
HAL Id: hal-02340386
https://hal.science/hal-02340386v1

Preprint submitted on 30 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Principal Component Analysis : A Generalized Gini
Approach

Arthur Charpentier, Stéphane Mussard, Tea Ouraga

To cite this version:
Arthur Charpentier, Stéphane Mussard, Tea Ouraga. Principal Component Analysis : A Generalized
Gini Approach. 2019. �hal-02340386�

https://hal.science/hal-02340386v1
https://hal.archives-ouvertes.fr


 

 

 

 

 

 

Document de recherche #2019-02 

 

 Principal Component Analysis :  

 A Generalized Gini Approach 
 

 

Arthur Charpentier, Stéphane Mussard  

& Téa Ouraga 

 

   

 

 

https://www.researchgate.net/publication/281630328_On_Income_and_Utility_Generalised_Transfer_Principles_in_a_Welfarist-Paretian_Separable_Framework
https://www.researchgate.net/publication/281630328_On_Income_and_Utility_Generalised_Transfer_Principles_in_a_Welfarist-Paretian_Separable_Framework


Principal Component Analysis:

A Generalized Gini Approach

Arthur Charpentier
UQAM
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Abstract

A principal component analysis based on the generalized Gini cor-
relation index is proposed (Gini PCA). The Gini PCA generalizes the
standard PCA based on the variance. It is shown, in the Gaussian
case, that the standard PCA is equivalent to the Gini PCA. It is also
proven that the dimensionality reduction based on the generalized Gini
correlation matrix, that relies on city-block distances, is robust to out-
liers. Monte Carlo simulations and an application on cars data (with
outliers) show the robustness of the Gini PCA and provide different
interpretations of the results compared with the variance PCA.
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1 Introduction

This late decade, a line of research has been developed and focused on the
Gini methodology, see Yitzhaki & Schechtman (2013) for a general review of
different Gini approaches applied in Statistics and in Econometrics.1 Among
the Gini tools, the Gini regression has received a large audience since the
Gini regression initiated by Olkin and Yitzhaki (1992). Gini regressions have
been generalized by Yitzhaki & Schechtman (2013) in different areas and
particularly in time series analysis. Shelef & Schechtman (2011) and Carcea
and Serfling (2015) investigated ARMA processes with an identification and
an estimation procedure based on Gini autocovariance functions. This robust
Gini approach has been shown to be relevant to heavy tailed distributions
such as Pareto processes. Also, Shelef (2016) proposed a unit root test based
on Gini regressions to deal with outlying observations in the data.

In parallel to the above literature, a second line of research on multidi-
mensional Gini indices arose. This literature paved the way on the valuation
of inequality about multiple commodities or dimensions such as education,
health, income, etc., that is, to find a real-valued function that quantifies
the inequality between the households of a population over each dimension,
see among others, List (1999), Gajdos & Weymark (2005), Decancq & Lugo
(2013). More recently, Banerjee (2010) shows that it is possible to construct
multidimensional Gini indices by exploring the projection of the data in re-
duced subspaces based on the Euclidean norm. Accordingly, some notions
of linear algebra have been increasingly included in the axiomatization of
multidimensional Gini indices.

In this paper, in the same vein as in the second line of research mentioned
above, we start from the recognition that linear algebra may be closely related
to the maximum level of inequality that arises in a given dimension. In
data analysis, the variance maximization is mainly used to further analyze
projected data in reduced subspaces. The variance criterion implies many
problems since it captures a very precise notion of dispersion, which does not
always match some basic properties satisfied by variability measures such as
the Gini index. Such a property may be, for example, an invariance condition
postulating that a dispersion measure remains constant when the data are
transformed by monotonic maps.2 Another property typically related to the

1See Giorgi (2013) for an overview of the ”Gini methodology”.
2See Furman & Zitikis (2017) for the link between variability (risk) measures and the
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Gini index is its robustness to outlying observations, see e.g. Yitzhaki &
Olkin (1991) in the case of linear regressions. Accordingly, it seems natural
to analyze multidimensional dispersion with the Gini index, instead of the
variance, in order to provide a Principal Components Analysis (PCA) in a
Gini sense (Gini PCA).

In the field of PCA, Baccini, Besse & de Falguerolles (1996) and Korhonen
& Siljamäki (1998) are among the first authors dealing with a ℓ1-norm PCA
framework. Their idea was to robustify the standard PCA by means of the
Gini Mean Difference metric introduced by Gini (1912), which is a city-block
distance measure of variability. The authors employ the Gini Mean Difference
as an estimator of the standard deviation of each variable before running the
singular value decomposition leading to a robust PCA. In the same vein, Ding
et al. (2006) make use of a rotational ℓ1 norm PCA to robustify the variance-
covariance matrix in such a way that the PCA is rotational invariant. Recent
PCAs derive latent variables thanks to regressions based on elastic net (a ℓ1
regularization) that improves the quality of the regression curve estimation,
see Zou, Hastie & Tibshirani (2006).

In this paper, it is shown that the variance may be seen as an inappropri-
ate criterion for dimensionality reduction in the case of data contamination
or outlying observations. A generalized Gini PCA is investigated by means of
Gini correlations matrices. These matrices contain generalized Gini correla-
tion coefficients (see Yitzhaki (2003)) based on the Gini covariance operator
introduced by Schechtman & Yitzhaki (1987) and Yitzhaki & Schechtman
(2003). The generalized Gini correlation coefficients are: (i) bounded, (ii)
invariant to monotonic transformations, (iii) and symmetric whenever the
variables are exchangeable. It is shown that the standard PCA is equivalent
to the Gini PCA when the variables are Gaussians. Also, it is shown that
the generalized Gini PCA may be realized either in the space of the vari-
ables or in the space of the observations. In each case, some statistics are
proposed to perform some interpretations of the variables and of the observa-
tions (absolute and relative contributions). To be precise, an U -statistics test
is introduced to test for the significance of the correlations between the axes
of the new subspace and the variables in order to assess their significance.
Monte Carlo simulations are performed in order to show the superiority of
the Gini PCA compared with the usual PCA when outlying observations

Gini correlation index.
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contaminate the data. Finally, with the aid of the well-known cars data,
which contain outliers, it is shown that the generalized Gini PCA leads to
different results compared with the usual PCA.

The outline of the paper is as follows. Section 2 sets the notations
and presents some ℓ2 norm approaches of PCA. Section 3 reviews the Gini-
covariance operator. Section 4 is devoted to the generalized Gini PCA. Sec-
tion 5 focuses on the interpretation of the Gini PCA. Sections 6 and 7 present
some Monte Carlo simulations and applications, respectively.

2 Motivations for the use of Gini PCA

In this Section, the notations are set. Then, some assumptions are imposed
and some ℓ2-norm PCA techniques are reviewed in order to motivate the
employ of the Gini PCA.

2.1 Notations and definitions

Let N∗ be the set of integers and R [R++] the set of [positive] real numbers.
LetM be the set of all N×K matrixX = [xik] that describes N observations
on K dimensions such that N ≫ K, with elements xik ∈ R, and In the n×n
identity matrix. The N × 1 vectors representing each variable are expressed
as x·k, for all k ∈ {1, . . . , K} and we assume that x·k 6= c1N , with c a
real constant and 1N a N -dimensional column vector of ones. The K × 1
vectors representing each observation i (the transposed ith line of X) are
expressed as xi·, for all i ∈ {1, . . . , N}. It is assumed that x·k is the realization
of the random variable Xk, with cumulative distribution function Fk. The
arithmetic mean of each column (line) of the matrix X is given by x̄·k (x̄i·).
The cardinal of set A is denoted #{A}. The ℓ1 norm, for any given real
vector x, is ‖x‖1 =

∑K
k=1 |x·k|, whereas the ℓ2 norm is ‖x‖2 = (

∑K
k=1 x

2
·k)

1/2.

