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Abstract 

The concentrations of total and proportions of organic mercury were measured in 

tissues of 355 individuals of 8 species of Southern Ocean squid (Alluroteuthis 

antarcticus, Bathyteuthis abyssicola, Filippovia knipovitchi, Galiteuthis glacialis, 

Gonatus antarcticus, Kondakovia longimana, Psychroteuthis glacialis and 

Slosarczykovia circumantarctica). Squid were caught around South Georgia (Scotia 

Sea) during 5 cruises, between the austral summers of 2006/07 to 2016/17 to evaluate 

temporal changes in bioaccumulation and tissue partitioning. Total mercury 

concentrations varied between 4 ng g-1 and 804 ng g-1 among all tissues. Net 

accumulation of mercury in muscle with size was observed in A. antarcticus, B. 

abyssicola and P. glacialis, but no relationship was found for S. circumantarctica and 

lower concentrations were observed in larger individuals of G. glacialis. Muscle tissues 

had the highest mercury concentrations in the majority of species, except for F. 

knipovitchi for which the digestive gland contained highest concentrations. In terms of 

the percentage of organic mercury relative to total mercury in tissues, muscle always 

contained the highest values (67% to 97%), followed by the digestive gland (22% to 

38%). Lowest organic mercury percentages were found consistently in the gills (9% to 

19%), suggesting only low levels of incorporation through the dissolved pathway 

and/or a limited redistribution of dietary organic mercury towards this tissue. Overall, 

results are indicative of a decreasing trend of mercury concentrations in the majority 

of analysed species over the last decade. As cephalopods are an important Southern 

Ocean trophic link between primary consumers and top predators, these changes 

suggest decreasing mercury levels in lower trophic levels (i.e. squid prey) and an 

alleviation of the mercury burden on higher predators that consume squid. 

 

Key-words: Organic mercury; Muscle; Gills; Digestive gland; Tissue allocation; 

Temporal trends. 
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Introduction 

Evidence suggest that coleoid cephalopods, such as squid and octopods, are 

one of the groups that are benefitting from environmental change (Halpern et al., 

2008), with some cephalopod populations being on the rise at a variety of locations 

worldwide (Arkhipkin et al., 2015; Doubleday et al., 2016). Within the Southern Ocean, 

cephalopods are important links between primary consumers and top predators 

(Clarke, 1996; Collins and Rodhouse, 2006; Seco et al., 2015). They prey mainly on 

crustaceans (Kear, 1992; Xavier et al., 2018) and are eaten by a wide range of 

predators including fish, penguins, albatrosses, seals and whales (Mikhalev et al., 

1981; Split, 1995; Xavier and Cherel, 2009). In the Southern Ocean, the waters around 

South Georgia host a variety of squid species. Galiteuthis glacialis, Gonatus 

antarcticus, Filippovia knipovitchi, Kondakovia longimana and Psychroteuthis glacialis 

are oceanic species and some of the most important prey for several predators (such 

as seabirds, seals and whales (Xavier and Cherel, 2009)), both by number and by 

mass (Xavier et al., 2018). Alluroteuthis antarcticus and Slosarczykovia 

circumantarctica are taken by a wide range of predators although not in high numbers 

(Collins and Rodhouse, 2006; Xavier and Cherel, 2009). Bathyteuthis abyssicola is a 

deep-sea squid which is rarely found in the diet of predators. Despite their important 

role in the Antarctic ecosystem, there is still a lack of knowledge about their ecology 

(Clarke, 1983; Collins and Rodhouse, 2006; Xavier et al., 2018). Moreover, very few 

studies have focused on the ecotoxicological aspects of Southern Ocean cephalopods 

(Anderson et al., 2009; Bustamante et al., 1998; Cipro et al., 2018). Their focal position 

within Southern Ocean food webs means that cephalopods are likely to be vectors of 

contaminants and could be valuable bioindicators of ecosystem contamination.  
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Mercury is one of the contaminants that has been acknowledged as a global 

toxicity problem (Selin, 2009; UNEP, 2013). Due to its high affinity to proteins (Bloom, 

1992), mercury is highly bioaccumulative, becoming toxic for marine organisms higher 

up the food chain (Ackerman et al., 2014; Coelho et al., 2010; Dehn et al., 2006). 

Furthermore, it biomagnifies along food webs, putting long-lived top predators 

particularly at risk (e.g. (Goutte et al., 2014; Tartu et al., 2014; Tavares et al., 2013). 

