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Abstract 

 The 12.6 µm region of nitryl chloride (ClNO2) has been recorded at high resolution 

(0.00102 cm
-1

) using a Fourier transform spectrometer and the SOLEIL synchrotron light source.  

ClNO2 was found during our studies of chlorine nitrate and, after fractional distillations it was 

introduced into a multipass White cell made of inert materials, with an optical path length of  5.4 

m. 320 scans were recorded for the range 600-980 cm
-1

 at a total pressure of 0.23 hPa and a 

temperature of 250 K. A thorough analysis of the ν2, 2ν6 and 2ν3 bands of 
35

ClNO2 and of the ν2 

band of 
37

ClNO2 falling in this region has been carried out using a Hamiltonian model which 

takes explicitly into account the numerous resonances affecting the ro-vibrational energy levels; 

especially the C-type Coriolis resonance between the ν2 and the ν3 + ν6 modes. These two modes 

are only separated by less than 20 cm
-1

 and are thoroughly mixed. From the fittings, the 

following band centers were derived: νo (ν2) = 792.761264(60) cm
-1

, νo (ν3 + ν6) = 775.8923(20) 

cm
-1

, νo (2ν3) = 734.183576(20) cm
-1

 and νo (2ν6) = 819.836727(90) cm
-1

 for 
35

ClNO2 and νo (ν2) 

= 792.258284(30) cm
-1

 and νo (ν3 + ν6) = 774.6826(30) cm
-1

 for 
37

ClNO2 where the uncertainties 

are one standard deviation. Due to their sharp Q branches falling into an atmospheric “window”, 

the detection of the ν2 bands might be an advantageous route for future attempts to quantify 

atmospheric ClNO2, using infrared techniques. 

 

 

Keywords: nitryl chloride; ClNO2; high-resolution Fourier transform spectroscopy; Coriolis and 

Fermi resonances; line positions 
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I. Introduction 

 

Nitryl chloride (ClNO2) is a molecule of great interest for atmospheric chemistry since it 

is produced in the marine troposphere, by heterogeneous reactions between NaCl sea-salt 

aerosols and gaseous N2O5 [1,2]: 

N2O5 + NaCl → ClNO2 + NaNO3. 

Alternatively, it is produced on polar stratospheric clouds, between N2O5 and solid HCl [3,4]: 

N2O5 + HCl/ice → ClNO2 + HNO3. 

Through these reactions, ClNO2, a fairly stable molecule, is accumulated during nighttime but 

after sunrise, it is rapidly destroyed either by photolysis (λ > 290 nm): 

ClNO2 + h  → Cl + NO2, 

or by reaction with OH radicals [5]: 

ClNO2 + OH → HOCl + NO2. 

As oxidation slowly removes ClNO2 [6-7], photolysis is thus contributing predominantly to the 

loss process of ClNO2. Moreover, by yielding active chlorine radicals and nitrogen dioxide, this 

reaction subsequently initiates VOCs oxidation by chlorine radicals and photolysis of NO2, both 

leading to the photochemical production of tropospheric ozone, as well as to stratospheric ozone 

depletion.  

The important contribution of ClNO2 in atmospheric chemistry triggered since 2006 in 

situ ground-based and aircraft measurements using chemical ionization mass spectrometry, 

indicating also additional continental sources of chlorine [8]. But, to the best of our knowledge, 

until today, there was not even a tentative detection of this atmospheric gas using infrared 

techniques like Fourier transform spectroscopy. In this case, the Q branch of the ν2 band at 792.8 

cm
-1

 could be suitable for the remote sensing of ClNO2 due to its strong absorption in an 

atmospheric “window”, similarly to the use of the 780.2 cm
-1

 band feature for the monitoring of 

ClONO2 in the stratosphere [9-11]. For this purpose, a complete and detailed analysis is required 

to provide accurate line list for atmospheric remote sensing. 

