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Abstract 

 Integrated band intensities and absorption cross-sections of phosgene (Cl2CO) have been 

measured at different temperatures (199, 250 and 300 K) to support remote sensing 

applications, particularly for an accurate quantification of Cl2CO in the Earth’s atmosphere. 

To our knowledge and prior to this study, no previous work has examined the temperature 

dependence of the phosgene integrated band intensities. Series of N2-broadened spectra of 

phosgene were recorded from 525 to 2400 cm
-1

, at a resolution of 0.1 cm
-1

, using a Bruker 

IFS125HR Fourier transform spectrometer located at the LISA facility in Créteil, France. The 

pressure of each phosgene vapor sample was measured using high precision capacitance 

manometers and a minimum of six sample pressures were recorded for each temperature. The 

samples were introduced into an especially designed, short optical path length (5.10 ± 0.01 

cm), coolable cell, that was mounted inside the spectrometer. From these spectra, integrated 

band intensities for six spectral regions corresponding to the ν2/ν4, ν5, ν2+ν6, ν2+ν5, 2ν5 and ν1 

bands were obtained from room temperature down to 199 K. We discussed and quantified 

error sources and, on average, the estimate accuracy for the measured integrated band 

intensities is equal to 4%. Measurements at room temperature were compared with previously 

reported values. Our results at 300 K, show an excellent agreement (better than 4%) with the 

Hopper et al. J Chem Phys (1968) values, agree reasonably well with those from the PNNL 

database (better than 9% for the stronger ν1 and ν5 bands of atmospheric interest), but depart 

strongly from the measurements of Lovell and Jones J Mol Spectrosc (1960) for which there 

are differences between 20 and 43%. In addition, our results at low temperatures show a non-

negligible temperature dependence (7.5 to ~31%, depending on the bands, between 300 and 

199 K), probably due to the presence of hot bands and possible overlapping neighboring 

bands such as overtones and combination/difference bands. To better understand these 

temperature variations a detailed high resolution investigation of pure Cl2CO spectra over a 

wide  range of temperature would be necessary. 

 

Keywords: Phosgene; Cl2CO; Fourier transform infrared (FTIR) spectroscopy; Integrated 

band intensities; absorption cross sections; Temperature dependence; Earth’s atmosphere 
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1. Introduction 

 Phosgene (Cl2CO) is used as an industrial chemical in the manufacture of plastics, 

insecticides, pharmaceuticals, and herbicides. Its high toxicity and adverse effects required 

reducing its use over the years by working with safer substitutes [1]. In the Earth’s 

atmosphere, phosgene is formed in the troposphere by OH-initiated oxidation of chlorinated 

hydrocarbons, namely : chloroform (CHCl3), methylchloroform (CH3CCl3), trichloroethylene 

(C2Cl4) and tetrachloroethylene (C2HCl3) [1-4]. It is also formed in the stratosphere by the 

photochemical decay of carbon tetrachloride (CCl4), as well as by oxidation of its 

tropospheric parent compounds [5,6]. With a lifetime of about 70 days, tropospheric phosgene 

is mostly removed by reaction in water droplets or by ocean deposition, whereas stratospheric 

phosgene, due to its weak absorption in the UV, is slowly oxidized to form ClOx and has a 

lifetime of several years [1,3]. It is then one of the chlorinated compounds involved in 

stratospheric ozone depletion. It has been observed by stratospheric balloons using the solar 

occultation technique [6-8] and by satellite instruments such as the Atmospheric Chemistry 

Experiment – Fourier Transform Spectrometer (ACE–FTS) and the Michelson Interferometer 

for Passive Atmospheric Sounding (MIPAS) for Cl2CO vertical distribution retrievals 

[4,9,10]. For infrared remote sensing, the 11.8 µm (830-860 cm
-1

) spectral region is mainly 

used, but its strong absorption, corresponding to the ν5 band, is masked by the ν4 band of the 

Freon-11 (CFC-11 or CCl3F), a greenhouse gas that absorbs strongly in the same spectral 

region. This interference leads to an overestimation of the concentration of CFC-11 in the 

atmosphere, if the absorption of Cl2CO is not taken into account [8]. So, modelling the Cl2CO 

contribution in atmospheric spectra is also essential to correct errors in CFC-11 retrievals. 