Indeed, there is already evidence that major cephalopod predators have high levels of 

mercury in their tissues (e.g. Bustamante et al., 2003; Fontaine et al., 2014; Tavares 

et al., 2013). In terms of bioavailability within foodwebs, organic mercury (due to its 

high affinity to Sulphur-based protein groups) is a particularly toxic form of this element 

which demands further attention.  

In a warming world, in which Antarctica is one of the most rapidly changing and 

vulnerable areas (IPCC, 2013; Rintoul et al., 2018; Turner et al., 2014), mercury is 

becoming more bioavailable due to the combined influence of increased temperature 

and depletion of oxygen, which favour methylation of the element by microorganisms 

(Cossa, 2013). It is therefore important to evaluate the impact that these changes have 

on the bioavailability of mercury in the Southern Ocean, along with any potential 

temporal trends in bioaccumulation. Fast growing, short-lived (i.e. generally 1-2 year 

life cycles) organisms such as squid (Arkhipkin, 2004; Boyle and Rodhouse, 2005) are 

likely to be responsive bioindicators of contaminant variability over time and space. 

Cephalopods bioaccumulate mercury from two main sources: seawater and 

food. Some mercury uptake can occur through the gills during respiration, from 

seawater, but mercury in prey is considered to be the main intake pathway (Lacoue-

Labarthe et al., 2009). To assess the relative importance of the two pathways in the 

bioaccumulation of mercury, we analysed mercury in three different tissues: 1) muscle, 
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which represents most of the body weight of the animal and is expected to accumulate 

high levels of organic mercury (Bustamante et al., 2006); 2) gills, responsible for 

respiration and subjected to a constant water flow, so likely to be a pathway of 

incorporation of dissolved Hg from seawater; and 3) digestive gland, which is most 

affected by the dietary pathway (Bustamante et al., 2006; Penicaud et al., 2017; Pierce 

et al., 2008) and plays a major role in both the metabolism and detoxification of 

contaminants such as mercury (Bustamante et al., 2006). 

In this study, we evaluate the concentrations of total and organic mercury in 8 

different squid species (A. antarcticus, B. abyssicola, F. knipovitchi, G. glacialis, G. 

antarcticus, K. longimana, P. glacialis, S. circumantarctica) from South Georgia 

between the austral summers of 2006/07 and 2016/17. These species were selected 

due to their different ecological roles in the Southern Ocean ecosystem (Xavier et al., 

2018). The specific objectives of this study are: 1) to evaluate the accumulation pattern 

along with size (a proxy of age) of Antarctic squid, 2) to understand the partitioning of 

total and organic mercury in different tissues (muscles, gills and digestive gland) and 

3) to assess variability and trends in total and organic mercury concentrations of these 

species over a 10 year period (2006/07 to 2016/17). 

 

Material and methods 

Sampling 

 South Georgia is a sub-Antarctic island located in the southwest Atlantic (Figure 

1). Water temperatures around this area vary from -0.95 ºC in winter to 1.75 ºC in 

summer. South Georgia is a highly productive area of the Southern Ocean, therefore 

it holds large populations of seabirds, marine mammals and it is one of the most 

important Southern Ocean fishing areas  (Collins et al., 2004; Murphy et al., 2007).  
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The samples were collected from the Scotia Sea, around South Georgia (Figure 

1), during scientific cruises during the austral summer of 2006/07 (on board of the 

Royal Research Ship (RRS) James Clark Ross (JCR): cruise JR161 [October – 

December 2006], 2007/08 - JR177 [December 2007 – February 2008], 2008/09 - 

JR200 [March – April 2009], Fishing Vessel (FV) Sil research survey SG13 [13 

January 2013]) and RRS JCR cruise JR16003 (December 2016 – January 2017), 

2016/17.  

 

 On board the RRS JCR, samples were collected using an 8 or 25 m² mouth-

opening Rectangular Midwater Trawl (RMT8 - mesh size reducing from 4.5 mm to 2.5 

mm in the cod end; RMT25 - mesh size reducing from 8 mm to 4.5 mm in the cod end 

(Roe and Shale, 1979)). The nets were rigged with two opening/closing nets that could 

Figure 1. Sampling sites and distribution of species captured around South 
Georgia across all sampling years. Lines represent 1000m isobath.  
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be remotely opened and closed at different depths. Samples were collected from 

1000m deep to surface. Cephalopods were identified (Nesis, 1987; Xavier and Cherel, 

2009), measured and weighed on board. Samples were preserved individually in 

separate ziplock bags at -20 ºC for later laboratory analyses.  