Assumption 2.1. The random variables Xk are such that E[|Xk|] < ∞ for
all k ∈ {1, . . . , K}, but no assumption is made on the second moments (that
may not exist).

This assumption imposes less structure compared with the classical PCA
in which the existence of the second moments are necessary, as can be seen
in the next subsection.
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2.2 Variants of PCA based on the ℓ2 norm

The classical formulation of the PCA, to obtain the first component, can be
obtained by solving

ω∗

1 ∈ argmax {Var[Xω]} subject to ‖ω‖22 = ω⊤ω = 1, (1)

or equivalently

ω∗

1 ∈ argmax
{
ω⊤Σω

}
subject to ‖ω‖22 = ω⊤ω = 1, (2)

where ω ∈ RK , and Σ is the (symmetric positive semi-definite)K×K sample
covariance matrix. Mardia, Kent & Bibby (1979) suggest to write

ω∗

1 ∈ argmax

{
K∑

j=1

Var[x·,j] · Cor[x·,j,Xω]

}
subject to ‖ω‖22 = ω⊤ω = 1.

With scaled variables3 (i.e. Var[x·,j] = 1, ∀j)

ω∗

1 ∈ argmax

{
K∑

j=1

Cor[x·,j,Xω]

}
subject to ‖ω‖22 = ω⊤ω = 1. (3)

Then a Principal Component Pursuit can start: we consider the ‘residuals’,
X(1) = X −Xω∗

1ω
∗⊤

1 , its covariance matrix Σ(1), and we solve

ω∗

2 ∈ argmax
{
ω⊤Σ(1)ω

}
subject to ‖ω‖22 = ω⊤ω = 1.

The part Xω∗

1ω
∗⊤

1 is actually a constraint that we add to ensure the orthog-
onality of the two first components. This problem is equivalent to finding
the maxima of Var[Xω] subject to ‖ω‖22 = 1 and ω ⊥ ω∗

1. This idea is also
called Hotelling (or Wielandt) deflation technique. On the k-th iteration, we
extract the leading eigenvector

ω∗

k ∈ argmax
{
ω⊤Σ(k−1)ω

}
subject to ‖ω‖22 = ω⊤ω = 1,

3In most cases, PCA is performed on scaled (and centered) variables, otherwise vari-
ables with large scales might alter interpretations. Thus, it will make sense, later on, to
assume that components of X have identical distributions. At least the first two moments
will be equal.
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where Σ(k−1) = Σ(k−2) − ω∗

k−1ω
∗⊤

k−1Σ(k−1)ω
∗

k−1ω
∗⊤

k−1 (see e.g. Saad (1998)).
Note that, following Hotelling (1933) and Eckart & Young (1936), that it is
also possible to write this problem as

min
{
‖X − X̃‖⋆

}
subject to rank[X̃] ≤ k

where ‖ ·‖⋆ denotes the nuclear norm of a matrix (i.e. the sum of its singular
values)4.

One extension, introduced in d’Aspremont et al. (1920), was to add a
constraint based on the cardinality of ω (also called ℓ0 norm) corresponding
to the number of non-zero coefficients of ω. The penalized objective function
is then

max
{
ω⊤Σω − λcard[ω]

}
subject to ‖ω‖22 = ω⊤ω = 1,

for some λ > 0. This is called sparse PCA, and can be related to sparse
regression, introduced in Tibshirani (1996). But as pointed out in Mackey
(2009), interpretation is not easy and the components obtained are not or-
thogonal. Gorban et al. (2007) considered an extension to nonlinear Principal
Manifolds to take into account nonlinearities.

Another direction for extensions was to consider Robust Principal Com-
ponent Analysis. Candes et al. (2009) suggested an approach based on the
fact that principal component pursuit can be obtained by solving

min
{
‖X − X̃‖⋆ + λ‖X̃‖1

}
.

But other methods were also considered to obtain Robust PCA. A natural
‘scale-free’ version is obtained by considering a rank matrix instead of X.
This is also called ‘ordinal’ PCA in the literature, see Korhonen & Siljamäki
(1998). The first ‘ordinal’ component is

ω∗

1 ∈ argmax

{
K∑

j=1

R[x·,j,Xω]

}
subject to ‖ω‖22 = ω⊤ω = 1 (4)

where R denotes some rank based correlation, e.g. Spearman’s rank cor-
relation, as an extention of Equation (3). So, quite naturally, one possible

4but other norms have also been considered in statistical literature, such as the Froebe-
nius norm in the Eckart-Young theorem, or the maximum of singular values – also called
2-(induced)-norm.
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extension of Equation (2) would be

ω∗

1 ∈ argmax
{
ω⊤R[X]ω

}
subject to ‖ω‖22 = ω⊤ω = 1

where R[X] denotes Spearman’s rank correlation. In this section, instead of
using Pearson’s correlation (as in Equation (2) when the variables are scaled)
or Spearman’s (as in this ordinal PCA), we will consider the multidimensional
Gini correlation based on the h-covariance operator.

3 Geometry of Gini PCA: Gini-Covariance

Operators

The first PCA was introduced by Pearson (1901), projecting X onto the
eigenvectors of its covariance matrix, and observing that the variances of
those projections are the corresponding eigenvalues. One of the key property
is that X⊤X is a positive matrix. Most statistical properties of PCAs (see
Flury & Riedwyl (1988) or Anderson (1963)) are obtained under Gaussian
assumptions. Furthermore, geometric properties can be obtained using the
fact that the covariance defines an inner product on the subspace of random
variables with finite second moment (up to a translation, i.e. we identify any
two that differ by a constant).

We will discuss in this section the properties of the Gini Covariance op-
erator with the special case of Gaussian random variables, and the property
of the Gini correlation matrix that will be used in the next Section for the
Gini PCA.

3.1 The Gini-covariance operator

In this section, X = (X1, · · · , XK) denotes a random vector. The covari-
ance matrix between X and Y , two random vectors, is defined as the inner
product between centered versions of the vectors,

〈X,Y 〉 = Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])T]. (5)

Hence, it is the matrix where elements are regular covariances between com-
ponents of the vectors, Cov(X,Y ) = [Cov(Xi, Yj)]. It is the upper-right
block of the covariance matrix of (X,Y ). Note that Cov(X,X) is the stan-
dard variance-covariance matrix of vector X.
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Definition 3.1. Let X = (X1, · · · , XK) be collections of K identically
distributed random variables. Let h : R → R denote a non-decreasing
function. Let h(X) denote the random vector (h(X1), · · · , h(XK)), and as-
sume that each component has a finite variance. Then, operator ΓCh(X) =
Cov(X, h(X)) is called h-Gini covariance matrix.

Since h is a non-decreasing mapping, then X and h(X) are componen-
twise comonotonic random vectors. Assuming that components of X are
identically distributed is a reasonable assumption in the context of scaled
(and centered) PCA, as discussed in footnote 3. Nevertheless, a stronger
technical assumption will be necessary: pairwise-exchangeability.

Definition 3.2. X is said to be pairwise-exchangeable if for all pair (i, j) ∈
{1, · · · , K}2, (Xi, Xj) is exchangeable, in the sense that (Xi, Xj)

L
= (Xj, Xi).

Pairwise-exchangeability is a stronger concept than having only one vec-
tor with identically distributed components, and a weaker concept than (full)
exchangeability. In the Gaussian case where h(Xk) = Φ(Xk) with Φ(Xk) be-
ing the normal cdf of Xk for all k = 1, . . . , K, pairwise-exchangeability is
equivalent to components identically distributed.

Proposition 3.1. If X is a Gaussian vector with identically distributed com-
ponents, then X is pairwise-exchangeable.

