

MPadé :=
( m∑
k=0

a
(m)
k I −

m∑
k=1

a
(m)
k d

(m)
k (A+ d

(m)
k I)−1

)
A−1 ,

which is an approximation of A−1/2. Hence, if A1/2 is given, we solve( m∑
k=0

a
(m)
k I −

m∑
k=1

a
(m)
k d

(m)
k (A+ d

(m)
k I)−1

)
A−1Aαx =

( m∑
k=0

a
(m)
k I −

m∑
k=1

a
(m)
k d

(m)
k (A+ d

(m)
k I)−1

)
A−1b .

From a practical point of view, intermediate sparse linear systems have to be solved
for each k, 0 6 k 6 m, which also require a second linear system preconditioning.
Experiment 6. We solve A1/2x = b, with A = B + BT /2 + D ∈ Rn×n (n = 200),
where B = {bij}16ij6n is such that bij = rand(0, 1). The diagonal matrix D =
{dij}16ij6n is defined by dii = 3 + rand(0, 1). We compute in logscale

‖MPadéA
α − I‖2 = supx 6=0

‖MPadéA
αx− x‖2

‖x‖2

as a function of the number of Padé terms, from m = 4 to m = 2048 and for θ =
−π/6,−π/3, 0, π/6, π/3, π/2. We observe on Fig. 10 (Left) a convergence in logscale
as well as θ-independence, except for some very small values of m in Fig. 10 (Right)
corresponding to realistic values for a practical computation.

The interest of the Padé’s preconditioner is that no ODE-system needs to be
solved. However, Padé’s preconditioners still require the solution to linear systems,
and therefore its efficiency is asymptotically similar to ODE-preconditioners. We com-
pare the convergence rate of ILU ODE-preconditioners and Padé’s preconditioners.
Essentially, Padé’s preconditioners lead to the solution to O(m) linear systems.
Experiment 6bis. In this experiment, we compare below the use of a Padé precon-
ditioner with m equal to the number of time steps in the ODE-solver KA,MA. We
consider A1/2x = b, where A = B + 0.5BT +D ∈ R100 × R100, with bij = rand(0, 1)
and D = {dij}ij is a diagonal matrix such that dii = 3 + rand(0, 1). We compare the
convergence rate when using ILU ODE-preconditioners (for a drop tolerance equal
to 10−4) with KMA time iterations, and Padé’s preconditioner with m = KMA and
θ = π/3. We observe that the Padé’s preconditioner leads to a good approximation
of A−1/2, but then the rate of convergence of the GMRES solver is the same as with-
out preconditioner. For the same matrix A, we compare the convergence rate for
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Fig. 10. Experiment 6. 2-norm error ‖MαAα − I‖2 as a function of the number of Padé
terms, for θ = −π/6,−π/3, 0, π/6, π/3, π/2. (Left) m = 4 to m = 2048. (Right) m = 2 to 11.

KMA = m = 4, 16, 64, 256 in Fig. 11. We observe a faster convergence with ILU
ODE-preconditioner than with Padé’s preconditioner, although the latter provides
faster convergence during the first GMRES iterations, but with a smaller slope than
ILU. The ODE-solver is also proved to be not so much sensitive to KMA, which is a
strength of the method. Running a similar test (see Fig. 12) with the drop tolerance
5 × 10−2, we observe that the convergence rate of the GMRES solver using the ILU
ODE-preconditioner is less sensitive to KMA than the Padé preconditioner to m.
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Fig. 11. Experiment 6bis. convergence rate of the GMRES: ILU (with drop tolerance 10−4),
Padé preconditioner with (Top-Left) m = 4, (Top-Right) m = 16, (Bottom-Left) m = 64 and
(Bottom-Right) m = 256.
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Fig. 12. Experiment 6bis. GMRES convergence comparison: ILU (drop tolerance 5×10−2),
Padé preconditioner with (Top-Left) m = 4, (Top-Right) m = 16, (Bottom-Left) m = 64 and
(Bottom-Right) m = 256.