ClNO2 has been the subject of a number of microwave and infrared high resolution 

studies [12-17 and refs herein].  In this paper we present a comprehensive analysis of a very high 

resolution Fourier transform spectrum of nitryl chloride, taken at 0.00102 cm
-1

 resolution 

(0.9/MOPD) in the 12.6 µm spectral region using the SOLEIL synchrotron radiation. A thorough 
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analysis of the strongest absorbing bands ν2 of the two isotopologues 
35

ClNO2 and 
37

ClNO2 was 

performed taking into account the interactions with the nearby states 3
1
6

1
 and 6

2
. Also the very 

weak bands 2ν3 and 2ν6 were fully analyzed.  

 

 

II. Experimental details.  

At DLR samples of bromine nitrate (BrONO2) were produced together with the precursor 

chlorine nitrate (ClONO2) [18]. Experimental details on the ClONO2 synthesis can be found in 

[19]. In the sample of ClONO2, the original target of our work, we found a second product that 

showed characteristic infrared absorption features indicating a NO2 group. After fractional 

distillations at –84°C and –77°C, only ClNO2 and small traces of impurities (NO2 and ClONO2) 

were seen in the spectrum. The sample was stored at 77 K in the dark, and ClNO2 was identified 

by its low resolution infrared absorption spectrum [20].  

A high-resolution absorption spectrum of ClNO2 was then recorded on the AILES 

beamline at Synchrotron SOLEIL using the synchrotron light source, coupled to the Bruker 

IFS125HR Fourier transform spectrometer [21, 22] and a newly developed cryogenic multipass 

cell suitable for corrosive products, in which the sample gas is exclusively in contact with glass, 

PTFE and hard alumina-coated optics and can be cooled down to 220 K [23]. The interferometer 

was equipped with a KBr/Ge beamsplitter. The synchrotron source was operated with 500 mA 

ring current and a new home-made detector developed at the AILES beamline [24] was used in 

conjunction with a 600-980 cm
-1 

bandpass optical filter, to improve the signal-to-noise ratio 

(S/N). The spectrometer was evacuated to about 5×10
-3

 Pa in order to minimize H2O and CO2 

absorptions. The diameter of the entrance aperture of the spectrometer was set to 1.5 mm to 

maximize the intensity of infrared radiation falling onto the detector without saturation or loss of 

spectral resolution. Interferograms were recorded with a 80 kHz scanner frequency and a 

maximum optical path difference (MOPD) of 882.35 cm. According to the Bruker definition 

(resolution = 0.9/MOPD), this corresponds to a resolution of 0.00102 cm
-1

.  

The cell optical set-up is based on a 0.67 m base length and, in this experiment, an optical 

path of 5.4 m was used. The spectrum was recorded at a temperature of 250 K. The following 

procedure was used for measurements: first a background spectrum was recorded at the same 

temperature of 250 K while the cell was being continuously evacuated; next the infrared gas cell 
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was filled and passivated with ClNO2 vapour and, for the final measurement, a sample pressure 

of 0.23 hPa was used. The sample pressure in the cell was measured using a home made PTFE-

coated capacitive pressure sensor [23] calibrated against a MKS Baratron gauge (10 hPa full 

scale). The spectrum was ratioed against a background spectrum of the empty cell which was 

recorded at a resolution of 0.01 cm
-1

 in order to ensure the best possible S/N in the ratioed 

spectrum. For the Fourier transform, a Mertz-phase correction with a 2 cm
-1

 phase resolution, a 

zero-filling factor of 4 and no apodization (boxcar option) were applied to the averaged 

interferograms (320 scans). The spectrum was calibrated by matching the measured positions of 

about 30 lines of residual CO2 observed therein to reference wavenumbers available in HITRAN 

[25] with a root mean square (RMS) deviation of 0.00006 cm
–1

. 

 Fig. 1 gives an overview of the ClNO2 spectrum around 12.6 µm showing the high S/N 

ratio which was obtained. The distinctive shape of the A-type ν2 band with its narrow Q-branch 

is clearly visible. Also the very weak bands 2ν6 and 2ν3 are visible. 