Proof. For simplicity, assume that components of X are N (0, 1) random
variables, then X ∼ N (0,ρ) where ρ is a correlation matrix. In that case

[
Xi

Xj

]
∼ N

([
0
0

]
,

[
1 ρij
ρji 1

])
,

with Pearson correlation ρij = ρji, thus (Xi, Xj) is exchangeable.

Let us now introduce the Gini-covariance. Gini (1912) introduced the
Gini mean difference operator ∆, defined as:

∆(X) = E(|X1 −X2|) where X1, X2 ∼ X, and X1 ⊥⊥ X2, (6)

for some random variable X (or more specifically for some distribution F
with X ∼ F , because this operator is law invariant). One can rewrite:

∆(X) = 4Cov[X,F (X)] =
1

3

Cov[X,F (X)]

Cov[F (X), F (X)]
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where the term on the right is interpreted as the slope of the regression curve
of the observed variable X and its ‘ranks’ (up to a scaling coefficient). Thus,
the Gini-covariance is obtained when the function h is equal to the cumulative
distribution function of the second term, see Schechtman & Yitzhaki (1987).

Definition 3.3. Let X = (X1, · · · , XK) be a collection of K identically
distributed random variables, with cumulative distribution function F . Then,
the Gini covariance is ΓCF (X) = Cov(X, F (X)).

On this basis, it is possible to show that the Gini covariance matrix is a
positive semi-definite matrix.

Theorem 3.1. Let Z ∼ N (0, 1). If X represents identically distributed
Gaussian random variables, with distribution N (µ, σ2), then the two follow-
ing assertions hold:

(i) ΓCF (X) = σ−1Cov(Z,Φ(Z))Var(X).
(ii) ΓCF (X) is a positive-semi definite matrix.

Proof. (i) In the Gaussian case, if h is the cumulative distribution func-
tion of the Xk’s, then Cov(Xk, h(Xℓ)) = rσ · Cov(Z,Φ(Z)), where Φ is
the normal cdf, see Yitzhaki & Schechtman (2013), Chapter 3. Observe
that Cov(Xk, h(Xk)) = σ · Cov(Z,Φ(Z)), if h is the cdf of Xk. Thus,
λ := Cov(Z,Φ(Z)) yields:

ΓCF ((Xk, Xℓ)) = λ

[
σ ρσ
ρσ σ

]
= λσ

[
1 ρ
ρ 1

]
=

λ

σ
Var((Xk, Xℓ)).

(ii) We have Cov(Z,Φ(Z)) ≥ 0, then it follows that CF ((Xk, Xℓ)) ≥ 0:

x⊤CF (X)x = x⊤
Cov(Z,Φ(Z))

σ
Var(X)x ≥ 0,

which ends the proof.

Note that ΓCF (X) = Cov(X,−F (X)) = ΓC
−F (X), where F denotes

the survival distribution function.

Definition 3.4. Let X = (X1, · · · , XK) be a collection of K identically dis-
tributed random variables, with survival distribution function F . Then, the

generalized Gini covariance is GΓCν(X) = ΓC
−F

ν−1(X) = Cov(X,−F
ν−1

(X)),
for ν > 1.
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This operator is related to the one introduced in Yitzhaki & Schecht-
man (2003), called generalized Gini mean difference GMDν operator. More
precisely, an estimator of the generalized Gini mean difference is given by:

GMDν(x·ℓ,x·k) := − 2

N − 1
νCov(x·ℓ, r

ν−1
x
·k
), ν > 1,

where rx
·k
= (R(x1k), . . . , R(xnk)) is the decumulative rank vector of x·k, that

is, the vector that assigns the smallest value (1) to the greatest observation
xik, and so on. The rank of observation i with respect to variable k is:

R(xik) :=

{
N + 1−#{x ≤ xik} if no ties
N + 1− 1

p

∑p
i=1 #{x ≤ xik} if p ties xik.

Hence GMDν(x·ℓ,x·k) is the empirical version of

2νΓCν(Xℓ, Xk) := −2νCov
(
Xℓ, F k(Xk)

ν−1
)
.

The index GMDν is a generalized version of the GMD2 proposed earlier by
Schechtman & Yitzhaki (1987), and can also be written as:

GMD2(Xk, Xk) = 4Cov
(
Xk, Fk(Xk)

)
= ∆(Xk).

When k = ℓ, GMDν represents the variability of the variable x·k itself. Focus
is put on the lower tail of the distribution x·k whenever ν → ∞, the approach
is said to be max-min in the sense that GMDν inflates the minimum value
of the distribution. On the contrary, whenever ν → 0, the approach is said
to be max-max, in this case focus is put on the upper tail of the distribution
x·k. As mentioned in Yitzhaki & Schechtman (2013), the case ν < 1 does
not entail simple interpretations, thereby the parameter ν is used to be set
as ν > 1 in empirical applications.5

Note that even if Xk and Xℓ have the same distribution, we might have
GMDν(Xk, Xℓ) 6= GMDν(Xℓ, Xk), as shown on the example of Figure 1. In
that case E[Xkh(Xℓ)] 6= E[Xℓh(Xk)] if h(2) 6= 2h(1) (this property is never-
theless valid if h is linear). We would have GMDν(Xk, Xℓ) = GMDν(Xℓ, Xk)
when Xk and Xℓ are exchangeable. But since generally GMDν is not sym-
metric, we have for x·k being not a monotonic transformation of x·ℓ and
ν > 1, GMDν(x·k,x·ℓ) 6= GMDν(x·ℓ,x·k).

5In risk analysis ν ∈ (0, 1) denotes risk lover decision makers (max-max approach),
whereas ν > 1 stands for risk averse decision makers, and ν → ∞ extreme risk aversion
(max-min approach).
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Figure 1: Joint distribution of a random pair (Xk, Xℓ) such that

E[Xkh(Xℓ)] 6= E[Xℓh(Xk)], with non-exchangeable components Xk
L
= Xℓ.

3.2 Generalized Gini correlation

In this section, X is a matrix in M. The Gini correlation coefficient (G-
correlation frown now on), is a normalized GMDν index such that for all
ν > 1, see Yitzhaki & Schechtman (2003),

GCν(x·ℓ,x·k) :=
GMDν(x·ℓ,x·k)

GMDν(x·ℓ,x·ℓ)
; GCν(x·k,x·ℓ) :=

GMDν(x·k,x·ℓ)

GMDν(x·k,x·k)
,

with GCν(x·k,x·k) = 1 and GMDν(x·k,x·k) 6= 0, for all k, ℓ = 1, . . . , K.
Following Yitzhaki & Schechtman (2003), the G-correlation is well-suited for
the measurement of correlations between non-normal distributions or in the
presence of outlying observations in the sample.

Property 3.1. – Schechtman and Yitzhaki (2013):
(i) GCν(x·ℓ,x·k) ≤ 1.
(ii) If the variables x·ℓ and x·k are independent, for all k 6= ℓ, then GCν(x·ℓ,x·k) =
GCν(x·k,x·ℓ) = 0.
(iii) For any given monotonic increasing transformation ϕ, GCν(x·ℓ, ϕ(x·k)) =
GCν(x·ℓ,x·k).
(iv) If (x·ℓ,x·k) have a bivariate normal distribution with Pearson correlation
ρ, then GCν(x·ℓ,x·k) = GCν(x·k,x·ℓ) = ρ.
(v) If x·k and x·ℓ are exchangeable up to a linear transformation, then GCν(x·ℓ,x·k) =
GCν(x·k,x·ℓ).
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Whenever ν → 1, the variability of the variables is attenuated so that
GMDν tends to zero (even if the variables exhibit a strong variance). The
choice of ν is interesting to perform generalized Gini PCA with various values
of ν in order to robustify the results of the PCA, since the standard PCA
(based on the variance) is potentially of bad quality if outlying observations
drastically affect the sample.