 The samples collected by FV Sil were obtained from bottom trawls using an 

FP120 trawl net with a standard steel bobbin rig, conducted at tow speeds between 

3.1 and 4.1 knots over a distance of between 1.25 and 2.1 nautical miles, dependent 

on the prevailing sea conditions and bottom topography. Whenever possible, samples 

were identified on board but, in some cases, identification was not possible. In each 

case, individuals were frozen at -20 ºC for later laboratory processing. 

 

Laboratory procedures 

 All samples were checked for identification (using cephalopod beaks to confirm 

identification where there was any doubt (Xavier and Cherel, 2009)), measured and 

weighed again. When the measurement of the mantle length (ML) of the individual 

was not possible, allometric equations were used, based on beak size (Xavier and 

Cherel, 2009). An effort was made to collect samples of muscle, gills and digestive 

gland in all individuals, although the digestive gland was destroyed in some 

specimens.  

After being dissected, the collected tissues were frozen in sterilised 

decontaminated plastic vials and freeze-dried for at least 48 hours. Dried tissues were 

homogenized and analysed for total mercury by thermal decomposition atomic 

absorption spectrometry with gold amalgamation, using a LECO AMA-254 (Advanced 

mercury analyser) following (Coelho et al., 2008). Organic mercury was determined 

through digestion with a mixture of 18 % potassium bromide (KBr) in 5 % sulphuric 
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acid (H2SO4), followed by extraction of organic mercury into toluene (C7H8) and back-

extraction with an aqueous solution of thiosulphate (Na2S2O3), as described in (Válega 

et al., 2006). Where there was low individual mass (less than 200 mg), samples were 

aggregated in groups of the same species, with similar sizes and collected from the 

same location. Analytical quality control was performed using three certified reference 

materials (CRM): NIST 2976 mussel tissue, ERM-CE278K mussel tissues and TORT-

3 lobster hepatopancreas. The obtained values (mean ± SD) for the whole of the CRM 

analyses ranged from 82 to 105 % (NIST 2976: 85 ± 7%; ERM-CE278K: 92 ± 5%; 

TORT-3: 93 ± 8 %). Analyses were performed in duplicate, and the coefficient of 

variation between replicates never exceeded 10%. TORT-3 was also used to validate 

organic mercury analyses, with an extraction efficiency of 95 ± 10 %. The limit of 

detection for this analytical method was 0.01 ng of absolute mercury. All concentration 

data are expressed as a function of dry weight (dw).  

 

Statistical analysis 

All analyses were performed using the R software version 3.4.2 (R Core Team, 

2013). Correlations were determined between the mercury concentration and the 

mantle length. Hg levels were tested for normality using Shappiro-Wilk normality test 

and homogeneity using a Bartlett’s test. Friedman tests were used to compare Hg 

values between the different tissues (muscle, gills, digestive gland) and a Wilcoxon 

Signed Ranks Test for the tissues of G. antarcticus (muscle, gills). Wilcoxon rank test 

and Kruskal–Wallis test were used to compare Hg in muscle tissue between different 

years, followed by Dunn's test multiple comparison test. 

All values are presented as mean ± SD. The significance level for statistical 

analyses was always set at α = 5%.  
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Results 

Total mercury concentrations in Antarctic squid muscle 

 

Overall, total mercury values in muscle were: 63 ± 53 ng g-1 in Alluroteuthis 

antarcticus (family Neoteuthidae), 110 ± 40 ng g-1 in Bathyteuthis abyssicola (family 

Bathyteuthidae), 100 ± 80 ng g-1 in Galiteuthis glacialis (family Cranchiidae), 24 ± 21 
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Figure 2. Total mercury concentration (ng g-1 dw) versus mantle length (ML; 
mm) in individual Antarctic squid collected around South Georgia in the austral 
summer of 2007/08 (except Psychroteuthis glacialis 2016/17). Regression 
equations are given in the text. 
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ng g-1 in Psychroteuthis glacialis (family Psychroteuthidae) and 20 ± 20 ng g-1 in 

Slosarczykovia circumantarctica (family Brachioteuthidae). 