4. Extension to f(A)x = b. The methodology proposed above can be extended
to some more general systems of the form

f(A)x = b,(12)

where f is an analytic function of A. We still assume that A is a large sparse matrix,
or the perturbation of a sparse matrix, which is diagonalizable in C with eigenvalues
having non-negative real parts. We propose a derivation of ODE-solver precondition-
ers for (12) following a similar strategy as for the FLS.

4.1. ODE formulation and direct discretization. To extend the above ideas
and derive the ODE system, we suppose that the solution to our system is of the form
y(τ) = f(I+τ(A−I))b, with y(0) = f(I)b. Since y(1) = f(A)b, we want to determine
a first-order system of ODEs which has y : τ 7→ y(τ) as a solution. To this end, we
assume that z(t) = f(t) in R is solution to a first-order ODE: f ′(t) = G(f(t)),
where G must be built. Formally, we have G(s) = f ′(f−1(s)). Thus assuming that
y(τ) = f(I + τ(A− I))b, one gets

y′(τ) = (A− I)f ′(I + τ(A− I))b = (A− I)G
(
f(I + τ(A− I))

)
b .

Hence, we consider the following system of ODEs

y′(τ) = (A− I)f ′
(
I + τ(A− I)

)
f(I + τ(A− I))−1y(τ), y(0) = f(I)b .

We first need to check when this system is well-posed. Basically, this requires f
to be analytic (which is a sufficient condition) and f ′(f−1) to be (locally) Lipschitz
continuous. Then, the following proposition holds.
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Proposition 4.1. Let us assume that f is an analytic diffeomorphism in C\R−
and that A is diagonalizable with a spectrum in C\R−. Then, the solution y to the
following system of ODEs

y′(τ) = (A− I)f ′
(
I + τ(A− I)

)
f(I + τ(A− I))−1y(τ), y(0) = f(I)b ,(13)

is such that y(1) = f(A)b.

Applying the above result, we directly deduce the

Corollary 4.1. Consider f(z) = zα in Proposition 4.1, then (13) degenerates
into (3).

Proof. First, we formally have f ′(A) = αAα−1. Hence, we obtain

y′(τ) = α(A− I)
(
I + τ(A− I)

)α−1(
I + τ(A− I)

)−α
y(τ),

which also writes

y′(τ) = α(A− I)
(
I + τ(A− I)

)−1
y(τ), y(0) = b.

This is finally consistent with (3). �
From now on, in order to compute f(A)b, we simply have to numerically solve

(13). In this paper, we are however interested in the solution to linear systems. In
other words, we want to formally compute x = f(A)−1b as the solution to f(A)x = b,
and more specifically to build a preconditioner for f(A) based on an approximation
of f(A)−1. We then have the following

Corollary 4.2. Let us suppose that f is an analytic diffeomorphism and that A
is a diagonalizable matrix with a spectrum in C\R−. Setting F := 1/f , the solution
y to the ODE system

y′(τ) = (A− I)F ′
(
I + τ(A− I)

)
f
(
I + τ(A− I)

)
y(τ), y(0) = F(I)b,(14)

satisfies y(1) = f(A)−1b.

From (14), we can then construct an ODE-preconditioner to efficiently solve f(A)x =
b. More precisely, we have the following result.

Proposition 4.2. We suppose that f is an analytic diffeomorphism in C\R−,
and that A ∈ Rn×n is a diagonalizable matrix with a spectrum in C\R−. We define
F := 1/f and assume that b ∈ Rn. Then, the following numerical DCN scheme

y
(A)
k+1 = y

(A)
k +

∆τA

2
(A− I)F ′

(
I + τk+1(A− I)

)
f
(
I + τk+1(A− I)

)
y

(A)
k+1

+
∆τA

2
(A− I)F ′

(
I + τk(A− I)

)
f
(
I + τk(A− I)

)
y

(A)
k ,

with y
(A)
0 = b and KAτA = 1, is such that there exists a positive real-valued constant

C = C(f,A) > 0 so that

‖y(A)
KA
− f(A)−1b‖2 6 C∆τ2

A .