A G-correlation matrix is proposed to analyze the data into a new vector
space. Following Property 3.1 (iv), it is possible to rescale the variables x·ℓ

thanks to a linear transformation, then the matrix of standardized observa-
tion is,

Z ≡ [ziℓ] :=

[
xiℓ − x̄·ℓ

GMDν(x·ℓ,x·ℓ)

]
. (7)

The variable ziℓ is a real number without dimension. The variables x·k are
rescaled such that their Gini variability is equal to unity. Now, we define
the N ×K matrix of decumulative centered rank vectors of Z, which are the
same compared with those of X:

Rc
z
≡ [Rc(ziℓ)] := [R(ziℓ)

ν−1 − r̄ν−1
z
·ℓ
] = [R(xiℓ)

ν−1 − r̄ν−1
x
·ℓ
].

Note that the last equality holds since the standardization (7) is a strictly
increasing affine transformation.6 The K × K matrix containing all G-
correlation indices between all couples of variables z·k and z·ℓ, for all k, ℓ =
1, . . . , K is expressed as:

GCν(Z) := − 2ν

N(N − 1)
Z⊤Rc

z
.

Indeed, if GMDν(Z) ≡ [GMDν(z·k, z·ℓ)], then we get the following.

Proposition 3.2. For each standardized matrix Z defined in (7), the fol-
lowing relations hold:

GMDν(Z) = GCν(X) = GCν(Z). (8)

GMDν(z·k, z·k) = 1, ∀k = 1, . . . , K. (9)

6By definition GMDν(x·ℓ,x·ℓ) ≥ 0 for all ℓ = 1, . . . ,K. As we impose that x·ℓ 6= c1N ,
the condition becomes GMDν(x·ℓ,x·ℓ) > 0.
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Proof. We have GMDν(Z) ≡ [GMDν(z·k, z·ℓ)] being a K ×K matrix. The
extra diagonal terms may be rewritten as,

GMDν(z·k, z·ℓ) = − 2

N − 1
νCov(z·k, r

ν−1
z
·ℓ
)

= − 2

N − 1
νCov

(
x·k − x̄·k1N

GMDν(x·k,x·k)
, rν−1

z
·ℓ

)

= − 2

GMDν(x·k,x·k)

[
νCov(x·k, r

ν−1
z
·ℓ
)

N − 1
− νCov(x̄·k1N , r

ν−1
z
·ℓ
)

N − 1

]

=
GMDν(x·k,x·ℓ)

GMDν(x·k,x·k)
= GCν(x·k,x·ℓ).

Finally, using the same approach as before, we get:

GMDν(z·k, z·k) = − 2

N − 1
νCov(z·k, r

ν−1
z
·k
)

=
GMDν(x·k,x·k)

GMDν(x·k,x·k)

= GCν(x·k,x·k) = 1.

By Property 3.2 (iv), since rx
·k

= rz
·k
, then GCν(x·k,x·ℓ) = GCν(z·k, z·ℓ).

Thus,

GMDν(Z) = − 2ν

N(N − 1)
Z⊤Rc

z
= GCν(X) = GCν(Z),

which ends the proof.

Finally, under a normality assumption, the generalized Gini covariance
matrix GCν(X) ≡ [GMDν(Xk, Xℓ)] is shown to be a positive semi-definite
matrix.

Theorem 3.2. Let Z ∼ N (0, 1). If X represents identically distributed
Gaussian random variables, with distribution N (µ, σ2), then the two follow-
ing assertions holds:

(i) GCν(X) = σ−1Cov(Z,Φ(Z))Var(X).
(ii) GCν(X) is a positive semi-definite matrix.

Proof. The first part (i) follows from Yitzhaki & Schechtman (2013), Chapter
6. The second part follows directly from (i).
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Theorem 3.2 shows that under the normality assumption, the variance is
a special case of the Gini methodology. As a consequence, for multivariate
normal distributions, it is shown in Section 4 that Gini PCAs and classical
PCA (based on the ℓ2 norm and the covariance matrix) are equivalent.

4 Generalized Gini PCA

In this section, the multidimensional Gini variability of the observations
i = 1, . . . , N , embodied by the matrix GCν(Z), is maximized in the RK-
Euclidean space, i.e., in the set of variables {z·1, . . . , z·K}. This allows the
observations to be projected onto the new vector space spanned by the eigen-
vectors of GCν(Z). Then, the projection of the variables is investigated in
the RN -Euclidean space induced by GCν(Z). Both observations and vari-
ables are analyzed through the prism of absolute and relative contributions
to propose relevant interpretations of the data in each subspace.

4.1 The RK-Euclidean space

It is possible to investigate the projection of the data Z onto the new vector
space induced by GMDν(Z) or alternatively by GCν(Z) since GMDν(Z) =
GCν(Z). Let f·k be the kth principal component, i.e. the kth axis of the new
subspace, such that the N ×K matrix F is defined by F ≡ [f·1, . . . , f·K ] with
Rc

f
≡ [rν−1

c,f1
, . . . , rcc,f

·K
] its corresponding decumulative centered rank matrix

(where each decumulative rank vector is raised to an exponent of ν−1). The
K ×K matrix B ≡ [b·1, . . . ,b·K ] is the projector of the observations, with
the normalization condition b⊤

·kb·k = 1, such that F = ZB. We denote by
λ·k (or 2µ·k) the eigenvalues of the matrix [GCν(Z) + GCν(Z)⊤]. Let the
basis B := {b·1, . . . ,b·h} with h ≤ K issued from the maximization of the
overall Gini variability:

maxb⊤

·kGCν(Z)b·k =⇒ [GCν(Z) +GCν(Z)⊤]b·k = 2µ·kb·k, ∀k = 1, . . . , K.

Indeed, from the Lagrangian,

L = b⊤

·kGCν(Z)b·k − µ·k[1− b⊤

·kb·k],

because of the non-symmetry of GCν(Z), the eigenvalue equation is,

[GCν(Z) +GCν(Z)⊤]b·k = 2µ·kb·k,
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that is,
[GCν(Z) +GCν(Z)⊤]b·k = λ·kb·k. (10)

The new subspace {f·1, . . . , f·h} such that h ≤ K is issued from the maxi-
mization of the Gini variability between the observations on each axis f·k.
Although the result of the generalized Gini PCA seems to be close to the
classical PCA, some differences exist.

Proposition 4.1. Let B = {b·1, . . . ,b·h} with h ≤ K be the basis issued
from the maximization of b⊤

·kGCν(Z)b·k for all k = 1, . . . , K, then the fol-
lowing assertions hold:
(i) maxGMDν(f·k, f·k) = µ·k for all k = 1, . . . , K, if and only if rν−1

c,f
·k

=
Rc

z
b·k.

(ii) b·kb
⊤

·h = 0, for all k 6= h.
(iii) b·kb

⊤

·k = 1, for all k = 1, . . . , K.

Proof. (i) Note that GMDν(f·k, f·k) = − 2ν
N(N−1)

(f·k − f̄)⊤rν−1
c,f

·k
, where rν−1

c,f
·k

is the kth column of the centered (decumulative) rank matrix Rc
f
. Since

f·k = Zb·k and f̄ = (f̄·1, . . . , f̄·K) = 0 then:7

b⊤

·kGCν(Z)b·k = − 2ν

N(N − 1)
b⊤

·kZ
⊤Rc

z
b·k (11)

= − 2ν

N(N − 1)
b⊤

·kZ
⊤rν−1

c,f
·k

(by rν−1
c,f

·k
= Rc

z
b·k)

= − 2ν

N(N − 1)
f⊤
·kr

ν−1
c,f

·k

= GMDν(f·k, f·k).

