
HAL Id: hal-02340337
https://hal.science/hal-02340337

Submitted on 4 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computational complexity versus statistical
performance on sparse recovery problems
Vincent Roulet, Nicolas Boumal, Alexandre d’Aspremont

To cite this version:
Vincent Roulet, Nicolas Boumal, Alexandre d’Aspremont. Computational complexity versus statistical
performance on sparse recovery problems. Information and Inference, 2019, �10.1093/imaiai/iay020�.
�hal-02340337�

https://hal.science/hal-02340337
https://hal.archives-ouvertes.fr


ar
X

iv
:1

50
6.

03
29

5v
5 

 [
m

at
h.

O
C

] 
 2

 N
ov

 2
01

8

COMPUTATIONAL COMPLEXITY VERSUS STATISTICAL PERFORMANCE

ON SPARSE RECOVERY PROBLEMS

VINCENT ROULET, NICOLAS BOUMAL, AND ALEXANDRE D’ASPREMONT

ABSTRACT. We show that several classical quantities controlling compressed sensing performance directly

match classical parameters controlling algorithmic complexity. We first describe linearly convergent restart

schemes on first-order methods solving a broad range of compressed sensing problems, where sharpness at the

optimum controls convergence speed. We show that for sparse recovery problems, this sharpness can be written

as a condition number, given by the ratio between true signal sparsity and the largest signal size that can be

recovered by the observation matrix. In a similar vein, Renegar’s condition number is a data-driven complexity

measure for convex programs, generalizing classical condition numbers for linear systems. We show that for a

broad class of compressed sensing problems, the worst case value of this algorithmic complexity measure taken

over all signals matches the restricted singular value of the observation matrix which controls robust recovery

performance. Overall, this means in both cases that, in compressed sensing problems, a single parameter

directly controls both computational complexity and recovery performance. Numerical experiments illustrate

these points using several classical algorithms.

INTRODUCTION

Sparse recovery problems have received a lot of attention from various perspectives. On one side, an

extensive literature explores the limits of recovery performance. On the other side, a long list of algorithms

now solve these problems very efficiently. Early on, it was noticed empirically by e.g. Donoho and Tsaig

[2008], that recovery problems which are easier to solve from a statistical point of view (i.e., where more

samples are available), are also easier to solve numerically. Here, we show that these two aspects are indeed

intimately related.

Recovery problems consist in retrieving a signal x∗, lying in some Euclidean space E, given linear ob-

servations. If the signal is “sparse”, namely if it can be efficiently compressed, a common approach is to

minimize the corresponding sparsity inducing norm ‖ · ‖ (e.g. the ℓ1 norm in classical sparse recovery). The

exact sparse recovery problem then reads

minimize ‖x‖
subject to A(x) = b,

(1)

in the variable x ∈ E, where A is a linear operator on E and b = A(x∗) is the vector of observations. If the

observations are affected by noise a robust version of this problem is written as

minimize ‖x‖
subject to ‖A(x)− b‖2 ≤ ǫ,

(2)

in the variable x ∈ E, where ‖ · ‖2 is the Euclidean norm and ǫ > 0 is a tolerance to noise. In penalized

form, this is

minimize ‖x‖+ λ‖A(x) − b‖22 (3)

in the variable x ∈ E where λ > 0 is a penalization parameter. This last problem is known as the LASSO

[Tibshirani, 1996] in the ℓ1 case.
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When x∗ has no more than s non zero values, Donoho and Tanner [2005] and Candès and Tao [2006]

have shown that, for certain linear operators A, O(s log p) observations suffice for stable recovery of x∗ by

solving the exact formulation (1) using the ℓ1 norm (a linear program), where p is the dimension of the space

E. These results have then been generalized to many other recovery problems with various assumptions on

signal structure (e.g., where x is a block-sparse vector, a low-rank matrix, etc.) and corresponding convex

relaxations were developed in those cases (see e.g. Chandrasekaran et al. [2012] and references therein).

Recovery performance is often measured in terms of the number of samples required to guarantee exact or

robust recovery given a level of noise.

On the computational side, many algorithms were developed to solve these problems at scale. Besides

specialized methods such as LARS [Efron et al., 2004], FISTA [Beck and Teboulle, 2009] and NESTA

[Becker, Bobin and Candès, 2011], solvers use accelerated gradient methods to solve robust recovery prob-

lems, with efficient and flexible implementations covering a wide range of compressed sensing instances

developed by e.g. Becker, Candès and Grant [2011]. Recently, linear convergence results have been ob-

tained for the LASSO [Agarwal et al., 2011; Yen et al., 2014; Zhou et al., 2015] using variants of the

classical strong convexity assumption, while [Zhou and So, 2017] studied error bounds for a much broader

class of structured optimization problems including sparse recovery and matrix completion. Some restart

schemes have also been developed in e.g. [O’Donoghue and Candes, 2015; Su et al., 2014; Giselsson and

Boyd, 2014] while Fercoq and Qu [2016] showed that generic restart schemes can offer linear convergence

given a rough estimate of the behavior of the function around its minimizers.

As mentioned above, Donoho and Tsaig [2008] was one of the first reference to connect statistical and

computational performance in this case, showing empirically that recovery problems which are easier to

solve from a statistical point of view (i.e., where more samples are available), are also easier to solve nu-

merically (using homotopy methods). More recently, Chandrasekaran and Jordan [2013]; Amelunxen et al.

[2014] studied computational and statistical tradeoffs for increasingly tight convex relaxations of shrinkage

estimators. They show that recovery performance is directly linked to the Gaussian squared-complexity of

the tangent cone with respect to the constraint set and study the complexity of several convex relaxations. In

[Chandrasekaran and Jordan, 2013; Amelunxen et al., 2014] however, the structure of the convex relaxation

is varying and affecting both complexity and recovery performance, while in [Donoho and Tsaig, 2008] and

in what follows, the structure of the relaxation is fixed, but the data (i.e. the observation matrix A) varies.

Here, as a first step, we study the exact recovery case and show that the null space property introduced by

Cohen et al. [2009] can be seen as a measure of sharpness on the optimum of the sparse recovery problem.

On one hand this allows us to develop linearly convergent restart schemes whose rate depends on this

sharpness. On the other hand we recall how the null space property is linked to the recovery threshold of the

sensing operator A for random designs, thus producing a clear link between statistical and computational

performance.

We then analyze the underlying conic geometry of recovery problems. Robust recovery performance

is controlled by a minimal conically restricted singular value. We recall Renegar’s condition number and

show how it affects the computational complexity of optimality certificates for exact recovery and the linear

convergence rate of restart schemes. By observing that the minimal conically restricted singular value

matches the worst case value of Renegar’s condition number on sparse signals, we provide further evidence

that a single quantity controls both computational and statistical aspects of recovery problems. Numerical

experiments illustrate its impact on various classical algorithms for sparse recovery.