 

Total mercury was analysed in the mantle muscle of squid species where there 

were sufficient individuals over a range of sizes to evaluate the pattern of 

bioaccumulation with size as a proxy for age (Figure 2). To avoid the effect of different 

years, samples were selected from the year with higher number of individual (2007/08 

for B. abyssicola, G. glacialis, A. antarcticus and S. circumantarctica; 2016/17 for P. 

glacialis). Three patterns were noted: 1) an increasing concentration of total mercury 

with size [A. antarcticus (Y = 7.074*X – 50.4, R2= 0.80, F1, 7= 28.78, p = 0.001) and P. 

glacialis (Y = 0.8259*X + 10.1, R2= 0.74, F1, 7 = 19.68, p = 0.003)]; 2) no change in 

total mercury concentration with size [B. abyssicola (Y = 2.432*X + 47.83, R2= 0.24, 

F1, 8 = 2.56, p = 0.15) and S. circumantarctica (Y = -0.03111*X + 19.33, R2= 0.009, F1, 

38 = 0.33, p = 0.56)]; 3) a decrease in total mercury concentration with size (i.e. G. 

glacialis (Y = -2.958*X + 214.8, R2= 0.2426, F1, 23 = 7.366, p = 0.012)). 

 

Differential tissue accumulation of total mercury in Antarctic squid 

Analysis of mercury accumulation in different tissues was possible in four of 

the species (A. antarcticus, F. knipovitchi, K. longimana and P. glacialis). F. 

knipovitchi was the only species where there were significant differences between 

the tissues (Friedman test: χ2 (2) = 7.6, p= 0.024), with the digestive gland having a 

concentration 3 times higher than the muscle and gills. In the other three species, no 

statistical differences were observed between the mercury concentrations of the 

three tissues investigated (Friedman test: χ2 (2) = 3, p= 0.5; χ2 (2) = 3, p= 0.5; χ2 (2) = 

3, p= 0.5; A. antarcticus, K. longimana and P. glacialis, respectively; Figure 3). For 
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G. antarcticus, only the muscle and the gills were analysed, and no differences 

between these two tissues were found (Wilcoxon Signed Ranks Test; Z= -1.826, p= 

0.125).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Temporal trends of total mercury concentrations in muscle of Antarctic squid  

Over the 10 year study period, there was a suggestive decreasing trend in 

mercury concentrations in the analysed species (Figure 4). 

Figure 3. Total mercury concentrations (Mean ± SD, ng g-1 dw) in different tissues 
(muscle, gills and digestive gland) of Antarctic squid collected around South Georgia 
in the austral summer of 2012/2013. No digestive gland tissue was available for G. 
antarcticus.  
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There were no differences in body size between the years for all the analysed 

species (A. antarcticus, Mann Whitney test, U = 9, p = 0.889; B. abyssicola, Kruskal–

Wallis H= 1.754, p = 0.442; G. glacialis, Kruskal–Wallis H= 10.84, p = 0.442; P. 

glacialis, Mann Whitney test, U = 4.5, p = 0.8; S. circumantarctica, Kruskal–Wallis H= 

65.46, p = 0.156). A. antarcticus and P. glacialis were each only caught in two of the 

austral seasons sampled. For A. antarcticus, total mercury was similar between the 

years 2007/08 (90  60 ng g-1) and 2008/09 (30  3 ng g-1; Wilcoxon rank test; W = 

14, p = 0.19), as was P. glacialis between 2008/09 (10  2 ng g-1) and 2016/17 (40  

20 ng g-1; Wilcoxon rank test; W = 10, p= 0.057). B. abyssicola were caught in three 

years, 2006/07 (150  20 ng g-1), 2007/08 (80  10 ng g-1) and 2016/17 (80  1 ng g-

1), with individuals from 2006/07 having statistically higher concentrations of mercury 

than 2007/08 and 2016/17 (Kruskal–Wallis H= 6.709, p= 0.013; Figure 4). There were 

no differences between samples collected on the other two years. G. glacialis were 

caught on the four sampling cruises, 2006/07 (100  60 ng g-1), 20007/08 (150  90 

ng g-1), 2008/09 (20  10 ng g-1) and 2016/17 (20  7 ng g-1). Mercury concentrations 

for this species were similar between the years 2006/07 and 2007/08 (Dunn's test Q 

= -8.77, p = 0.52) and also similar between the years 2008/09 and 2016/17 (Dunn's 

test Q = 0.057, p > 0.99), but were different between the two similarity groups 

(2006/07, 2007/08 and 2008/09, 2016/17 (Kruskal–Wallis H= 28.69, p< 0.001). S. 

circumantarctica was also caught in all the sampling years: 2006/07 (70  10 ng g-1), 

2007/08 (20  6 ng g-1), 2008/09 (10  6 ng g-1) and 2016/17 (10  7 ng g-1); individuals 
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from 2006/07 had statistical higher concentration than the other 3 sampling years 

(Kruskal–Wallis H= 60.08, p< 0.001).  