 Spectroscopically, phosgene is an asymmetric top molecule which, as listed in Table 1, has 

six infrared fundamental vibrational modes: two in the mid-infrared ν5 (851.013 cm
-1

) and ν1 

(1828.202 cm
-1

) and four low energy modes at 301.546 cm
-1

 (ν3), 443.172 cm
-1

 (ν6), 572.526 

cm
-1

 (ν2) and 582.089 cm
-1

 (ν4). Its rotational constants have been determined for the ground 

and first excited states by various microwaves studies [15-21]. Among the fundamental 

vibrational modes, ν1 and ν5 bands are of major interest since they are used for the remote 

sensing of Cl2CO, thanks to their strong absorption in the atmospheric “windows” located at  

5.5 and 11.8 µm, respectively. However, in addition to the infrared active fundamentals, the 

spectrum of Cl2CO contains various overtones, combinations and hot bands that originate  

from the states below 600 cm
-1

 (ν2, ν3, ν4 and ν6). Due to these low energy states, the Cl2CO 
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cold bands are expected to be overlapped by many hot bands which contribute significantly to 

the absorption. Indeed, only ~58% of the population is in the ground state at 300 K (see Table 

1). As a consequence the infrared spectrum of Cl2CO is very crowded at room temperature. 

At 199 K, the ground state population is 82% and thus hot bands are strongly reduced, 

compared to the situation at room temperature. This is an important point when estimating the 

contribution of hot bands to the band intensity. This is why in order to reduce the spectral 

density and then facilitate the spectroscopic analysis, high-resolution studies of the 

fundamentals of phosgene, considering both the 
35

Cl2CO and 
35

Cl
37

ClCO isotopologues, have 

been carried out at low temperatures [11-14, 22]. From these studies, very accurate band 

centers, rotational, centrifugal distortion and interaction constants have been determined for 

the six vibrational states of the two isotopologues of Cl2CO. 

 Besides these spectroscopic studies dealing with line positions, the quantitative 

intensity aspect needs to be investigated for this molecule. However measuring individual 

Cl2CO transitions line-by-line is extremely challenging, even at low sample pressures and 

with Doppler-limited resolution because, as already said the phosgene spectrum is very dense: 

Three isotopologues, strong hot bands, etc. A more realistic approach for quantitative 

measurements is then to determine integrated band intensities and/or cross-sections which are 

of interest for atmospheric remote sounding applications. Up to now and to the best of our 

knowledge, three studies have published integrated band intensities of Cl2CO at room 

temperature [23-25]. However, according to Toon et al. [8], further laboratory measurements 

of the integrated band intensities of the mid-infrared bands of Cl2CO as a function of 

temperature are needed, on the one hand to resolve the large discrepancies between the 

existing room temperature measurements [23-25], and on the other hand to understand the 

contribution of hot bands. Indeed, according to Toon et al. [8], not taking into account 

properly the hot bands contributions leads to a systematic error of ~20% on the concentrations 

of phosgene retrieved from atmospheric spectra. In order to help solving the questions raised 

previously the present work reports at temperatures of 199, 250 and 300 K accurate integrated 

band intensities derived from laboratory spectra covering the spectral range 525-2400 cm
-1

. In 

the next chapters we describe the measurements, estimate their accuracy, and compare the 

results with the previous sets of measurements at room temperature [23-25].  

 

2. Experimental details 
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 Absorption spectra of phosgene have been recorded in the range 525 to 2400 cm
-1

 using 

the high-resolution Bruker IFS125HR Fourier transform spectrometer (FTS) located at the 

LISA facility in Créteil (France). The instrument was equipped with a silicon carbide Globar 

source, a KBr/Ge beamsplitter and a liquid nitrogen cooled HgCdTe (MCT) detector. The 

diameter of the entrance aperture of the spectrometer was set to 3.15 mm to maximize the 

intensity of infrared radiation falling onto the MCT detector without saturation or loss of 

spectral resolution. Interferograms were recorded with a 40 kHz scanner frequency and a 

maximum optical path difference (MOPD) of 9 cm. According to the Bruker definition 

(resolution = 0.9/MOPD), this corresponds to a resolution of 0.1 cm
–1

. The spectra were 

obtained by Fourier transformation of the averaged interferograms  (100 scans) using a Mertz 

phase correction with a 1 cm
–1

 resolution, a zero-filling factor of 2 and no apodization (boxcar 

option). 