The first two sections focus on the ℓ1 case for simplicity. We generalize our results to non-overlapping

group norms and the nuclear norm in a third section.

Notations. For a given integer p ≥ 1, J1, pK denotes the set of integers between 1 and p. For a given subset

S ⊂ J1, pK, we denote Sc = J1, pK \ S its complementary and Card(S) its cardinality. For a given vector

x ∈ R
p, we denote Supp(x) = {i ∈ J1, pK : xi 6= 0} the support of x, ‖x‖0 = Card(Supp(x)) its sparsity

and ‖x‖p its p-norm. For a given vector x and integer subset S ⊂ J1, pK, xS ∈ R
p denotes the vector
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obtained by zeroing all coefficients of x that are not in S. For a given linear operator or matrix A, we denote

Null(A) its null space, Im(A) its range, and ‖X‖2 its operator norm with respect to the Euclidean norm (for

matrices this is the spectral norm). The identity operator is denoted I. In a linear topological space E we

denote int(F ) the interior of F ⊂ E. Finally for a given real a, we denote ⌈a⌉ the smallest integer larger

than or equal to a and ⌊a⌋ the largest integer smaller than or equal to a.

1. SHARPNESS, RESTART AND SPARSE RECOVERY PERFORMANCE

In this section and the following one, we discuss sparse recovery problems using the ℓ1 norm. Given a

matrix A ∈ R
n×p and observations b = Ax∗ on a signal x∗ ∈ R

p, recovery is performed by solving the ℓ1
minimization program

minimize ‖x‖1
subject to Ax = b

(ℓ1 recovery)

in the variable x ∈ R
p.

In what follows, we show that the Null Space Property condition (recalled below) can be seen as measure

of sharpness for ℓ1-recovery of a sparse signal x∗, with

‖x‖1 − ‖x∗‖1 > γ‖x− x∗‖1 (Sharp)

for any x 6= x∗ such that Ax = b, and some 0 ≤ γ < 1. This first ensures that x∗ is the unique minimizer

of problem (ℓ1 recovery) but also has important computational implications. It allows us to produce linear

convergent restart schemes whose rates depend on sharpness. By connecting null space property to recovery

threshold for random observation matrices, we thus get a direct link between computational and statistical

aspects of sparse recovery problems.

1.1. Null space property & sharpness for exact recovery. Although the definition of null space property

appeared in earlier work [Donoho and Huo, 2001; Feuer and Nemirovski, 2003] the terminology of restricted

null space is due to Cohen et al. [2009]. The following definition differs slightly from the original one in

order to relate it to intrinsic geometric properties of the problem in Section 2.

Definition 1.1. (Null Space Property) The matrix A satisfies the Null Space Property (NSP) on support

S ⊂ J1, pK with constant α ≥ 1 if for any z ∈ Null(A) \ {0},

α‖zS‖1 < ‖zSc‖1. (NSP)

The matrix A satisfies the Null Space Property at order s with constant α ≥ 1 if it satisfies it on every

support S of cardinality at most s.

The Null Space Property is a necessary and sufficient condition for the convex program (ℓ1 recovery) to

recover all signals up to some sparsity threshold. Necessity will follow from results recalled in Section 2.2.

We detail sufficiency of (NSP) using sharpness in the following proposition.

Proposition 1.2. Given a coding matrix A ∈ R
n×p satisfying (NSP) at order s with constant α ≥ 1, if the

original signal x∗ is s-sparse, then for any x ∈ R
p satisfying Ax = b, x 6= x∗, we have

‖x‖1 − ‖x∗‖1 >
α− 1

α+ 1
‖x− x∗‖1. (4)

This implies signal recovery, i.e. optimality of x∗ for (ℓ1 recovery), and the sharpness bound (Sharp) with

γ = α−1
α+1 .
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Proof. The proof follows the one in [Cohen et al., 2009, Theorem 4.4]. Let S = supp(x∗), with

Card(S) ≤ s, and let x 6= x∗ such that Ax = b, so z = x− x∗ 6= 0 satisfies Az = 0. Then

‖x‖1 = ‖x∗S + zS‖1 + ‖zSc‖1 (5)

≥ ‖x∗S‖1 − ‖zS‖1 + ‖zSc‖1 (6)

= ‖x∗‖1 + ‖z‖1 − 2‖zS‖1. (7)

Now as A satisfies (NSP) on support S,

‖z‖1 = ‖zS‖1 + ‖zSc‖1 > (1 + α)‖zS‖1 (8)

hence

‖x‖1 − ‖x∗‖1 >
α− 1

α+ 1
‖z‖1 =

α− 1

α+ 1
‖x− x∗‖1. (9)

As α ≥ 1, this implies that x∗ is the solution of program (ℓ1 recovery) and the corresponding sharpness

bound.

Sharpness is a crucial property for optimization problems that can be exploited to accelerate the per-

formance of classical optimization algorithms [Nemirovskii and Nesterov, 1985; Roulet and d’Aspremont,

2017]. Before that we remark that it is in fact equivalent to (NSP) at order s.

Proposition 1.3. Given a matrix A ∈ R
n×p such that problem (ℓ1 recovery) is sharp on every s-sparse

signal x∗, i.e. there exists 0 ≤ γ < 1 such that

‖x‖1 − ‖x∗‖1 > γ‖x− x∗‖1, (10)

for any x 6= x∗ such that Ax = Ax∗. Then, A satisfies (NSP) at order s with constant α = 1+γ
1−γ ≥ 1.

Proof. Let S ⊂ J1, pK with Card(S) ≤ s and z ∈ Null(A), z 6= 0, such that AzS = −AzSc and

zS 6= −zSc . Using sharpness of problem (ℓ1 recovery) with x∗ = zS , and x = −zSc , we get

‖zSc‖1 − ‖zS‖1 > γ‖z‖1 = γ‖zS‖1 + γ‖zSc‖1. (11)

Rearranging terms and using γ < 1, this reads

‖zSc‖1 >
1 + γ

1− γ
‖zS‖1, (12)

which is (NSP) on support S with the announced constant. As S was taken arbitrarily, this means (NSP)

holds at order s.