 

III. Analysis and results 

ClNO2 is belonging to C2v symmetry and Fig. 2 provides the corresponding C2v point 

group together with the symmetry types of the 6 vibrational modes as well as the components of 

an axial and a polar vector and the symmetry types and statistical weights of the rotational levels. 

Indeed, because there are two identical oxygen nuclei with zero nuclear spin, the overall 

wavefunction of the molecule should obey the Bose-Einstein statistics. Accordingly, all 

vibration-rotation wavefunctions must have even parity with respect to the axis of the molecule. 

As a consequence, only rotational levels with Ka even exist for states of A1 or A2 symmetry (the 

ground, 2
1
, 3

2
, and 6

2
 states of the molecule in the present case). On the contrary, only rotational 

levels with Ka odd exist for states of B1 or B2 symmetry (3
1
6

1
 vibrational state). 

 The ν2 band of 
35

ClNO2 has been previously studied in ref. [15, 16] where the authors 

noted an interaction between the rotational levels of 2
1
 and the rotational levels of 3

1
6

1
 but did 

not take it into account. In addition, their spectrum was recorded at medium resolution (0.005 

cm
-1

), with a pressure of 10 Torr, resulting in a rotational structure that was not fully resolved.  

The analysis was started using the upper state rotational constants of the 2
1
 vibrational state 

given in ref. [16]. In this way it was possible to assign levels not or weakly perturbed. However, 

it appeared rapidly that such a model was not suitable to fit the upper state levels to within the 
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experimental uncertainty. We then set up and used a Hamiltonian model taking into account the 

C-type Coriolis interaction between the rotational levels of 2
1
 and the rotational levels of 3

1
6

1
. In 

this way it was possible to assign a rather large number of lines by iterating between calculation 

and observation: more precisely new assignments allow one to improve the upper state 

Hamiltonian constants, which are then used to provide better predictions. However it turned out 

that such a Hamiltonian model was still not fully suitable and that one has also to take into 

account the Fermi-type interaction between the rotational levels of 2
1
 and the rotational levels of 

6
2
. The final Hamiltonian matrix used to fit the 2

1
 and 6

2
 rotational levels is given in Table 1. At 

this stage it is indeed worth noticing that we had to assign in parallel the very weak 2ν6 band 

which appears on the experimental spectrum (see Fig. 1). Table 2 gives the range of quantum 

numbers for the observed upper state energy levels obtained by adding the observed line 

positions to the calculated ground state levels as well as the statistical analysis of the results of 

the energy level calculations, whereas the upper state Hamiltonian constants derived from the 

final fit are given in Table 3.  

The analysis of the ν2 band of 
37

ClNO2 was started by using the same Hamiltonian model as for 

the ν2 band of 
35

ClNO2 and upper state Hamiltonian constants derived from the corresponding 

upper state constants of 
35

ClNO2. In this way, it was possible to locate lines with medium J and 

Ka values. These lines were used to improve the upper state constants, providing then better 

predictions and hence allowing new assignments. The process was repeated until no new 

assignment was possible.  

Table 2 gives the range of quantum numbers for the observed upper state energy levels as well as 

the statistical analysis of the results of the energy level calculations, whereas the upper state 

Hamiltonian constants derived from the final fit are given in Table 4. It is worth noticing that 

given the range of observed energy levels it was not necessary to account for the interaction with 

the 6
2
 levels. The assignment of the 2ν3 band was done by using, for the 3

2
 state, Hamiltonian 

constants extrapolated from the ground and 3
1
 states [16]. In fact, the assignments started by 

improving the modeling of the Q-branch. The upper state levels were reproduced using a Watson 

type Hamiltonian [27] since no interaction was detected. The range of quantum numbers for the 

observed upper state energy levels, as well as the statistical analysis of the results of the energy 

level calculations, are given in Table 2 whereas the upper state Hamiltonian constants derived 

from the final fit are given in Table 3. It should be underlined that the upper state Hamiltonian 
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parameters determined in the fits are effective and have some empirical character, since the 

values of these parameters depend on the set and the accuracy of the observed energy levels, as 

well as on the number of terms in the expansions of the interacting terms.   