 For the measurements, a small cryogenic cell (5.10 ± 0.01 cm path length) was used, a 

schematic viewcut of which is given in Figure 1. The cell is made of stainless steel, to 

minimize adsorption and corrosion issues, and fitted with 9.5 mm diameter, 0.4 mm thick, 

wedged diamond windows (E6, Netherlands). The cell is surrounded by an outer stainless 

steel jacket, in which cold nitrogen (N2) gas is flowed in and out (Figure 1). The temperature 

control is obtained mainly by varying the cold gas flow rate, but a minor correction can be 

obtained using an additional heating element (Thermocoax, France) wrapped around the gas 

cell itself. The temperature measurement is made with four separate Pt-100 sensors: one is 

inserted in the gas to be measured, a few millimeters above the infrared beam, two others are 

placed on different sides of the cell body, and a fourth one on the gas tube inlet used for 

filling the cell. The whole assembly is placed directly inside the sample compartment of the 

spectrometer, and the vacuum level inside the spectrometer is thus critical to avoid spurious 

ice absorptions. The FTS was thus evacuated below 3×10
-4

 hPa by an all-magnetic bearing 

turbomolecular pump in order to minimize absorption by atmospheric gases while avoiding 

excessive mechanical vibrations. 

 Triphosgene was purchased from Sigma Aldrich and heated to generate phosgene. 

Phosgene production begins at a temperature of 80°C, below which the gas is not produced. 

The reaction proceeds cleanly up to 110°C at a steady rate. Before use, the sample was 

purified at –130°C by freeze-and-thaw cycles to remove any non-condensable impurities. 

Samples were prepared afterwards by applying the following procedures: first, a mixture of 

1.7% Cl2CO in nitrogen (Air Liquide, France, 99.9998% purity) was prepared; next, the 
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sample was stabilized for two hours to obtain a dilute and homogeneous sample; and from 

this, an amount, corresponding to the desired Cl2CO amount, was extracted and diluted with 

about 500 hPa of nitrogen as a broadening gas. Six samples were introduced in the cell at 199 

± 1 K, nine samples at 250 ± 1 K, and six samples at 300 ± 1 K. The sample pressure in the 

cell was measured using a precision capacitive pressure gauge (MKS Baratron, USA, 10 and 

1100 hPa ranges) with a reading accuracy of 0.12% according to the manufacturer’s 

specification. Considering the uncertainty arising from small variations of the pressure during 

the recording (~ 0.8%), we estimated the measurement uncertainty on the pressure to be equal 

to 1%. A summary of the experimental conditions is provided in Table 2. Each spectrum was 

ratioed against a background spectrum of the empty cell, which was recorded at a resolution 

of 0.1 cm
-1

 with a large number of scans, in order to ensure the best possible signal-to-noise in 

the ratioed spectra.  

 Figure 2 gives an overview of the N2-broadened Cl2CO spectrum recorded at 300 K 

(spectrum S1 in Table 2). As displayed in Figure 2, the observed bands are ν2/ν4 at 577.31 

cm
-1

, ν5 at 851.01 cm
-1

, ν2+ν6 at 1014.78 cm
-1

, ν2+ν5 at 1414.92 cm
-1

, 2ν5 at 1681.38 cm
-1

, and 

ν1 at 1828.20 cm
-1

. Note a small impurity of CO2 observed in the spectrum with the spectral 

feature at 2350 cm
-1

 corresponding to the ν3 band of CO2. As the total sample pressure Pt 

includes CO2 impurity, it is thus required to assess the CO2 partial pressure contribution in 

order to determine the true Cl2CO partial pressure. To calculate the CO2 partial pressure, the 

ν3 band intensity 9.0710
-17

 cm
-1

/molecule.cm
-2

 reported in Ref. [26] was used. The 

calculated CO2 partial pressure  was then used to determine the partial pressure  of 

phosgene in the sample. Pressure values for all the samples are reported in Table 2. 

 

3. Integrated band intensities and uncertainty  assessment 

     3.1  Determination of the integrated band intensities 

 Absorption measurements were performed for various pressures to determine the 

integrated intensities for all bands of phosgene indicated above i.e. ν2/ν4, ν5, ν2+ν6, ν2+ν5, 2ν5 

and ν1. The derived integrated absorbances  (cm
-1

) are plotted as a function of the Cl2CO 

partial pressure and show a clear linear dependence to pressure (Figure 3). For all selected 

spectral regions, high correlation coefficients of ~0.99 are obtained. The slope of the linear fit 

 (cm
-1

/hPa) is used to determine the integrated band intensity  (cm
-1

/molecule.cm
-2

), 

according to the following equation: 
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Where  = 2.68676×10
19

/cm
3
 is the Loschmidt number at standard conditions,  = 

1013.25 hPa,  = 273.15 K, l = 5.10 cm ,  is the measurement temperature in K and   (cm
-

1
/hPa) the spectral integrated intensity measured in decadic absorbance and normalized to the 

partial pressure. 

Wavenumber integration limits, retrieved values of the integrated band intensities for the 

three measurement temperatures, 199, 250 and 300 K and corresponding uncertainties are 

listed in Table 3. Also for comparison, values derived at 300 K, from the PNNL database 

[25], Hopper et al. [23] and Lovell and Jones [24] are given (See section 4 for a detailed 

discussion). 