1.2. Restarting first-order methods. In this section, we seek to solve the recovery problem (ℓ1 recovery)

and exploit the sharpness bound (Sharp). The NESTA algorithm [Becker, Bobin and Candès, 2011] uses the

smoothing argument of Nesterov [2005] to solve (ℓ1 recovery). In practice, this means using the optimal

algorithm of Nesterov [1983] to minimize

fǫ(x) , sup
‖u‖∞≤1

{

uTx− ǫ

2p
‖u‖22

}

(13)

for some ǫ > 0, which approximates the ℓ1 norm uniformly up to ǫ/2. This is the classical Huber function,

which has a Lipschitz continuous gradient with constant equal to p/ǫ. Overall given an accuracy ǫ and a

starting point x0 this method outputs after t iterations a point x = A(x0, ǫ, t) such that

‖x‖1 − ‖x̂‖1 ≤
2p‖x0 − x̂‖22

ǫt2
+

ǫ

2
, (14)

for any x̂ solution of problem (ℓ1 recovery). Now if the sharpness bound is satisfied, restarting this method,

as described in the (Restart) scheme presented below, accelerates its convergence.
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Algorithm 1 Restart Scheme (Restart)

Input: Initial point y0 ∈ R
p, initial gap ǫ0 ≥ ‖y0‖1 − ‖x̂‖1, decreasing factor ρ, restart clock t

For k = 1 . . . ,K compute

ǫk = ρǫk−1, yk = A(yk−1, ǫk, t) (Restart)

Output: A point ŷ = yK approximately solving (ℓ1 recovery).

1.2.1. Optimal restart scheme. We begin by analyzing an optimal restart scheme assuming the sharpness

constant is known. We use a non-integer clock to highlight its dependency to the sharpness. Naturally clock

and number of restarts must be integer but this does not affect much bounds as detailed in Appendix A.

The next proposition shows that algorithm A needs a constant number of iterations to decrease the gap by a

constant factor, which means restart leads to linear convergence.

Proposition 1.4. Given a coding matrix A ∈ R
n×p and a signal x∗ ∈ R

p such that the sharpness

bound (Sharp) is satisfied with γ > 0, i.e.

‖x‖1 − ‖x∗‖1 > γ‖x− x∗‖1, (15)

for any x 6= x∗ such that Ax = Ax∗, running the (Restart) scheme with t ≥ 2
√
p

γρ ensures

‖yk‖1 − ‖x∗‖1 ≤ ǫk, (16)

at each iteration, with x∗ the unique solution of problem (ℓ1 recovery). Using optimal parameters

ρ∗ = e−1 and t∗ =
2e
√
p

γ
, (17)

we get a point ŷ such that

‖ŷ‖1 − ‖x∗‖1 ≤ exp

(

− γ

2
√
p
eN

)

ǫ0. (18)

after running a total of N inner iterations of Algorithm Restart with t = t∗ (hence N/t restarts).

Proof. By the choice of ǫ0, (16) is satisfied for k = 0. Assuming it holds at iteration k, combining

sharpness bound (Sharp) and complexity bound (14) leads to, for x = A(yk−1, ǫk, t),

‖x‖1 − ‖x∗‖1 ≤
2p(‖yk−1‖1 − ‖x∗‖1)2

γ2ǫkt2
+

ǫk
2

≤ 4p

ρ2γ2t2
ǫk
2

+
ǫk
2
.

Therefore after t ≥ 2
√
p

γρ iterations, the method has achieved the decreased accuracy ǫk which proves (16).

The overall complexity after a total of N inner iterations, hence N/t restarts, is then

‖ŷ‖1 − ‖x∗‖1 ≤ ρN/tǫ0. (19)

If γ is known, using exactly
2
√
p

γρ inner iterations at each restart leads to

‖ŷ‖1 − ‖x∗‖1 ≤ exp

(

γ

2
√
p
Nρ log ρ

)

ǫ0. (20)

Optimizing in ρ yields ρ∗ = e−1, and with t∗ inner iterations the complexity bound (18) follows.

To run NESTA, ATA is assumed to be an orthogonal projector (w.l.o.g. at the cost of computing an SVD)

such that the projection on the feasible set is easy. Becker, Bobin and Candès [2011] already studied restart

schemes that they called “acceleration with continuation”. However their restart criterion depends on the
5



relative variation of objective values, not on the number of iterates, and no linear convergence was proven.

We further note that linear convergence of restart schemes requires an assumption of the form

f(x)− f∗ ≥ γd(x,X∗)ν , (21)

where d(x,X∗) is the distance (in any norm) from x to the set of minimizers of the objective function f
(here f(x) = ‖x‖1). This type of bound is known as Łojasiewicz’s inequality, studied for example in Bolte

et al. [2007] for non-smooth convex functions. Here (NSP) ensures that the set of minimizers is reduced to

a singleton, the original signal.

1.2.2. Practical restart scheme. Several parameters are needed to run the optimal scheme above. The op-

timal decreasing factor is independent of the data. The initial gap ǫ0 can be taken as ‖y0‖1 for Ay0 = b.
The sharpness constant γ is for its part mostly unknown such that we cannot choose the number t∗ of inner

iterations a priori. However, given a budget of iterations N (the total number of iterations in the optimiza-

tion algorithm, across restarts), a log scale grid search can be performed on the optimal restart clock to

get nearly optimal rates as detailed in the following corollary (contrary to the general results in [Roulet

and d’Aspremont, 2017], the sharpness exponent ν in (21) is equal to one here, simplifying the parameter

search).

Corollary 1.5. Given a coding matrix A ∈ R
n×p, a signal x∗ ∈ R

p such that the sharpness bound (Sharp)

is satisfied with γ > 0, a budget of N iterations, run the following schemes from an initial point y0

(Restart) with t = hj , j = 1, . . . , ⌊loghN⌋ (22)

with h the grid search precision. Stop restart iteration when the total number of iterations has exceeded the

budget N . Then, provided that N ≥ ht∗, where t∗ is defined in (17), at least one of these restart schemes

achieves a precision given by

‖ŷ‖1 − ‖x∗‖1 ≤ exp

(

− γ

2h
√
p
eN

)

ǫ0. (23)

Overall running the logarithmic grid search has a complexity loghN times higher than running N iterations

in the optimal scheme.

Proof. All schemes stop after at most N+hj ≤ 2N iterations. As we assumed N ≥ ht∗, j = ⌈logh t∗⌉ ≤
loghN and (Restart) has been run with t = hj . Proposition 1.4 ensures, since t ≥ t∗, that the output of this

scheme achieves after N ′ ≥ N total iterations a precision

‖ŷ‖1 − ‖x̂‖1 ≤ e−N ′/tǫ0 ≤ e−N/tǫ0 (24)

and as t ≤ ht∗

‖ŷ‖1 − ‖x̂‖1 ≤ e−N/(ht∗)ǫ0 (25)

which gives the result. Finally the logarithmic grid search costs loghN to get this approximative optimal

bound.