Example 1. We consider the following system

exp(A)x = b ,(15)
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where A is a real-valued diagonalizable matrix with positive eigenvalues. We define
F(z) = e−z. In this case, the ODE system (14) writes

y′(τ) = −(A− I) exp
(
− (I + τ(A− I))

)
exp

(
I + τ(A− I)

)
y(τ), y(0) = e−Ib .

Hence, we have

y′(τ) = (I −A)y(τ), y(0) = e−Ib .(16)

As expected, the solution to (16) is exp(−A)b, which is the solution to (15).

4.2. Preconditioning for f(A)x = b. Unlike Section 3, it is not usually possible
to easily determine f(A) from f(MA), and additional conditions are then required.
The extension of the strategy developed for Aαx = b to systems of the form f(A)x = b
requires a relation between f(A)−1 and f(MA)−1. In the following, we assume that
there exists a function R such that

f(A)−1b = R(M,f(MA)−1)b .(17)

When this hypothesis is satisfied, we can expect that the preconditioning method is
efficient. In practice, (17) is rarely exactly satisfied (except for f(z) = zα, where
R(M,f(MA)−1) = Mα(MA)−α). We can then select a preconditioner such that
f(A)−1b ≈ R(M,f(MA)−1)b.

4.2.1. Scaling ODE-preconditioning. We first discuss the scaling of the CN
solver, referred to as Preconditioned Crank-Nicolson (PCN) method for the scal-
ing matrix M = I/‖A‖2 and where A is diagonally dominant. Unlike Section 3,
computing f(A)−1 can be sometimes impossible. Because M is a scaling matrix,
we have: f(A)−1b = R(M,f(MA)−1)b. We therefore compute the finite sequence

{y(MA)
k }06k6KMA , with τMA = KMA∆τMA = 1, i.e. we solve

y
(MA)
k+1 = y

(MA)
k +

∆τMA

2
(MA− I)F ′

(
I + τk+1(MA− I)

)
f
(
I + τk+1(MA− I)

)
y

(MA)
k+1

+
∆τMA

2
(MA− I)F ′

(
I + τk(MA− I)

)
f
(
I + τk(MA− I)

)
y

(MA)
k .

At time τMA, y
(MA)
KMA

is an estimate of f(MA)−1b. We then deduce that

y
(MA)
KMA

≈ R
(
M,f(MA)−1)b = f(A)−1b .

Experiment 7. For b ∈ Rn, we solve log(A)x = b, where A = B +BT +D ∈ Rn×n,
for n = 50. The matrix B = {bij}16ij6n is defined by bij = rand(0, 1), and D is the
diagonal matrix with elements : dii = 26 + rand(0, 1). For M = I/‖A‖2, we have:
log(MA)b = log(A)b + log(I/‖A‖2). We report in Fig. 13 (Right), the convergence
history of the 2-norm error ‖f(A)−1b − f(Ah)−1b‖2, where log(Ah) is computed by
the DCN and the scaled PCN schemes. In Fig. 13 (Left), we report the spectrum of
A and MA.
Experiment 7bis. We repeat the same computations but with A = B +D ∈ Rn×n
which has a complex spectrum with eigenvalues having positive real parts. The results
are reported in Fig. 14, showing an improvement of the convergence of PCN over
DCN.

17



0 20 40 60 80 100

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

10
-4

10
-3

10
-2

10
-1

10
0

10
-4

10
-3

10
-2

10
-1

10
0

Fig. 13. Experiment 7. (Left) Spectrum of A and MA. (Right) Convergence rate of the
DCN and scaled PCN schemes.
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Fig. 14. Experiment 7bis. (Left) Spectrum of A and MA. (Right) Convergence rate of the
DCN and scaled PCN schemes.