Then, maximizing the multidimensional variability b⊤

·kGCν(Z)b·k yields from
(10):

b⊤

·k[GCν(Z) +GCν(Z)⊤]b·k = b⊤

·kλ·kb·k

⇐⇒ b⊤

·kGCν(Z)b·k + b⊤

·kGCν(Z)⊤b·k = λ·k.

7We have:

f̄·k = 1/N

N∑

i=1

fik = 1/N

[
N∑

i=1

z
⊤

i·b·k

]
= 1/N

[
N∑

i=1

z
⊤

i·

]
b·k = 0.
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Since b⊤

·kGCν(Z)b·k = b⊤

·kGCν(Z)⊤b·k, then

b⊤

·kGCν(Z)⊤b·k = λ·k/2 = µ·k,

and so GMDν(f·k, f·k) = λ·k for all k = 1, . . . , K. The results (ii) and (iii)
are straightforward.

4.2 Discussion

Condition (i) shows that the maximization of the multidimensional variabil-
ity (in the Gini sense) b⊤

·kGCν(Z)b·k does not necessarily coincide with the
maximization of the variability of the observations projected onto the new
axis f·k embodied by GMDν(f·k, f·k). Since in general, the rank of the obser-
vations on axis f·k does not coincide with the projected ranks, that is,

rν−1
c,f

·k
6= Rc

z
b·k,

then,
maxb⊤

·kGC(Z)b·k 6= GMDν(f·k, f·k).

In other words, maximizing the quadratic form b⊤

·kGC(Z)νb·k does not sys-
tematically maximize the overall Gini variability GMDν(f·k, f·k). However,
it maximizes the following generalized Gini index:

GGMDν(f·k, f·k) := − 2ν

N(N − 1)
b⊤

·kZ
⊤Rc

z
b·k

= − 2ν

N(N − 1)
f⊤
·kb

⊤

·k(R
c
z
)⊤.

In the literature on inequality indices, this kind of index is rather known as
a generalized Gini index, because of the product between a variable f·k and
a function Ψ of its ranks, Ψ(rfk) := b⊤

·k(R
c
z
)⊤, such that:

GGMDν(f·k, f·k) = − 2ν

N(N − 1)
f·k Ψ(rfk).

Yaari (1987) and subsequently Yaari (1988) proposes generalized Gini in-
dices with a rank distortion function Ψ that describes the behavior of the
decision maker (being either max-min or max-max).8

8Strictly speaking Yaari (1987) and Yaari (1988) suggests probability distortion func-
tions Ψ : [0, 1] → [0, 1], which does not necessarily coincide to our case.
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It is noteworthy that this generalized Gini index of variability is very
different from Banerjee (2010)’s multidimensional Gini index. The author
proposes to extract the first eigenvector e·1 of X

⊤X and to project the data
X such that s := Xe·1 so that the multidimensional Gini index is G(s) =
s⊤Ψ̃(rs), with rs the rank vector of s and with Ψ̃ a function that distorts
the ranks. Banerjee (2010)’s index is derived from the matrix X⊤X. To be
precise, the maximization of the variance-covariance matrix X⊤X (based on
the ℓ2 metric) yields the projection of the data on the first component f·1,
which is then employed in the multidimensional Gini index (based on the ℓ1
metric). This approach is legitimated by the fact thatG(s) has some desirable
properties linked with the Gini index. However, this Gini index deals with
an information issued from the variance, because the vector s relies on the
maximization of the variance of component f·1. Alternatively, it is possible to
make use of the Gini variability, in a first stage, in order to project the data
onto a new subspace, and in a second stage, to use the generalized Gini index
of the projected data for the interpretations. In such as case, the Gini metric
enables outliers to be attenuated. The employ of G(s) as a result of the
variance-covariance maximization may transform the data so that outlying
observations would capture an important part of the information (variance)
on the first component. This case occurs in the classical PCA. This fact will
be proven in the next sections with Monte Carlo simulations. Let us before
investigate the employ of the generalized Gini index GGMDν .

4.3 Properties of GGMDν

Since the Gini PCA relies on the generalized Gini index GGMDν , let us
explore its properties.

Proposition 4.2. Let the eigenvalues of GCν(Z) + GCν(Z)⊤ be such that
λ1 = µ1/2 ≥ · · · ≥ λ·K = µ·K/2. Then,
(i) GGMDν(f·k, f·k) = GGMDν(f·k, f·ℓ) = GGMDν(f·ℓ, f·k) = 0, for all ℓ =
1, . . . , K, if and only if, λ·k = 0.
(ii) maxk=1,...,K GGMDν(f·k, f·k) = µ1.
(iii) mink=1,...,K GGMDν(f·k, f·k) = µ·K.

Proof. (i) The result comes from the rank-nullity theorem. From the eigen-
value Equation (10), we have:

b⊤

·kGCν(Z)b·k = λ·k/2 = µ·k.
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Let f be the linear application issued from the matrix GCν(Z). Whenever
λ·k = 0, two columns (or rows) of GCν(Z) are collinear, then the dimension of
the image set of f is dim(f) = K−1. Hence, f·k = 0. Since b⊤

·kGCν(Z)⊤b·k =
GGMDν(f·k, f·k) for all k = 1, . . . , K, then for λ·k we get:

b⊤

·kGCν(Z)⊤b·k = GGMDν(f·k, f·k) = λ·k/2 = µ·k = 0.

On the other hand, since f·k = 0, it follows that GGMDν(f·k, f·ℓ) = 0 for all
ℓ = 1, . . . , K. Also, if f·k = 0 then the centered rank vector rc

f
·k
= 0, and so

GGMDν(f·ℓ, f·k) = 0 for all ℓ = 1, . . . , K.
(ii) The proof comes from the Rayleigh-Ritz identity:

λmax := max
b⊤

·1[GCν(Z) +GCν(Z)⊤]b1

b⊤
1 b1

= λ1.

Since b⊤

1 GCν(Z)b·1 = λ1/2 and because b⊤

1 GCν(Z)b1 = GGMDν(f1, f1),
the result follows.
(iii) Again, the Rayleigh-Ritz identity yields:

λmin := min
b⊤

·K [GCν(Z) +GCν(Z)⊤]b·K

b⊤

·Kb·K

= λK .

Then, b⊤

·KGCν(Z)b·K = GGMDν(f·K , f·K) = λ·K/2.

The index GGMDν(f·k, f·k) represents the variability of the observations
projected onto component f·k. When this variability is null, then the eigen-
value is null (i). In the same time, there is neither co-variability in the Gini
sense between f·k and another axis f·ℓ, that is GGMDν(f·k, f·ℓ) = 0.

In the Gaussian case, because the Gini correlation matrix is positive semi-
definite, the eigenvalues are non-negative, then GGMD is null whenever it
reaches its minimum.

Proposition 4.3. Let Z ∼ N (0, 1) and let X represent identically dis-
tributed Gaussian random variables, with distribution N (0,ρ) such that Var(Xk) =
1 for all k = 1, . . . , K and let γ1, . . . , γK be the eigenvalues of Var(X). Then
the following assertions holds:

(i) Tr[GCν(X)] = Cov(Z,Φ(Z))Tr[Var(X)].
(ii) µk = Cov(Z,Φ(Z))γk for all k = 1, . . . , K.
(iii) |GCν(X)| = CovK(Z,Φ(Z))|Var(X)|.
(iv) For all ν > 1:

µk

Tr[GCν(X)]
=

γk
Tr[Var(X)]

, ∀k = 1, . . . , K.
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Proof. From Theorem 3.2:

GCν(X) = σ−1Cov(Z,Φ(Z))Var(X).

From Abramowitz & Stegun (1964) (Chapter 26), when Z ∼ N (0, 1),

Cov(Z,Φ(Z)) =
1

2
√
π
≈ 0.2821.