Sharpness therefore controls linear convergence of simple restart schemes to solve (ℓ1 recovery). We now

turn back to (NSP) estimates and connect them to recovery thresholds of the sampling matrix. This will give

us a direct link between computational complexity and recovery performance for exact recovery problems.

1.3. Recovery threshold. If (NSP) is satisfied at a given order s it holds also for any s′ ≤ s. However,

the constant, and therefore the speed of convergence, may change. Here we show that this constant actually

depends on the ratio between the maximal order at which A satisfies (NSP) and the sparsity of the signal

that we seek to recover.

To this end, we give a more concrete geometric meaning to the constant α in (NSP), connecting it with

the diameter of a section of the ℓ1 ball by the null space of the matrix A (see e.g. Kashin and Temlyakov

[2007] for more details).
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Lemma 1.6. Given a matrix A ∈ R
n×p, denote

1

2
diam(Bp

1 ∩Null(A)) = sup
Az=0
‖z‖1≤1

‖z‖2, (26)

the radius of the section of the ℓ1 ball Bp
1 by the null space of the matrix A and

sA , 1/diam(Bp
1 ∩Null(A))2, (27)

a recovery threshold. Then A satisfies (NSP) at any order s < sA with constant

α = 2
√

sA/s− 1 > 1. (28)

Proof. For any z ∈ Null(A) and support set S with Card(S) ≤ s, using equivalence of norms and

definition of the radius,

‖zS‖1 ≤
√
s ‖z‖2 ≤

1

2

√

s

sA
‖z‖1 =

1

2

√

s

sA
(‖zS‖1 + ‖zSc‖1), (29)

which means, as s < sA,

‖zSc‖1 ≥ (2
√

sA/s− 1)‖zS‖1, (30)

hence the desired result.

With sA defined in (27), for any signal x∗ of sparsity s < sA, the sharpness bound (Sharp) then reads

‖x‖1 − ‖x∗‖1 ≥
(

1−
√

s/sA

)

‖x− x∗‖1, (31)

and the optimal restart scheme defined in Proposition 1.4 has complexity

‖ŷ‖1 − ‖x∗‖1 ≤ exp

(

−
(

1−
√

s/sA

) e

2
√
p
N

)

ǫ0, (32)

which means that, given a sensing matrix A with recovery threshold sA, the sparser the signal, the faster the

algorithm.

Precise estimates of the diameter of random sections of norm balls can be computed using classical

results in geometric functional analysis. The low M∗ estimates of Pajor and Tomczak-Jaegermann [1986]

(see [Vershynin, 2011, Theorem 3.1] for a concise presentation) show that when E ⊂ R
p is a random

subspace of codimension n (e.g. the null space of a random matrix A ∈ R
n×p), then

diam(Bp
1 ∩ E) ≤ c

√

log p

n
, (33)

with high probability, where c > 0 is an absolute constant. This means that the recovery threshold sA
satisfies

sA ≥ n/(c2 log p), (34)

with high probability and leads to the following corollary.

Corollary 1.7. Given a random sampling matrix A ∈ R
n×p whose nullspace is Haar distributed on the

Grassman manifold, and a signal x∗ with sparsity s < n/(c2 log p), (Restart) scheme with optimal parame-

ters defined in (17) outputs a point ŷ such that

‖ŷ‖1 − ‖x∗‖1 ≤ exp

(

−
(

1− c

√

s log p

n

)

e

2
√
p
N

)

ǫ0, (35)

with high probability, where c is a universal constant and N is the total number of iterations.
7



This means that the complexity of the optimization problem (ℓ1 recovery) is controlled by the oversam-

pling ratio n/s. In other words, while increasing the number of samples increases the time complexity of

elementary operations of the algorithm, it also increases its rate of convergence.

2. RENEGAR’S CONDITION NUMBER AND RESTRICTED SINGULAR VALUES

We first gave concrete evidence of the link between optimization complexity and recovery performance

for the exact recovery problem by highlighting sharpness properties of the objective around the true signal,

given by the null space condition. We now take a step back and consider results on the underlying conic

geometry of recovery problems that also control both computational and statistical aspects.

On the statistical side, minimal conically restricted singular values are known to control recovery perfor-

mance in robust recovery problems. On the computational side, Renegar’s condition number, a well known

computational complexity measure for conic convex programs, controls the cost of obtaining optimality

certificates for exact recovery and the sharpness of exact recovery problems (hence computational complex-

ity of the (Restart) scheme presented in the previous section). Numerical experiments will then illustrate its

relevance to control numerous other classical algorithms. By observing that minimal conically restricted sin-

gular values match the worst case of Renegar’s condition number on sparse signals, our analysis shows once

more that one single geometrical quantity controls both statistical robustness and computational complexity

of recovery problems.

2.1. Conic linear systems. Conic linear systems arise naturally from optimality conditions of the exact

recovery problem. To see this, define the tangent cone at point x with respect to the ℓ1 norm, that is, the set

of descent directions for ‖ · ‖1 at x, as

T (x) = cone{z : ‖x+ z‖1 ≤ ‖x‖1}. (36)

As shown for example by [Chandrasekaran et al., 2012, Prop 2.1] a point x is then the unique optimum of

the exact recovery problem (ℓ1 recovery) if and only if Null(A) ∩ T (x) = {0}, that is, there is no point

satisfying the linear constraints that has lower ℓ1 norm than x. Correct recovery of an original signal x∗ is

therefore certified by the infeasibility of a conic linear system of the form

find z
s.t. Az = 0

z ∈ C, z 6= 0,
(PA,C)

where C is a closed cone and A a given matrix. For both computational and statistical aspects we will be

interested in the distance to feasibility. On the computational side this will give a distance to ill-posedness

that plays the role of a condition number. On the statistical side it will measure the amount of perturbation

that the recovery can handle.

Definition 2.1 (Distance to feasibility). Writing MC = {A ∈ R
n×p : (PA,C) is infeasible}, distance to

feasibility is defined as

σC(A) , inf
∆A

{‖∆A‖2 : A+∆A /∈ MC}. (37)

A geometric analysis of the problem explicits the distance to feasibility in terms of minimal conically

restricted singular value, as recalled in the following lemma.