 

Organic mercury concentrations and proportions in Antarctic squid 

Regarding the percentage of organic mercury relative to total mercury in the 

different tissues of the five squid species sampled in 2013 (SG13 samples; Table 1), 

Figure 4. Total mercury concentrations (Mean ± SD, ng g-1 dw) in the muscles of Antarctic 
squid from the Southern Ocean collected around South Georgia in the austral summers of 
2006/07, 2007/08, 2008/09 and 2016/17.  
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muscle had the highest values (67% to 97%) in all the analysed species, followed by 

the digestive gland (22% to 38%) and the gills (9% to 19%). 

 

Organic mercury concentrations were also analysed in the muscle of three 

species (B. abyssicola, G. glacialis and S. circumantarctica, Table 2) across sampling 

years. Concentrations varied from 2 ng g-1 to 84 ng g-1, constituting between 25% to 

77% of total mercury. S. circumantarctica was the only species where organic mercury 

was lower than 50% (40% in 2007/08; 47% in 2008/09; 25% in 2016/17). Although 

organic mercury proportions differed significantly between species, there were no 

statistical differences between years. 

 

Discussion 

While some data exist on mercury concentrations in Antarctic cephalopods 

(Anderson et al., 2009; Cipro et al., 2018; McArthur et al., 2003), to the best of our 

knowledge, this is the first study to measure total and organic mercury concentrations, 

and to determine the percentage of organic mercury relative to total mercury in 

different tissues, across a range of Southern Ocean squid species.  

 

Total mercury concentrations according to size 

Biological and environmental factors such as size, sex, prey preferences and 

habitat are drivers for mercury concentrations in cephalopods (Bustamante et al., 

2006; Monteiro et al., 1992; Storelli and Marcotrigiano, 1999). When looking into the 

relationship between size and contamination level in squid from South Georgia (Figure 

3), it is possible to identify three different patterns: 1) A. antarcticus and P. glacialis 

had a positive correlation between contamination level and size, 2) The correlation for 
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G. glacialis was negative, 3) Mercury concentration did not appear to be related to size 

in B. abyssicola or S. circumantarctica. 

Significant variation and opposite patterns between size and mercury 

concentrations in cephalopods have been reported previously. Mercury 

concentrations increased with size in the veined squid Loligo forbesi (Chouvelon et 

al., 2011; Monteiro et al., 1992; Pierce et al., 2008), the neon flying squid 

Ommastrephes bartramii (Monteiro et al., 1992), the orange-back flying squid 

Sthenoteuthis pteropus (Lischka et al., 2018), the common octopus Octopus vulgaris 

(Rjeibi et al., 2014), the curled octopus Eledone cirrhosa (Rossi et al., 1993), the 

common cuttlefish Sepia officinalis and the European squid Loligo vulgaris (Chouvelon 

et al., 2011). However, in O. vulgaris (Raimundo et al., 2004; 2010a) and the greater 

hooked Onykia ingens (McArthur et al., 2003), no relationships were found, while in 

the spider octopus Octopus salutii (Storelli and Marcotrigiano, 1999), O. vulgaris and 

Loligo vulgaris (Rjeibi et al., 2014) there were negative relationships. Hence, the effect 

of size on mercury bioaccumulation in cephalopods is variable (Penicaud et al., 2017), 

and is likely to be sensitive to fluctuating environmental conditions (see below). 

 

Tissue allocation of mercury in Antarctic squid 

For four species (A. antarcticus, G. antarcticus K. longimana and P. glacialis), 

there were no differences in total mercury concentrations between tissues. However, 

the fraction of organic mercury was always higher in muscle (from 67% to 97%) than 

in the digestive gland (from 22% to 38%) and gills (9% to 19%). While presently the 

reasons for the mercury distribution patterns are still a matter of debate, the  

partitioning of total mercury among tissues is consistent with previous studies on 

oceanic squid (Cranchidae, Histioteuthidae and Ommastrephidae (Bustamante et al., 
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2006)), suggesting some degree of equilibrium between contaminant accumulation 

and excretion rates, as well as efficient redistribution of total mercury between tissues. 