Then the results follow directly.

Point (iv) shows that the eigenvalues of the standard PCA are propor-
tional to those issued from the generalized Gini PCA. Because each eigenvalue
(in proportion of the trace) represents the variability (or the quantity of in-
formation) inherent to each axis, then both PCA techniques are equivalent
when X is Gaussian:

µk

Tr[GCν(X)]
=

γk
Tr[Var(X)]

, ∀k = 1, . . . , K ; ∀ν > 1.

4.4 The RN-Euclidean space

In classical PCA, the duality between RN and RK enables the eigenvec-
tors and eigenvalues of RN to be deduced from those of RK and conversely.
This duality is not so obvious in the Gini PCA case. Indeed, in RN the
Gini variability between the observations would be measured by GCν(Z̃) :=

−2ν
N(N−1)

(Rc
z
)⊤Z, and subsequently the idea would be to derive the eigenvalue

equation related to RN ,

[GCν(Z̃) +GCν(Z̃)⊤] b̃·k = λ̃·kb̃·k.

The other option is to define a basis of RN from a basis already available in
RK . In particular, the set of principal components {f1, . . . , f·k} provides by
construction a set of normalized and orthogonal vectors. Let us rescale the
vectors f·k such that:

f̃·k =
f·k

GMDν(f·k, f·k)
.

Then, {f̃1, . . . , f̃·k} constitutes an orthonormal basis of RK in the Gini sense

since GMDν(f̃·k, f̃·k) = 1. This basis may be used as a projector of the

variables z·k onto RN . Let F̃ be the N ×K matrix with f̃·k in columns. The
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projection of the variables z·k in RN is given by the following Gini correlation
matrix:

V :=
−2ν

N(N − 1)
F̃

⊤

Rc
z
,

whereas it is given by 1
N
F̃

⊤

Z in the standard PCA, that is, the matrix of

Pearson correlation coefficients between all f̃·k and z·ℓ. The same interpreta-
tion is available in the Gini case. The matrix V is normalized in such a way
that V ≡ [vkℓ] are the G-correlations indices between f̃·k and z·ℓ. This yields
the ability to make easier the interpretation of the variables projected onto
the new subspace.

5 Interpretations of the Gini PCA

The analysis of the projections of the observations and of the variables are
necessary to provide accurate interpretations. Some criteria have to be de-
signed in order to bring out, in the new subspace, the most significant obser-
vations and variables.

5.1 Observations

The absolute contribution of an observation i to the variability of a principal
component f·k is:

ACTik =
fik Ψ(R(fik))

GGMDν(f·k, f·k)
.

The absolute contribution of each observation i to the generalized Gini Mean
Difference of f·k (ACTik) is interpreted as a percentage of variability of
GGMDν(f·k, f·k), such that

∑N
i=1 ACTik = 1. This provides the most impor-

tant observations i related to component f·k with respect to the information
GGMDν(f·k, f·k). On the other hand, instead of employing the Euclidean
distance between one observation i and the component f·k, the Manhattan
distance is used. The relative contribution of an observation i to component
f·k is then:

RCTik =
|fik|
‖fi·‖1

.

Remark that the gravity center of {f1, . . . , f·K} is g := (f̄1, . . . , f̄·K) = 0. The
Manhattan distance between observation i and g is then

∑K
k=1 |fik − 0|, and
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so

RCTik =
|fik|

‖fi· − g‖1
.

The relative contribution RCTik may be interpreted rather as the contribu-
tion of dimension k to the overall distance between observation i and g.

5.2 Variables

The most significant variables must be retained for the analysis and the in-
terpretation of the data in the new subspace. It would be possible, in the
same manner as in the observations case, to compute absolute and relative
contributions from the Gini correlation matrix V ≡ [vkℓ]. Instead, it is pos-
sible to test directly for the significance of the elements vkℓ of V in order
to capture the variables that significantly contribute to the Gini variabil-
ity of components f·k. Let us denote Ũℓk := Cov(f·ℓ,R

c
z
·k
) with Rc

z
·k

the
(decumulative) centered rank vector of z·k raised to an exponent of ν − 1
and U·ℓ := Cov(f·ℓ,R

c
f
·ℓ
). Those two Gini covariances yield the following

U -statistics:

Uℓk =
Ũℓk

U·ℓ

= vkℓ.

Let U0
ℓk be the expectation of Uℓk, that is U0

ℓk := E[Uℓk]. From Yitzhaki &
Schechtman (2013), Uℓk is an unbiased and consistent estimator of U0

ℓk. From
Theorem 10.4 in Yitzhaki & Schechtman (2013), Chapter 10, we asymptoti-
cally get that

√
N(Uℓk − U0

ℓk)
a∼ N . Then, it is possible to test for:

∥∥∥∥
H0 : U

0
ℓk = 0

H1 : U
0
ℓk 6= 0.

Let σ̂2
ℓk the Jackknife variance of Uℓk, then it is possible to test for the null

under the assumption N → ∞ as follows:9

Uℓk

σ̂ℓk

a∼ N (0, 1).

The usual PCA enables the variables to be analyzed in the circle of cor-
relation, which outlines the correlations between the variables z·k and the

9As indicated by Yitzhaki (1991), the efficient Jackknife method may be used to find
the variance of any U -statistics.
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components f·ℓ. In order to make a comparison with the usual PCA, let us
rescale the U -statistics Uℓk. Let U be the K×K matrix such that U ≡ [Uℓk],
and u·k the k-th column ofU. Then, the absolute contribution of the variable
z·k to the component f·ℓ is:

ÃCT kℓ =
Uℓk

‖u·k‖2
.

The measure ÃCT kℓ yields a graphical tool aiming at comparing the standard
PCA with the Gini PCA. In the standard PCA, cos2 θ (see Figure 2 below)
provides the Pearson correlation coefficient between f1 and z·k. In the Gini

PCA, cos2 θ is the normalized Gini correlation coefficient ÃCT k1 thanks to
the ℓ2 norm.

Figure 2: Circle of correlation

It is worth mentioning that the circle of correlation does not provide the
significance of the variables. This significance relies on the statistical test

based on the U -statistics exposed before. Because ÃCT depends on the ℓ2
metric, it is sensitive to outliers, and as such, the choice of the variables must
rely on the test of U0

ℓk only.
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6 Monte Carlo Simulations

In this Section, it is shown with the aid of Monte Carlo simulations that the
usual PCA yields irrelevant results when outlying observations contaminate
the data. To be precise, the absolute contributions computed in the stan-
dard PCA based on the variance may lead to select outlying observations
on the first component in which there is the most important variability (a
direct implication of the maximization of the variance). In consequence, the
interpretation of the PCA may inflate the role of the first principal compo-
nents. The Gini PCA dilutes the importance of the outliers to make the
interpretations more robust and therefore more relevant.

Algorithm 1: Monte Carlo Simulation

Result: Robust Gini PCA with data contamination
1 θ = 1 [ θ is the value of the outlier] ;
2 repeat
3 Generate a 4-variate normal distribution X ∼ N , N = 500 ;
4 Introduce outliers in 1 row of X: Xo

ji := θXji with j = 1, . . . , 4

[for a random row localization];
5 For each method (Variance and Gini), the ACT and RCT are

computed for the axes 1 and 2 on the contaminated matrix Xo;

6 until θ = 1000 [increment of 1];
7 return Mean squared Errors of eigenvalues, ACT and RCT ;

The mean squared errors of the eigenvalues are computed as follows:

MSEλk
=

∑1,000
i=1 (λoi

k − λk)
2

1, 000
,

where λoi
k is the eigenvalue computed with outlying observations in the sam-

ple. The MSE of ACT et RCT are computed in the same manner.