Lemma 2.2. Given a matrix A ∈ R
p×n and a closed cone C , the distance to feasibility of (PA,C) is given

by

σC(A) = min
x∈C

‖x‖2=1

‖Ax‖2. (38)
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Proof. We recall the short proof of [Amelunxen and Lotz, 2014, Lemma 3.2]. Similar results have

been derived by [Freund and Vera, 1999b, Theorem 2] and [Belloni and Freund, 2009, Lemma 3.2]. Let

z ∈ C , with ‖z‖2 = 1, achieve the minimum above. Then ∆A = −AzzT satisfies (A + ∆A)z = 0, so

A+∆A /∈ MC and

σC(A) ≤ ‖∆A‖2 = ‖Az‖2‖z‖2 = min
x∈C

‖x‖2=1

‖Ax‖2. (39)

On the other hand denote ∆A a perturbation such that A+∆A /∈ MC . Then there exists z ∈ C \ {0} such

that (A+∆A)z = 0. Thus we have

‖∆A‖2 ≥ ‖∆Az‖2
‖z‖2

=
‖Az‖2
‖z‖2

≥ min
x∈C

‖x‖2=1

‖Ax‖2. (40)

Taking the infimum on the left-hand side over all ∆A such that A+∆A /∈ MC concludes the proof.

Expression (38) writes distance to infeasibility as a cone restricted eigenvalue. Minimal cone restricted

eigenvalues also directly characterize recovery performance as we recall now.

2.2. Recovery performance of robust recovery. Several quantities control the stability of sparse recovery

in a noisy setting, with e.g. [Candes et al., 2006] using restricted isometry constants, and [Kashin and

Temlyakov, 2007; Juditsky and Nemirovski, 2011] using diameters with respect to various norms. In this

vein, the previous section showed that recovery of a signal x∗ is ensured by infeasiblity of the conic linear

system (PA,T (x∗)), i.e. positiveness of the minimal conically restricted singular value σT (x∗)(A). We now

show how this quantity also controls recovery performance in the presence of noise. In that case, the robust

recovery problem attempts to retrieve an original signal x∗ by solving

minimize ‖x‖1
subject to ‖Ax− b‖2 ≤ δ‖A‖2, (Robust ℓ1 recovery)

in the variable x ∈ R
p, with the same design matrix A ∈ R

n×p, where b ∈ R
n are given observations

perturbed by noise of level δ > 0. The following classical result then bounds reconstruction error in terms

of σT (x∗)(A).

Lemma 2.3. Given a coding matrix A ∈ R
n×p and an original signal x∗, suppose we observe b = Ax∗+w

where ‖w‖2 ≤ δ‖A‖2 and denote an optimal solution of (Robust ℓ1 recovery) by x̂. If the minimal singular

value σT (x∗)(A) in (38) restricted to the tangent cone T (x∗) in (36) is positive, the following error bound

holds:

‖x̂− x∗‖2 ≤ 2
δ‖A‖2

σT (x∗)(A)
. (41)

Proof. We recall the short proof of [Chandrasekaran et al., 2012, Prop. 2.2]. Both x̂ and x∗ are feasible

for (Robust ℓ1 recovery) and x̂ is optimal, so that ‖x̂‖1 ≤ ‖x∗‖1. Thus, the error vector x̂ − x∗ is in the

tangent cone T (x∗). By the triangle inequality,

‖A(x̂− x∗)‖2 ≤ ‖Ax̂− b‖2 + ‖Ax∗ − b‖2 ≤ 2δ‖A‖2. (42)

Furthermore, by definition of σT (x∗)(A),

‖A(x̂− x∗)‖2 ≥ σT (x∗)(A) ‖x̂− x∗‖2. (43)

Combining the two concludes the proof.

Therefore the robustness of the coding matrix A on all s-sparse signals is controlled by

µs(A) , inf
x : ‖x‖0≤s

min
z∈T (x)
‖z‖2=1

‖Az‖2. (44)

9



Expression of this minimal conically singular value can the be simplified by identifying the tangent cones

on s-sparse signals, as done in the following lemma.

Lemma 2.4. For any subset S ⊂ J1, pK, let

ES = {z : ‖zSc‖1 ≤ ‖zS‖} and FS =
⋃

x : x=xS

T (x), (45)

then ES = FS .

Proof. Let z ∈ ES , take x = −zS , then

‖x+ z‖1 = ‖zSc‖1 ≤ ‖zS‖1 = ‖x‖1. (46)

Therefore z ∈ T (x) ⊂ FS as x = xS .

Conversely let z ∈ FS , and x ∈ R
p, with x = xS , such that z ∈ T (x). Then

‖x+ z‖1 = ‖x+ zS‖1 + ‖zSc‖1 ≥ ‖x‖1 − ‖zS‖1 + ‖zSc‖1. (47)

As z ∈ T (x), this implies ‖zSc‖1 ≤ ‖zS‖1, so z ∈ ES and we conclude that ES = FS .

Therefore, the previous expression for the minimal conically restricted singular value (44) can be equiv-

alently stated as

µs(A) = min
S⊂J1,pK

Card(S)≤s

min
‖zSc‖1≤‖zS‖1

‖z‖2=1

‖Az‖2. (48)

This quantity upper bounds the conically restricted singular value introduced in [Bickel et al., 2009] defined

as

κs(A) = inf
S∈J1,pK

Card(S)≤s

inf
‖xSc‖1≤‖xS‖1

‖xS‖2=1

‖Ax‖2

In Bickel et al. [2009], the authors showed that it controls estimation performance of LASSO and Dantzig

selector, which was further explored by [Van De Geer and Bühlmann, 2009]. Ȯbserve that positiveness of

µs(A) is equivalent to (NSP) at order s with constant 1 which shows necessity of (NSP) for sparse recovery.

Since both null space property and conically restricted singular values are necessary and sufficient condi-

tions for exact recovery they may have been linked previously in the literature. Here we derive estimates for

the constant in (NSP) from the minimal cone restricted singular value using tools form conic linear systems.

We search for α such that (NSP) is satisfied at order s. Equivalently we search for α such that for any

support S of cardinality at most s, the conic linear system

find z
s.t. Az = 0

‖zSc‖1 ≤ α‖zS‖1, z 6= 0
(49)

is infeasible. Notice that system (49) for α > 1 is a perturbed version of the case α = 1, so the problem

reduces to studying the sensitivity to perturbations of conic linear systems as shown in the following lemma.

Lemma 2.5. Given a matrix A ∈ R
n×p and an integer s ∈ J1, pK, if the minimal conically restricted

singular value µs(A) in (44) and (48) is positive, then A satisfies (NSP) at order s for any constant

α ≤
(

1− µs(A)

‖A‖2

)−1

. (50)

Proof. For a support S of cardinality at most s, write P the orthogonal projector on this support (that is,

Px = xS), P̄ = I − P its orthogonal projector and define the closed cone CS = {z : ‖zSc‖1 ≤ ‖zS‖1}.