In most studies of cephalopod species however, the digestive gland had higher total 

mercury concentrations than other tissues (Bustamante et al., 2006; Pierce et al., 

2008; Raimundo et al., 2010b), as we observed in F. knipovitchi (Figure 4). The high 

rates of absorption and assimilation of trace metals in the digestive gland (Bustamante 

et al., 2002; Miramand and Bentley, 1992; Raimundo et al., 2004) make this organ a 

major pathway of incorporation for contaminants into cephalopods (Bustamante et al., 

2002), and reflects the predominant role of the dietary pathway for mercury 

bioaccumulation. The lower concentrations of organic mercury in the digestive gland 

is in accordance with the detoxification of organic mercury by demethylation that is 

suspected to occur in this organ (Bustamante et al., 2006; Penicaud et al., 2017). As 

this form of mercury is incorporated from the diet, a fraction is likely to be demethylated 

in the digestive gland, to allow its excretion (Lacoue-Labarthe et al., 2009), and a 

portion will be circulated, trapped and stored in muscle tissues. Because organic 

mercury has a strong affinity for the sulphydryl groups of proteins, its accumulation in 

muscle tissues is favoured (Bloom, 1992; Leaner and Mason, 2004). In fish muscles, 

for instance, it may be tightly bound by carbon-mercury and sulphydryl linkages 

(Ruelas-Inzunza et al., 2003). As muscles comprise the highest mass fraction of 

cephalopods, and given the known affinity of organic mercury to muscular proteins 

(Bloom, 1992), high concentrations and proportions of organic mercury are to be 

expected in this tissue. The present results also highlight the high bioavailability of 

mercury within the Southern Ocean food web (Chouvelon et al., 2012; Clarkson, 1992; 

Dehn et al., 2006). 
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Concentrations and proportions of organic mercury also show a considerable 

variation between species. The high intra-species variation may be explained by the 

dietary ontogenetic shift that occurs in cephalopods (Xavier et al., 2018) when they 

change from feeding on small crustaceans (lower percentage of organic mercury 

(Seco et al., 2019)) to prey at higher trophic levels (higher percentage of organic 

mercury (Chouvelon et al., 2011)), however this can not be applied to G. glacialis, as 

mercury in this species decreases in bigger individuals. Similarly, interspecific 

differences are probably due to variations in diet (Boyle and Rodhouse, 2005), 

although the trophic ecology of these cephalopods is still poorly known (Collins and 

Rodhouse, 2006).  

 

Temporal trends of mercury concentrations in Antarctic squid  

Our study analysed samples obtained over a 10 year period (between 2006/07 

and 2016/17), although only two species were captured in all sampling seasons (G. 

glacialis, S. circumantarctica) and the number of individuals captured for some species 

was relatively low despite the sustained sampling effort. Squid have a highly 

developed sensory system and can swim fast, while sampling nets are relatively small 

and slow, so most adult squid can avoid capture (Clarke, 1977; Xavier et al., 2002). 

Squid are considered an r-selected species (Pianka, 1970): they have a fast 

growth rate, are semelparous (reproduce only once) and are short lived (~< 1–2 years) 

(Arkhipkin, 2004; Boyle and Rodhouse, 2005; Xavier et al., 2018), although, some 

large squid species, like K. longimana may live longer (Jarre et al., 1991; Lynnes and 

Rodhouse, 2002). These characteristics make them responsive bioindicators with 

which would be possible to monitor trends in mercury concentrations over time, as 

they will reflect rapidly any changes in the bioavailability of this contaminant. 
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Data from the squid species A. antarcticus, B abyssicola, G. glacialis and S. 

circumantarctica appears to indicate a decreasing trend of mercury concentration 

along time, although further monitoring is required to confirm this pattern. This 

suggestive pattern of declining concentrations of mercury in the majority of species is 

consistent with the decreasing trend of atmospheric mercury over the last decade 

(Soerensen et al., 2012) as a consequence of the reduction of worldwide 

anthropogenic emissions of mercury (Streets et al., 2017; Zhang et al., 2016). The 

decrease of mercury in the global atmosphere could also mean a reduction in mercury 

deposition levels in our study area. Comparing our results with a previous study in the 

same region (Anderson et al., 2009) who sampled in 2001/02 and analysed specimens 

with atomic fluorescence spectrophotometry, a general reduction in the concentration 

of mercury can also be observed: G. glacialis  had a mercury concentration in 2001/02 