We first investigate the case where the variables are highly correlated in
order to gauge the robustness of each technique (Gini for ν = 2, 4, 6 and
variance). The correlation matrix between the variables is given by:

ρ =




1 0.8 0.9 0.7
0.8 1 0.8 0.75
0.9 0.8 1 0.6
0.7 0.75 0.6 1
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As can be seen in the matrix above, we can expect that all the informa-
tion be gathered on the first axis because each pair of variables records an
important linear correlation. The repartition of the information on each com-
ponent, that is, each eigenvalue in percentage of the sum of the eigenvalues
is the following.

Eigenvalues Gini ν = 2 Gini ν = 4 Gini ν = 6 Variance

eigenvalues (%) 81.65341 82.31098 82.28372 81.11458
Axis 1

MSE 12.313750 12.196975 12.221840 15.972710

eigenvalues (%) 10.90079 10.47317 10.46846 11.35471
Axis 2

MSE 11.478541 11.204504 10.818344 10.688924

eigenvalues (%) 5.062329 4.996538 5.088865 5.112817
Axis 3

MSE 2.605312 2.608647 2.799180 4.687323

eigenvalues (%) 2.383476 2.219311 2.15896 2.417897
Axis 4

MSE 1.541453 1.826055 3.068596 2.295100

Table 1: Eigenvalues and their MSE

The first axis captures around 82% of the variability of the overall sam-
ple (before contamination). Although each PCA method yields the same
repartition of the information over the different components before the con-
tamination of the data, it is possible to show that the classical PCA is not
robust. For this purpose, let us analyze Figures 3a-3d below that depict the
MSE of each observation with respect to the contamination process described
in Algorithm 1 above.

On the first axis of Figure 3a, the absolute contribution of each obser-
vation (among 500 observations) is not stable because of the contamina-
tion of the data, however the Gini PCA performs better. The MSE of the
ACTs measured during to the contamination process provides lower val-
ues for the Gini index compared with the variance. On the other hand,
if we compute the standard deviation of all these MSEs over the two first
axis, again the Gini methodology provides lower variations (see Table 2).
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(a) ACT1 (b) ACT2

(c) RCT1 (d) RCT2

Figure 3: ACT1, ACT2, RCT1 and RCT2

Gini ν = 2 Gini ν = 4 Gini ν = 6 Variance

Axis 1 6.08 6.62 7.41 12.09
Axis 2 4.07 5.12 13.37 2.98

Table 2: Standard deviation of the MSE of the ACTs on the two first axis

Let us take now an example with less correlations between the variables
in order to get a more equal repartition of the information on the first two
axes.

ρ =




1 −0.5 0.25 0.5
−0.5 1 −0.9 1
0.25 −0.9 1 −0.25
0.5 0 −0.25 1
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The repartition of the information over the new axes (percentage of each
eigenvalue) is given in Table 3. When the information is less concentrated
on the first axis (55% on axis 1 and around 35% on axis 2), the MSE of
the eigenvalues after contamination are much more important for the stan-
dard PCA compared with the Gini approach (2 to 3 times more important).
Although the fourth axis reports an important MSE for the Gini method
(ν = 6), the eigenvalue percentage is not significant (1.56%).

eigenvalues (%) Gini ν = 2 Gini ν = 4 Gini ν = 6 Variance

eigenvalues (%) 55.3774 55.15931 54.96172 55.08917
Axis 1

MSE 17.711023 14.968196 12.745760 38.929147

eigenvalues (%) 35.8385 35.86216 35.8745 36.06118
Axis 2

MSE 14.012198 16.330350 18.929923 30.948674

eigenvalues (%) 7.227274 7.345319 7.527222 7.329535
Axis 3

MSE 4.919686 4.897820 5.036241 6.814252

eigenvalues (%) 1.556831 1.633214 1.636561 1.520114
Axis 4

MSE 1.149770 7.890184 14.047539 1.438904

Table 3: Eigenvalues and their MSE

Let us now have a look on the MSE of the absolute contributions of each
observation (N = 500) for each PCA technique (4a-4b). We obtain the same
kind of results, with less variability on the second axis. In Figures 4a-4b,
it is apparent that the classical PCA based on the ℓ2 norm exhibits much
more ACT variability (black points). This means that the contamination of
the data can lead to the interpretation of some observations as significant
(important contribution to the variance of the axis) while they are not (and
vice versa). On the other hand, the MSE of the RCTs after contamination of
the data, Figures 4c-4d, are less spread out for the Gini technique for ν = 4
and ν = 6, however for ν = 2 there is more variability of the MSE compared
with the variance. This means that the distance from one observation to
an axis may not be reliable (although the interpretation of the data rather
depends on the ACTs).
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(a) ACT1 (b) ACT2

(c) RCT1 (d) RCT2

Figure 4: ACT1, ACT2, RCT1 and RCT2

The results of Figures 4a-4d can be synthesized by measuring the standard
deviation of the MSE over the ACTs of the 500 observations along the two
first axes.

Gini ν = 2 Gini ν = 4 Gini ν = 6 Variance

Axis 1 7.50 7.86 8.46 11.92
Axis 2 0.62 0.75 0.77 11.24

Table 4: Standard deviation of the MSE of the ACT on the two first axes

As in the previous example of simulation, Table 4 indicates that the PCA
based on the variance is less stable about the values of the ACTs that provide
the most important observations of the sample. This may lead to irrelevant
interpretations.
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7 Application on cars data

We propose a simple application with the celebrated cars data (see the Ap-
pendix).10 The dataset is particularly interesting since there are highly cor-
related variables as can be seen in the Pearson correlation matrix given in
Table 5.

capacity x1 power x2 speed x3 weight x4 width x5 length x6

x1 1.000 0.954 0.885 0.692 0.706 0.663
x2 0.954 1.000 0.933 0.528 0.729 0.663
x3 0.885 0.933 1.000 0.466 0.618 0.578
x4 0.692 0.528 0.466 1.000 0.477 0.794
x5 0.706 0.729 0.618 0.477 1.000 0.591
x6 0.663 0.663 0.578 0.794 0.591 1.000

Table 5: Correlation matrix

Also, the dataset is composed of some outlying observations (Figure 5):
Ferrari enzo (x1, x2, x5), Bentley continental (x2), Aston Martin (x2), Land
Rover discovery (x5), Mercedes class S (x5), Smart (x5, x6).

The overall information (variability) is partitioned over six components
(Table 6).

eigenvalues in % Gini ν = 2 Gini ν = 4 Gini ν = 6 Variance

Axis 1 80.35797 83.17172 84.84995 73.52112
Axis 2 12.0761 10.58655 9.715974 14.22349
Axis 3 4.132136 2.987015 3.130199 7.26106
Axis 4 3.059399 2.612411 1.519626 3.93117
Axis 5 0.3332362 0.3125735 0.2696611 0.85727
Axis 6 0.04115858 −0.3297257 -0.5145944 0.20585
Sum 100 % 100 % 100 % 100 %

Table 6: Eigenvalues (%)

Two axes may be chosen to analyze the data. As shown in the previous
Section about the simulations, when the data are highly correlated such that

10An R markdown for Gini PCA is available: https://github.com/freakonometrics/GiniACP/

Data from Michel Tenenhaus’s website (see also the Appendix):
https://studies2.hec.fr/jahia/webdav/site/hec/shared/sites/tenenhaus/acces anonyme/home/fichier excel/auto 2004.xls
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capacity x1 power x2 speed x3

weight x4 width x5 length x6

Figure 5: Box plots

two axes are sufficient to project the data, the Gini PCA and the standard
PCA yield the same share of information on each axis. However, we can
expect some differences for absolute contributions ACT and relative contri-
butions RCT .