Given α ≥ 1, denote H = α−1P + P̄ = I− (1− α−1)P . Observe that

{z : ‖zSc‖1 ≤ α‖zS‖1} = HCS . (51)
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Therefore, the conic linear system (49) reads

find z
s.t. Az = 0

z ∈ HCS , z 6= 0.
(52)

As H is invertible, this is equivalent to

find z
s.t. AHz = 0

z ∈ CS , z 6= 0.
(53)

Therefore, if the conic linear system

find z
s.t. Az = 0

z ∈ CS , z 6= 0
(54)

is infeasible, that is σCS
(A) > 0, by Lemma 2.2, which is true for µs > 0, then by definition of the distance

to feasibility, (53) is also infeasible provided ‖AH −A‖2 ≤ σCS
(A), which holds for any α ≥ 1 such that

(1− α−1)‖AP‖2 ≤ σCS
(A). (55)

Using that ‖AP‖2 ≤ ‖A‖2, infeasibility is ensured in particular for any α such that

1− σCS
(A)

‖A‖2
≤ α−1. (56)

To ensure infeasibility of the conic linear systems (49) for any support S, it suffices to take α such that

1− µs(A)

‖A‖2
≤ α−1. (57)

This means that (NSP) at order s is satisfied for any

α ≤
(

1− µs(A)

‖A‖2

)−1

(58)

where we used that, by definition of the minimal conically restricted singular value, µs(A) ≤ ‖A‖2 (in case

of equality (NSP), will be satisfied for any α ≥ 1).

We now relate the minimal cone restricted singular value to computational complexity measures.

2.3. Computational complexity of recovery problems. Computational complexity for convex optimiza-

tion problems is often described in terms of polynomial functions of problem size. This produces a clear

link between problem structure and computational complexity but fails to account for the nature of the data.

If we use linear systems as a basic example, unstructured linear systems of dimension n can be solved with

complexity O(n3) regardless of the matrix values, but iterative solvers will converge much faster on systems

that are better conditioned. The seminal work of Renegar [1995b, 2001] extends this notion of condition-

ing to optimization problems, producing data-driven bounds on the complexity of solving conic programs,

and showing that the number of outer iterations of interior point algorithms increases as the distance to

ill-posedness decreases.
11



2.3.1. Renegar’s condition number. Renegar’s condition number [Renegar, 1995b,a; Peña, 2000] provides

a data-driven measure of the complexity of certifying infeasibility of a conic linear system of the form

presented in (PA,C) (the larger the condition number, the harder the problem). It is rooted in the sensible

idea that certifying infeasibility is easier if the problem is far from being feasible. It is defined as the scale

invariant reciprocal of the distance to feasibility σC(A), defined in (37), of problem (PA,C), i.e.

RC(A) ,
‖A‖2
σC(A)

= ‖A‖2/ min
x∈C

‖x‖2=1

‖Ax‖2. (59)

Notice that, if C were the whole space R
p, and if ATA were full-rank (never the case if n < p), then σC(A)

would be the smallest singular value of A. As a result, RC(A) would reduce to the classical condition

number of A (and to ∞ when ATA is rank-deficient). Renegar’s condition number is necessarily smaller

(better) than the latter, as it further incorporates the notion that A need only be well conditioned along those

directions that matter with respect to C .

2.3.2. Complexity of certifying optimality. In a first step, we study the complexity of the oracle certifying

optimality of a candidate solution x to (ℓ1 recovery) as a proxy for the problem of computing an optimal

solution to this problem. As mentioned in Section 2.1, optimality of a point x is equivalent to infeasibility

of
find z
s.t. Az = 0

z ∈ T (x), z 6= 0,
(PA,T (x))

where the tangent cone T (x) is defined in (36). By a theorem of alternative, infeasibility of (PA,T (x)) is

equivalent to feasibility of the dual problem

find y
s.t. AT y ∈ int(T (x)◦),

(DA,T (x))

where T (x)◦ is the polar cone of T (x). Therefore, to certify infeasibility of (PA,T (x)) it is sufficient to

exhibit a solution for the dual problem (DA,T (x)).

Several references have connected Renegar’s condition number and the complexity of solving such conic

linear systems using various algorithms [Renegar, 1995b; Freund and Vera, 1999a; Epelman and Freund,

2000; Renegar, 2001; Vera et al., 2007; Belloni et al., 2009]. In particular, Vera et al. [2007] linked it to the

complexity of solving the primal dual pair (PA,T (x))–(DA,T (x)) using a barrier method. They show that the

number of outer barrier method iterations grows as

O
(√

ρ log
(

ρRT (x)(A)
))

, (60)

where ρ is the barrier parameter, while the conditioning (hence the complexity) of the linear systems arising

at each interior point iteration is controlled by RT (x)(A)
2. This link was also tested empirically on linear

programs using the NETLIB library of problems by Ordóñez and Freund [2003], where computing times

and number of iterations were regressed against estimates of the condition number computed using the

approximations for Renegar’s condition number detailed by Freund and Vera [2003].

Studying the complexity of computing an optimality certificate gives insights on the performance of

oracle based optimization techniques such as the ellipsoid method. We now show how Renegar’s condition

also controls the number steps in the (Restart) scheme presented in Section 1.2.

2.3.3. Complexity of restart scheme with Renegar’s condition number. Convergence of the (Restart) scheme

presented in Section 1.2 is controlled by the sharpness of the problem deduced from (NSP). We now ob-

serve that sharpness is controlled by the worst case Renegar condition number for the optimality certificates

(PA,T (x)) on all s-sparse signals, defined as

Rs(A) , sup
x : ‖x‖0≤s

RT (x)(A) = ‖A‖2/µs(A). (61)
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Connecting Lemmas 2.3, 2.5 and Proposition 1.4 we get the following corollary.

Corollary 2.6. Given a coding matrix A ∈ R
n×p and a sparsity level s ≥ 1, if Rs(A) < +∞ in (61) then

optimal (Restart) scheme achieves an ǫ precision in at most

O((2Rs(A)− 1) log ǫ−1) (62)

iterations.

This shows that Renegar’s condition number explicitly controls the convergence of an algorithmic scheme

devoted to the exact recovery problem (ℓ1 recovery), through its link with sharpness.

On the statistical side, we observed that the minimal conically restricted singular value controls recovery

performance of robust procedures and that its positivity ensures exact recovery. On the computational side,

we presented the role of Renegar’s condition number as a computational complexity measure for sparse

recovery problems. A key observation is that the worst case of Renegar’s condition number Rs(A), defined

in (61), matches the minimal conically restricted singular value defined in (44). Once again, a single quantity

controls both aspects. This at least partially explains the common empirical observation (see, e.g., Donoho

and Tsaig [2008]) that problem instances where statistical estimation succeeds are computationally easier to

solve.