(230  70 ng g-1) (Anderson et al., 2009) that was more than twice as high as our 

results from 2006/07 (100  60 ng g-1), 1.5 times when compared with 2007/08 (150  

90 ng g-1) and more than ten times when compared with 2008/09 or 2016/17 (20  10 

ng g-1; 20  7 ng g-1); in G. antarcticus (600  2 ng g-1) the difference was bigger, with 

mercury concentrations being 5 times higher in 2001/02 than our results for 2013. P. 

glacialis had concentration 4 times higher (180  110 ng g-1) in 2001/02 than our 

observations in 2008/09. In the family Onychoteuthidae, the concentrations of mercury 

in 2001/02 (100  20 ng g-1 in F. knipovitchi; 160  90 ng g-1 in K. longimana) were 

similar to our results for 2013.  

The pattern of mercury bioaccumulation in species is influenced by specific 

traits such as dietary preference, ingestion, excretion, and growth rate. Prevailing 

environmental conditions may also enhance or reduce contaminant bioavailability to 

cephalopods. Habitat use has a major effect on mercury accumulation in organisms, 



 19 

as sites contaminated by mercury will likely have higher bioavailability of this toxic 

element. All of our samples were collected in the Scotia Sea, around South Georgia 

(Figure 1), which is known to be a fairly stable ecosystem, which should mean lower 

mercury variation between sampling sites.  

The majority of our study species have a wide range of vertical distributions: 

the depth of occurrence of A. antarcticus is normally at 800-900 m (Rodhouse, 1988), 

G. glacialis, at 600-1000 m (Roper and Young, 1975), G. antarcticus, at 250-928 m 

(Collins et al., 2004; Roper et al., 1984), F. knipovitchi, at 480-760 m (Collins et al., 

2004), K. longimana, at 300-900 m (Collins et al., 2004; Xavier et al., 2002), P. 

glacialis, at 275-928 m (Collins et al., 2004; Xavier et al., 2002) and S. 

circumantarctica, at 487-928 m (Collins et al., 2004). An outlier amongst these is B. 

abyssicola, which is a deep-sea squid and occurs at a depth of 1000-1500 m (Roper 

and Young, 1975). Higher mercury levels were expected in species from deep habitats 

as increasing depth raises mercury concentrations in fish (Choy et al., 2009; Le Bourg 

et al., 2019; Monteiro et al., 1996). However, that was not the case in our study, as 

mercury concentrations in the tissues of the deep-sea squid B. abyssicola were within 

the same range as the majority of other analysed species (see Figure 4). The lack of 

difference between species may be explained by the frequent diel vertical migration 

associated with cephalopods (Norman et al., 2014) in order to feed and to avoid 

predation. The differences in mercury concentrations between years may be partially 

explained by shifts in the abundance and contaminant loads of prey items (Chouvelon 

et al., 2011; Paiva et al., 2008). However, there is still a lack of data on the diets of the 

studied species (Collins and Rodhouse, 2006; Xavier et al., 2018; Xavier and Cherel, 

2009) and it is presently not possible to evaluate the effect of diet on mercury 

bioaccumulation in our study species.  
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Our results suggest a decreasing trend of total mercury concentration in most 

of the South Georgia squid species analysed over the last decade, with a stable 

proportion of organic mercury. Considering that cephalopods are a major link between 

primary consumer and top predators, these changes possibly reflect a drop in mercury 

bioavailability in lower trophic levels and suggests that mercury intake by squid 

predators may have decreased. 
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Table 1. Total mercury (THg) and organic mercury (OHg) concentrations (ng g-1 dw) 
and percentage of OHg relative to THg in different tissues (digestive gland, gills and 
muscle) of Antarctic squid collected around South Georgia in the austral summer of 
2013/14. 
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Table 2. Total mercury (THg) and organic mercury (OHg) concentrations (ng g-1 dw) 
and percentage of OHg relative to THg in the muscles of Antarctic squid collected 
around South Georgia in the austral summers of 2006/07, 2007/08, 2008/09 and 
2015/16. 

 

 