4.2.2. Jacobi and ILU ODE-preconditioning. We assume that f is an an-
alytic diffeomorphism and define F := 1/f . The preconditioning of the linear system
f(A)x = b requires additional analytical steps compared to Aαx = b. Indeed, let us
denote by M a preconditioner for A such that MA ≈ I. As a consequence, ‖DMA‖
is close to 0 (where ‖ · ‖ is a matrix norm), with DMA = MA− I. Formally, we then
have, for τ ∈ (0, 1] and ‖DMA‖ small enough,

F ′(I + τ(MA− I)) = F ′(I) + τDMAF ′′(I) +O(τ2D3
MA) ,

f(I + τ(MA− I)) = f(I) + τDMAf
′(I) +O(τ2D2

MA) .
(18)

Rather than computing exactly f(MA)−1b (= F(MA)b) which is usually impossible
(where MA has a spectrum clusterized around 1 ∈ C) through the ODEs system

y′MA(τ) = DMAF ′
(
I + τDMA

)
f(I + τDMA)yMA(τ), yMA(0) = F(I)b ,

with ỹMA(0) = F(I)b, we propose to numerically solve, for τ ∈ (0, 1],

ỹ′MA(τ) = DMA(F ′(I)f(I) + τ
(
DMAF ′′(I)f(I) + F ′(I)DMAf

′(I)
)
)ỹMA(τ).(19)

We denote by τ 7→ GMA(τ) the semi-group associated to (19), such that ỹMA(1) =
GMA(1)b. We then have: GMA(1)b = ỹMA(1) ≈ f−1(MA)b. For preconditioning
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f(A)x = b, we compute

f(M)GMA(1)f(A)x = f(M)GMA(1)b .

Let us remark that if M is a Jacobi preconditioner, then f(M) is trivial to compute.
Experiment 8. We consider Aα cos(εA)x = b, with ε > 0. We set f(z) = zα cos(εz),
and F(z) = A−α sec(εz). We assume that A = B + 0.75BT + D ∈ Rn×n (n = 100).
The coefficients of the matrix B are given by bij = rand(0, 1), while D is a diagonal
matrix with coefficients dii = 2 + rand(0, 1). The vector b is given in Rn. We fix
α = 0.5, ε = 0.1 and KA = KMA = 100. In Fig. 15, we plot the spectrum of A
and MA, for M chosen as a Jacobi or ILU ODE-preconditioner (Top). We report in
Fig. 15 (Bottom) the residual history of GMRES with a restart parameter fixed to 50
iterations, for the DCN approach and for the PCN scheme with a scaling, Jacobi and
ILU ODE-preconditioners (the drop tolerance is 10−3) (the time-step is fixed to 10−2).
Again, the best convergence is obtained for the ILU ODE-preconditioner but Jacobi
preconditioning is also efficient. Unlike these two preconditioners, the scaling strategy
does not work well. We next perform the same test but with ε = 0.01 and ε = 0.2
showing that the convergence rate is strongly dependent on the value of ε (see Fig.
16). This is explained by the fact that the smaller ε, the better the approximation of
1/f(A) for the proposed ODE-preconditioners.
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Fig. 15. Experiment 8. ε = 0.1. (Top-Left) Spectrum of A and MA with ILU ODE pre-
conditioning. (Top-Right) Spectrum of A and MA with Jacobi ODE-preconditioner. (Bottom)
Convergence history for Jacobi and ILU ODE-preconditioned solvers, scaling preconditioner, and
without preconditioner.

Experiment 8bis. We end by performing the same test as above with f(z) =
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Fig. 16. Experiment 8. Convergence history for Jacobi and ILU ODE-preconditioned solvers,
scaling preconditioner, and without preconditioner (Left) ε = 10−2. (Right) ε = 5× 10−1.

zα exp(−εz) (for ε = 10−1 and α = 0.75) and f(z) = zα cos(εz) (with ε = 10−1). The
results are reported in Fig. 17.
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Fig. 17. Experiment 8bis. Convergence history for Jacobi and ILU ODE-preconditioned
solvers, scaling preconditioner, and without preconditioner, for ε = 10−1. (Left) f(z) =
zα exp(−εz). (Right) f(z) = zα cos(εz).

5. Conclusion. In this paper, we have proposed a general preconditioning me-
thodology for solving fractional linear systems Aαx = b and more generally f(A)x = b,
by using i) the solution to a differential system S, and ii) classical preconditioners
allowing for a concentration of the spectrum of A, hence reducing the number of
iterations for solving S. Several numerical experiments and analytical arguments show
the relevance of the derived approach. More elaborated ODE-based preconditioners
will be developed in a forthcoming paper, as well as some applications to FPDEs.
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