2.4. Computational complexity for inexact recovery. When the primal problem (PA,T (x)) is feasible, so

that σT (x)(A) = 0, Renegar’s condition number as defined here is infinite. While this correctly captures

the fact that, in that regime, statistical recovery does not hold, it does not properly capture the fact that,

when (PA,T (x)) is “comfortably” feasible, certifying so is easy, and algorithms terminate quickly (although

they return a useless estimator). From both a statistical and a computational point of view, the truly delicate

cases correspond to problem instances for which both (PA,T (x)) and (DA,T (x)) are only barely feasible or

infeasible. This is illustrated in simple numerical example by [Boyd and Vandenberghe, 2004, §11.4.3]

and in our numerical experiments, corresponding to the peaks in the CPU time plots of the right column in

Figure 4: problems where sparse recovery barely holds/fails are relatively harder. For simplicity, we only

focused here on distance to feasibility for problem (PA,T (x)). However, it is possible to symmetrize the

condition numbers used here as described by [Amelunxen and Lotz, 2014, §1.3], where a symmetric version

of the condition number is defined as

R̄T (x)(A) = min

{

‖A‖
σP
T (x)(A)

,
‖A‖

σD
T (x)(A)

}

, (63)

where σP
T (x)(A) and σD

T (x)(A) denote the distance to feasibility of respectively (PA,T (x)) and (DA,T (x)).

This quantity peaks for programs that are nearly feasible/infeasible.

As we noticed in Section 1.2, a Łojasiewicz inequality (21) for the (ℓ1 recovery) problem is sufficient to

ensure linear convergence of the restart scheme. Connecting the symmetrized Renegar condition number to

the Łojasiewicz inequality constant γ may then produce complexity bounds for the restart scheme beyond

the recovery case. Łojasievicz inequalities for convex programs have indeed proven their relevance. They

were used by Fercoq and Qu [2016]; Roulet and d’Aspremont [2017] to accelerate classical methods, in

particular on the LASSO problem. Lower computational bounds for the computational complexity of ac-

celerated methods on convex optimization problems satisfying sharpness assumptions were also studied by

[Nemirovskii and Nesterov, 1985, Page 6]. Although the Łojasievicz inequality is proven to be satisfied by

a broad class of functions [Bolte et al., 2007], quantifying its parameters is still a challenging problem that

would enable better parameter choices for appropriate algorithms.

2.5. Other algorithms. The restart scheme presented in Section 1.2 is of course not the only one to solve

problem (ℓ1 recovery) in practice and it has not been analyzed in the noisy case. However, we will ob-

serve in the numerical experiments of Section 4 that the condition number is correlated with the empirical

performance of efficient recovery algorithms such as LARS [Efron et al., 2004] and Homotopy [Donoho
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and Tsaig, 2008; Asif and Romberg, 2014]. On paper, the computational complexities of (ℓ1 recovery)

and (Robust ℓ1 recovery) are very similar (in fact, infeasible start primal-dual algorithms designed for solv-

ing (ℓ1 recovery) actually solve problem (Robust ℓ1 recovery) with δ small). However in our experiments,

we did observe sometimes significant differences in behavior between the noisy and noiseless case.

3. GENERALIZATION TO COMMON SPARSITY INDUCING NORMS

In this section we generalize previous results to sparse recovery problems in (non-overlapping) group

norms or nuclear norm. Group norms arise in contexts such as genomics to enforce the selection of groups

of genes (e.g., Obozinski et al. [2011] and references therein.) The nuclear norm is used for low-rank

estimation (e.g., Recht et al. [2008] and references therein.) We use the framework of decomposable norms

introduced by Negahban et al. [2009] which applies to these norms. This allows us to generalize the null

space property and to derive corresponding sharpness bounds for the exact recovery problem in a broader

framework. We then again relate recovery performance and computational complexity of these recovery

problems.

3.1. Decomposable norms. Sparsity inducing norms have been explored from various perspectives. Here,

we use the framework of decomposable norms by Negahban et al. [2009] to generalize our results from

ℓ1 norms to non-overlapping group norms and nuclear norms in a concise form. We then discuss the key

geometrical properties of these norms and potential characterization of their conic nature.

We first recall the definition of decomposable norms by Negahban et al. [2009] in terms of projectors.

Definition 3.1. Decomposable norms Given a Euclidean space E, a norm ‖.‖ on E is said to be decom-

posable if there exists a family of orthogonal projectors P such that

(i) to each P ∈ P is associated a non-negative weight η(P ) and an orthogonal projector P̄ such that

PP̄ = P̄P = 0, and

(ii) for any x ∈ E and P ∈ P, ‖Px+ P̄ x‖ = ‖Px‖+ ‖P̄ x‖ .

A signal x is then said to be s-sparse if there exists P ∈ P, such that η(P ) ≤ s and Px = x.

We now detail the family of projectors for some decomposable norms of interest.

3.1.1. ℓ1 norm. In the the ℓ1 norm case, E = R
p and P is the set of projectors on coordinate subspaces

of Rp, that is, P contains all projectors which zero out all coordinates of a vector except for a subset of

them, which are left unaffected. The maps P̄ are the complementary projectors: P̄ = I−P . Property (ii) is

the classical decomposability of the ℓ1 norm. Naturally, the complexity level corresponds to the number of

coordinates preserved by P , i.e., ν(P ) = Rank(P ). These definitions recover the usual notion of sparsity.

3.1.2. Group norms. Given a partition G of J1, pK in (non-overlapping) groups g ⊂ J1, pK, the group norm

is defined for x ∈ R
p as

‖x‖ =
∑

g∈G
‖xg‖r, (64)

where ‖xg‖r is the ℓr-norm of the projection of x onto the coordinates defined by g. The cases r = 2,∞
correspond respectively to ℓ1/ℓ2 and ℓ1/ℓ∞ block norms. Here, E = R

p and the family P is composed of

orthogonal projectors onto coordinates defined by (disjoint) unions of groups g, and P̄ = I− P . Formally,

to each P we associate F ⊂ G such that for any x ∈ E, (Px)g = xg if g ∈ F and (Px)g = 0 otherwise.

Decomposability (ii) then clearly holds. To each group g we associate a weight ηg and for a projector P ∈ P
with associated F ⊂ G, η(P ) =

∑

g∈F ηg. A classical choice of weights is ηg = 1 for all g ∈ G.
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3.1.3. Nuclear norm. The nuclear norm is defined for matrices X ∈ R
p×q with singular values σi(X) as

‖X‖ =

min(p,q)
∑

k=1

σk(X). (65)

Here E = R
p×q and its associated family of projectors contains P such that

P : X 7→ PleftXPright, (66)

and

P̄ : X 7→ (I− Pleft)X(I − Pright), (67)

where Pleft ∈ R
p×p and Pright ∈ R

q×q are orthogonal projectors. Their weights are defined as η(P ) =
max (Rank(Pleft),Rank(Pright)) defining therefore s-sparse matrices as matrices of rank at most s. As

P and P̄ project on orthogonal row and column spaces, condition (ii) holds.