 

3.2 Uncertainty assessment 

 Examination of the standard deviations of the fits shows that they are generally less than 

3.5% (see Figure 4) for all temperatures. However, estimating the accuracy of the measured 

integrated band intensities requires considering the uncertainties effecting all physical 

parameters and contributions from possible systematic errors [25, 27] together with the 

standard deviation of the fits. These various sources of error and their associated 

uncertainties, expressed relative to the integrated band intensities, are given in Figure 4, for 

all the bands studied in this work at 300K. It is clear that the systematic errors and the 

standard deviations of the fits are the main sources of errors. These contributions are also 

predominant for the remaining two low temperatures which are not illustrated here. The 

dominant contributions to systematic errors come from the location of the 100 and 0% 

transmission photometric levels, as well as from the electronic and detector nonlinearities [25, 

27]. A realistic assessment of systematic photometric errors is not an easy task and probably 

strongly depends on the setup used. We base our present estimate on the arguments developed 

in Ref. [25] using instruments comparable to ours. In particular, HgCdTe detectors are used 

for their high sensitivity, but are also known for their deviation to a linear behavior. When 

using an HgCdTe for mid-infrared measurements, deviations up to 2.3% on retrieved band 

intensities were found when compared to that derived using more linear detectors such as 

InSb or DTGS ones. We therefore retained a 3% value for the contribution of systematic 

errors. For each band, we have then estimated the accuracy of the integrated band intensities 

from the uncertainties on the individual experimental parameters, i.e. εsi (sample purity), εt 
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(temperature), εp (pressure), εpl (path length), εfit (standard deviation from fit) and εsys 

(systematic errors), assuming that these uncertainties are uncorrelated: 

 

Using this equation and the experimental relative uncertainties involved, the estimated overall 

uncertainty (estimated accuracy) for each of the integrated band intensity measured was 

calculated. They vary from 3.4 to 6.2% but, on average, the estimated accuracy on the 

reported integrated band intensity is equal to 4%, and this for the three temperatures 

considered in this work. 

 

3.3  Variations of the absorption spectra and of integrated band intensities with 

respect to temperature  

 Examples of the absorption cross sections measured in this work, for all observed bands 

are presented in Figures 5 and 6  for T = 199 and 300 K. As can be seen, when decreasing the 

temperature, the absorption peaks increase and sharpen leading to a reduction of the 

absorption widths of the bands. One can see this effect very well in the spectral region of the 

ν5 band. It is mainly due to the variations in the vibrational and rotational populations with 

temperature. It is also worth noticing that hot bands persist in the spectra even for the coldest 

temperature since their contributions are still amounting to 18% at 199 K (see Table 1).  

 Figure 7 presents the temperature dependence of the measured integrated band 

intensities for the various phosgene bands. Changing the temperature from 300 to 199 K leads 

to non-negligible variations in the integrated band intensities with maximum differences 

reaching 31% for the weak ν2+ν5 band. Even if these variations are higher than our expected 

measurement uncertainties, it is difficult to assess if the integrated band intensities are 

temperature-dependent or not. Indeed, for the ν1, ν2/ν4 and ν5 bands, the variations are less 

than 10%. Such variations have been observed in the literature for similar heavy molecules. 

For example, for the N2O5 molecule, deviations of 6 to 10% are observed in the values of the 

integrated band intensities when the temperature varies from 233 to 296 K [28]. For ClONO2, 

deviations of 6 to 31% are observed in the values of the integrated band intensities when the 

temperature varies from 213 to 296 K [29]. The largest difference (31%) was observed for a 

very weak band, as in our study. Finally, for the BrONO2 molecule, a deviation of 27% was 

observed in the value of the relative absorption cross sections when the temperature varies 
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from 213.9 to 293.3 K [30]. More generally, the precise determination of integrated band 

intensities for reactive or adsorbing volatile organic compounds at variable temperatures 

poses specific experimental challenges and our results calls for a few remarks. Two 

procedures can be used: if only the pure absorber gas is introduced in the cell, given the 

needed pressure range, thermomolecular effects can distort the pressure reading, especially for 

relatively low pressures (a few hPa). Instead, if, as we chose to do in this study, the absorbing 

gas is introduced from a previously done mixture with an inert buffer gas, the error on the 

total gas pressure will be relatively small, as the total pressure is high (hundreds of hPa 

range), however the partial pressure of the absorbing gas can no longer be directly measured. 