 

IV. Simulation of the experimental spectrum. 

 To emphasize the quality of the calculations, we have compared the observed and 

calculated spectra in a few spectral regions. Fig. 3 shows that the entire region of the ν2 bands of 

the 2 isotopologues 
35

ClNO2 and 
37

ClNO2 is adequately simulated. In Figs. 4-6 we present a 

comparison between observation and calculation for the Q-branches of the ν2 band of 
37

ClNO2  

and of the 2ν6 and 2ν3 bands of 
35 

ClNO2.  Indeed, modeling properly such Q branches is the 

most difficult part of the work, given the piling of lines and the high J lines involved. It is also 

interesting to notice the very different shapes of these Q-branches. In all cases excellent 

agreement between the observed and calculated spectrum is achieved. 

 

VI. Conclusion. 

 A high-resolution Fourier transform spectrum of the 12.6 μm absorption bands of the 

nitryl chloride ClNO2 molecule has been thoroughly analyzed. The energy levels belonging to 

the interacting upper states {2
1
, 3

1
6

1
,
 
6

2
} of 

35
ClNO2 were fitted using a Hamiltonian matrix 

accounting for the C-type Coriolis interaction between the 2
1
 and 3

1
6

1 
levels and the Fermi-type 

interaction between the 2
1
 and 6

2 
levels. For 

37
ClNO2 it was sufficient to fit properly the 2

1
 

rotational levels to take into account the C-type Coriolis interaction between the 2
1 

and 3
1
6

1 

levels. Finally it was possible to model properly the rotational levels of the 3
2
 state using a single 

Watson type Hamiltonian. The synthetic line list obtained in this study is potentially interesting 

for future measurements of ClNO2 in the atmosphere.   
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Figures: 

 

Fig. 1. Overview of the observed ClNO2 spectrum in the 12.6 µm spectral region.  

The distinctive shape of the A-type ν2 band of 
35

ClNO2 with its narrow Q-branch is clearly 

recognizable. The spectrum is recorded with a resolution of 0.00102 cm
-1

, an optical path length 

of 5.4 m, a nitryl chloride pressure of 0.23 hPa and a temperature of 250 K.  
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Fig. 2. Structure and symmetry properties of the nitryl chloride (ClNO2) molecule   

 
C2v group character table 

 I C2z σxz σyz Polar 

vector 

Axial 

vector 

Vibrations Levels 

A1 1 1 1  1 Tz   ν1,ν2,ν3  Even Ka 

A2 1 1 -1 -1  Rz  Even Ka 

B1 1 -1 1 -1 Tx Ry ν4 Odd Ka 

B2 1 -1 -1 1 Ty Rx  ν5,ν6 Odd Ka 
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Fig. 3. Overview of the observed and calculated spectrum of ClNO2 in the 12.6 µm spectral 

region.  

Upper trace: observed spectrum with the same experimental conditions as in Fig. 1. Lower 

traces: synthetic spectra, calculated at the same experimental conditions using the line lists 

generated in this work. The observed and synthetic spectra are in absorbance (-ln(I/I0)) and 

shifted vertically for clarity.  

 

   

Fig. 4. Portion of the observed and calculated spectra of 
37

ClNO2, showing the region of the Q 

branch of the ν2 fundamental band. Upper trace: observed spectrum with the same experimental 

conditions as in Fig. 1. Lower trace: synthetic spectrum calculated as in Fig. 3. 
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Fig. 5. Portion of the observed and calculated spectra of 
35

ClNO2, showing the region of the Q 

branch of the 2ν6 overtone band. 

Upper trace: observed spectrum with the same experimental conditions as in Fig. 1. Lower trace: 

synthetic spectrum calculated as in Fig. 3. 

 

Fig. 6. Portion of the observed and calculated spectra of 
35

ClNO2, showing the region of the Q 

branch of the 2ν3 overtone band. Upper trace: observed spectrum with the same experimental 

conditions as in Fig. 1. Lower trace: synthetic spectrum calculated as in Fig. 3. 

 