The projection of the data is depicted in Figure 6, for each method.
As depicted in Figure 6, the projection is very similar for each technique.

The cars with extraordinary (or very low) abilities are in the same relative
position in the four projections: Land Rover Discovery Td5 at the top, Ferrari
Enzo at the bottom right, Smart Fortwo coupé at the bottom left. However,
when we improve the coefficient of variability ν to look for what happens
at the tails of the distributions (of the two axes), we see that more cars
are distinguishable: Land Rover Defender, Audi TT, BMW Z4, Renault
Clio 3.0 V6, Bentley Contiental GT. Consequently, contrary to the case ν =
2 or the variance, the projections with ν = 4, 6 allow one to find other
important observations, which are not outlying observations that contribute
to the overall amount of variability. For this purpose, let us first analyze the
correlations between the variables and the new axes in order to interpret the
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(a) Gini (ν = 2) (b) Gini (ν = 4)

(c) Gini (ν = 6)

(d) Variance

Figure 6: Projections of the cars

results, see Tables 7 to 10.
Some slight differences appear between the Gini PCA and the classical

one based on the variance. The theoretical Section 4 indicates that the
Gini methodology for ν = 2 is equivalent to the variance when the variables
are Gaussian. On cars data, we observe this similarity. In each PCA, all
variables are correlated with Axis 1 and weight with Axis 2. However, when
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ν increases, the Gini methodology allows outlying observations to be diluted
so that some variables may appear to be significant, whereas they are not in
the variance case.

Gini (ν = 2) capacity power speed weight width length

correlation -0.974 -0.945 -0.872 0.760 -0.933 -0.823
Axe 1

U-stat -56.416 -25.005 -10.055 -4.093 -24.837 -12.626

correlation -0.032 -0.241 -0.405 0.510 0.183 -0.379
Axe 2

U-stat -0.112 -0.920 -1.576 2.897 0.526 1.666

Table 7: Correlations Axes / variables (significance 5%)

Gini (ν = 4) capacity power speed weight width length

correlation 0.982 0.948 0.797 0.858 0.952 0.888
Axe 1

U-stat 8.990 8.758 4.805 9.657 8.517 8.182

correlation -0.021 0.207 0.516 -0.279 -0.147 -0.246
Axe 2

U-stat -0.095 0.817 2.299 -1.773 -0.705 -1.200

Table 8: Correlations Axes / variables (significance 5%)

Gini (ν = 6) capacity power speed weight width length

valeurs -0.781 -0.759 -0.598 -0.730 -0.755 -0.701
Axe 1

U-stat -4.036 -3.903 -3.137 -3.125 -3.882 -3.644

valeurs 0.019 -0.170 -0.570 0.153 0.125 0.218
Axe 2

U-stat 0.089 -0.734 -1.914 0.734 0.569 0.906

Table 9: Correlations Axes / variables (significance 5%, 10%)
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Variance capacity power speed weight width length

valeurs 0.962 0.923 0.886 0.756 0.801 0.795
Axe 1

U-stat 11.802 11.322 10.866 9.282 9.825 9.752

valeurs -0.126 -0.352 -0.338 0.575 -0.111 0.504
Axe 2

U-stat -0.307 -0.855 -0.821 1.396 -0.269 1.223

Table 10: Correlations Axes / variables (significance 5%, 10%)

Tables 8 and 9 (ν = 4, 6) show that Axis 2 is correlated to speed (not
weight as in the variance PCA). In this respect the absolute contributions
must describe the cars associated with speed on Axis 2. Indeed, the Land
Rover discovery, a heavy weight car, is no more available on Axis 2 for the
Gini PCA for ν = 2, 4, 6 (Figures 8, 9, 10). Note that the red line in the Fig-
ures represents the mean share of the information on each axis, i.e. 100%/24
cars = 4.16% of information per car.

(a) Axis 1 (variance) (b) Axis 2 (variance)

Figure 7: Variance ACTs

Finally, some cars are not correlated with axis 2 in the standard PCA, see
Figures 8–10, while this is the case in the Gini PCA. Indeed some cars are
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(a) Axis 1 (ν = 2) (b) Axis 2 (ν = 2)

Figure 8: Gini ACTs (ν = 2)

(a) Axis 1 (ν = 4) (b) Axis 2 (ν = 4)

Figure 9: Gini ACTs (ν = 4)

now associated with speed: Aston Martin, Bentley Continental GT, Renault
Clio 3.0 V6 and Mini 1.6 170. This example of application shows that the
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(a) Axis 1 (ν = 6) (b) Axis 2 (ν = 6)

Figure 10: Gini ACTs (ν = 6)

use of the Gini metric robust to outliers may involve some serious changes in
the interpretation of the results.

8 Conclusion

In this paper, it has been shown that the geometry of the Gini covariance op-
erator allows one to perform Gini PCA, that is, a robust principal component
analysis based on the ℓ1 norm.

To be precise, the variance may be replaced by the Gini Mean Difference,
which captures the variability of couples of variables based on the rank of
the observations in order to attenuate the influence of the outliers. The Gini
Mean Difference may be rather interpreted with the aid of the generalized
Gini index GGMDν in the new subspace for a better understanding of the
variability of the components, that is, GGMDν is both a rank-dependent
measure of variability in Yaari (1987) sense and also an eigenvalue of the
Gini correlation matrix.

Contrary to many approaches in multidimensional statistics in which the
standard variance-covariance matrix is used to project the data onto a new
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subspace before deriving multidimensional Gini indices (see e.g. Banerjee
(2010)), we propose to employ the Gini correlation indices (see Yitzhaki &
Schechtman (2013)). This provides the ability to interpret the results with
the ℓ1 norm and the use of U -statistics to measure the significance of the
correlation between the new axes and the variables.

This research may open the way on data analysis based on Gini metrics
in order to study multivariate correlations with categorical variables or dis-
criminant analyses when outlying observations drastically affect the sample.
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Appendix

cars capacity x1 power x2 speed x3 weight x4 width x5 length x6

Citroën C2 1.1 Base 1124 61 158 932 1659 3666
Smart Fortwo Coupé 698 52 135 730 1515 2500

Mini 1.6 170 1598 170 218 1215 1690 3625
Nissan Micra 1.2 65 1240 65 154 965 1660 3715
Renault Clio 3.0 V6 2946 255 245 1400 1810 3812
Audi A3 1.9 TDI 1896 105 187 1295 1765 4203

Peugeot 307 1.4 HDI 70 1398 70 160 1179 1746 4202
Peugeot 407 3.0 V6 BVA 2946 211 229 1640 1811 4676

Mercedes Classe C 270 CDI 2685 170 230 1600 1728 4528
BMW 530d 2993 218 245 1595 1846 4841

Jaguar S-Type 2.7 V6 Bi-Turbo 2720 207 230 1722 1818 4905
BMW 745i 4398 333 250 1870 1902 5029

Mercedes Classe S 400 CDI 3966 260 250 1915 2092 5038
Citroën C3 Pluriel 1.6i 1587 110 185 1177 1700 3934

BMW Z4 2.5i 2494 192 235 1260 1781 4091
Audi TT 1.8T 180 1781 180 228 1280 1764 4041

Aston Martin Vanquish 5935 460 306 1835 1923 4665
Bentley Continental GT 5998 560 318 2385 1918 4804

Ferrari Enzo 5998 660 350 1365 2650 4700
Renault Scenic 1.9 dCi 120 1870 120 188 1430 1805 4259

Volkswagen Touran 1.9 TDI 105 1896 105 180 1498 1794 4391
Land Rover Defender Td5 2495 122 135 1695 1790 3883
Land Rover Discovery Td5 2495 138 157 2175 2190 4705
Nissan X-Trail 2.2 dCi 2184 136 180 1520 1765 4455

Table 11: Cars data
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