This may be a problem if the molecule can adsorb on the cell walls, an effect which depends 

on the cell wall nature and probably, to some extent, on the temperature. This probably affects 

our measurements, especially the first two data points at low partial pressures (1.894 and 

2.439 hPa) but, above these pressures, data points present a consistent linear dependence. We 

have retained all data to illustrate this difficulty, but use only the higher pressure data points 

for the determination of band region integrated intensities. The second comment relates to the 

apparent temperature dependence of the band region integrated intensities. It is expected that 

the fundamental band region integrated intensities should not present such dependences, as it 

is expected that fundamental bands (νi) and their associated hot bands (2νi - νi and so on) 

should have the same transition moment (neglecting anharmonicity). In practice, it seems not 

always to be the case, as other transitions can fall by chance in the vicinity of the fundamental 

transitions and have different temperature dependences than that of the fundamentals. These 

can be difference bands of the type (νi + νj) – νk. For instance, if the weak features observed 

on the high frequency side of the ν1 band is obviously not a cold band (perhaps ν5+ν2 - ν6), 

other small features show a marked, although different temperature dependences. The feature 

near 977 cm
-1

 is likely to be the ν1–ν5 difference band and its linear decrease with temperature 

is consistent with the calculated decrease in v5 = 1 state population. The weak feature near 

827 cm
-1

 is likely to be the ν1–(ν2+ν6) as it clearly presents a higher order temperature 

dependence. This is consistent with the expected decrease in v2 = v6 = 1 vibrational state 

population and the experimentally observed temperature decrease for this spectral region (see 

Figure 5, middle trace). This was discussed, for instance, for measurements of acetone at 

variable temperatures [31]. A later study alleviated this problem by simply renormalizing all 

integrated band intensities on those deduced from PNNL spectra measured at room 

temperature [32]. We chose to avoid this procedure to propose a new, independent 

measurement. It is however clear that a better, more precise intensity determination should 
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proceed through a line-by-line analysis from high resolution spectra at variable temperature, 

cold enough to eliminate hot bands and preferably with monoisotopic molecules. This goes, 

however, much beyond the scope of our present study. To summarize, the integrated band 

intensity of each band system should in principle be independent of temperature. However, 

overlapping weak features arising from neighboring bands such as combination/difference 

and hot bands can be responsible for small variations of the integrated intensities with 

temperature. In fact, each spectral region presents a specific temperature dependence, which 

cannot be clearly understood in absence of a complete spectral assignment of all unresolved 

weaker features. To investigate this dependence, it would be necessary to record pure Cl2CO 

high resolution spectra at low and room temperatures.  

 

4. Comparison with previous works at room temperature 

 Table 3 reports the phosgene integrated band region intensities derived in this work for the 

three measurement temperatures, 199, 250 and 300 K and values derived at 300 K from the 

PNNL database [25], Hopper et al. [23] and Lovell and Jones [24]. Our results agree 

reasonably well (better than 9%) with the PNNL data [25], and are consistent within the 

combined measurement uncertainties (Figure 8), except for the weak bands ν2/ν4, ν2+ν5 and 

ν2+ν6 where the PNNL results are higher by 14.1%, 16.4% and 14.5%, respectively. On the 

other hand, an excellent agreement (better than 4%) is observed with the values from Hopper 

et al. [23]. Finally a strong disagreement is observed when comparing with the values from 

Lovell and Jones [24] which exhibit 20 to 43% discrepancies with our results and also with 

those of Hopper et al. [23] and the PNNL data [25]. As a conclusion one can say that three 

measurements are consistent and therefore that the results of Lovell and Jones [24] can likely 

be discarded. 

 

5. Summary 

 Integrated band intensities of phosgene have been measured in the 525-2400 cm
-1

 spectral 

region at 199, 250 and 300 K. The measurements were performed by recording N2-broadened 

spectra at a resolution of 0.1 cm
-1

, over a wide range of pressures, using Fourier transform 

infrared spectroscopy. Our results at room temperature were compared with previously 

published measurements. The results from this work show an excellent agreement (better than 

4%) with the results of Hopper et al. [23] and are consistent to within their combined 
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measurement uncertainties with the PNNL data [25]. On the contrary they disagree with  the 

measurements of Lovell and Jones [24] with a maximum difference of ~43%. With respect to 

the temperature, the integrated band intensities show a non-negligible dependence (7.5 to 

~31%), when decreasing temperature from 300 to 199 K, probably due to the presence of 

overlapping weak features arising from neighboring bands such as overtones, 

combination/difference and hot bands. It would be important to check this assumption by 

recording high resolution pure samples of Cl2CO over the range of temperatures used for the 

present measurements. 
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