Decomposable norms offer a unified nomenclature for the study of sparsity inducing norms. However,

they appear to be essentially restricted to the three examples presented above. Moreover, it is not clear if

their definition is sufficient to characterize the conic nature of these norms, in particular in the nuclear norm

case that will require additional linear algebra results. In comparison, the framework proposed by Juditsky

et al. [2014] can encompass non-latent overlapping groups. For future use, we simplify the third property of

their definition [Juditsky et al., 2014, Section 2.1] in Appendix B. It is not clear how this view can be used

for latent overlapping group norms presented by Obozinski et al. [2011] applied in biology. Moreover the

sufficient conditions that Juditsky et al. [2014] present are sufficient but not necessary in the nuclear norm

case. Better characterizing the key geometrical properties of these norms is therefore a challenging research

direction.

3.2. Sharpness and generalized null space property. From now on, we assume that we are given an am-

bient Euclidean space E with one of the three decomposable norms ‖.‖ presented in previous section, i.e. ℓ1,

group or nuclear norm, and the associated family of orthogonal projectors P as introduced in Definition 3.1.

We study the sparse recovery problem

minimize ‖x‖
subject to A(x) = b

(Sparse recovery)

in the variable x ∈ E, where A is a linear operator onto R
n and the observations b ∈ R

n are taken from an

original point x∗ such that b = A(x∗). We begin by generalizing the null space property in this setting.

Definition 3.2. (Generalized Null space Property) A linear operator A on E satisfies the Generalized

Null Space Property (GNSP) for orthogonal projector P ∈ P with constant α ≥ 1 if and only if for any

z ∈ Null(A) \ {0} such that z = Pz + P̄ z,

α‖Pz‖ < ‖P̄ z‖. (GNSP)

The linear operator A satisfies the Generalized Null Space Property at order s with constant α ≥ 1 if it

satisfies it for any P such that η(P ) ≤ s.

Notice that if P̄ = I − P , the condition z = Pz + P̄ z is not restrictive. However it will be useful to

prove necessity of (GNSP) for the nuclear norm. In that case, observe that it is equivalent to the condition

introduced by Oymak and Hassibi [2010], i.e.

∀z ∈ Null(A) \ {0}, α

s
∑

i=1

σi(z) <

min(p,q)
∑

i=s+1

σi(z), (68)

where σi(z) are the singular values of z in decreasing order. Notice also that we recover the classical

Definition NSP in the ℓ1 case. The sharpness bound then easily follows if P̄ = I − P . In the case of the

nuclear norm it requires additional linear algebra results.
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Proposition 3.3. Given a linear operator A that satisfies (GNSP) at order s with constant α, if the original

point x∗ is s-sparse, then for any x ∈ E satisfying A(x) = b, x 6= x∗, we have

‖x‖ − ‖x∗‖ >
α− 1

α+ 1
‖x− x∗‖. (69)

This implies recovery, i.e., optimality of x∗ for (Sparse recovery).

Proof. Denote P such that η(P ) ≤ s and Px∗ = x∗, which defines its sparsity. Let x 6= x∗ such

that A(x) = b, so z = x − x∗ ∈ Null(A) and z 6= 0. If P̄ = I − P , x = Px + P̄ x and using the

decomposability (ii), we have

‖x‖ = ‖Px∗ + Pz‖+ ‖P̄ z‖ (70)

≥ ‖x∗‖ − ‖Pz‖+ ‖P̄ z‖ (71)

= ‖x∗‖+ ‖z‖ − 2‖Pz‖. (72)

By using (GNSP), ‖z‖ = ‖Pz‖ + ‖P̄ z‖ > (1 + α)‖Pz‖. The result follows by arranging the terms.

If ‖.‖ is the nuclear norm and P̄ 6= I − P , as in [Oymak and Hassibi, 2010, Lemma 6], we use that

(see [Horn and Johnson, 1990, Theorem 7.4.9.1])

‖x∗ + z‖ ≥
min(p,q)
∑

i=1

|σi(x∗)− σi(z)|, (73)

where σi(x
∗), σi(z) denote the singular values in decreasing order of respectively x∗ and z. Then, using

that x∗ has rank at most s,

‖x‖ ≥
s
∑

i=1

|σi(x∗)− σi(z)| +
min(p,q)
∑

i=s+1

σi(z) (74)

≥
s
∑

i=1

σi(x
∗)−

s
∑

i=1

σi(z) +

min(p,q)
∑

i=s+1

σi(z) (75)

= ‖x∗‖ − ‖Qz‖ + ‖Q̄z‖, (76)

where Q is the projector on the s largest singular directions of z and therefore Q̄ the projector on the n− s
others. These can be defined using the singular value decomposition of z such that z = Qz + Q̄z. Then,

using (GNSP) and the decomposability (ii) concludes the proof as above.

This shows that the sharpness bound of the form (Sharp) generalizes to non-overlapping group norms

and the nuclear norm. Proposition 1.3 can also be generalized directly to this case with our definition of

(GNSP). The smoothing argument and restart schemes developed in Section 1.2 can then be applied with

similar linear convergence rates that essentially depend on the sharpness constant. By looking at the diameter

of the section of the unit ball of the norm by the null space of A, one may also show that the oversampling

ratio controls the sharpness bound as in Section 1.3.

As in Section 2, we now study the conic quantities which control statistical and optimization aspects.

3.3. Robust recovery performance and computational complexity. In this section, for a Euclidean space

E and x ∈ E we denote ‖x‖2 the ℓ2 norm of its coefficients, if E is a matrix space ‖x‖2 is then the Frobenius

norm of x.
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3.3.1. Generalized cone restricted singular value. We begin by addressing the recovery performance of

robust sparse recovery problems that reads

minimize ‖x‖
subject to ‖A(x)− b‖2 ≤ δ‖A‖2, (Robust sparse recovery)

in the variable x ∈ E, with the same linear operator A, where the observations b ∈ R
n are affected by noise

of level δ > 0. For a linear operator A from E to R
n, we denote its operator norm with respect to ‖ · ‖,

‖A‖2 = supx∈E:‖x‖2≤1 ‖A(x)‖2.

The results of Section 2.2 transpose directly to the general case by replacing ‖ · ‖1 by ‖ · ‖. Precisely, as-

suming that b = Ax∗+w where ‖w‖2 ≤ δ‖A‖2, an optimal solution x̂ of problem (Robust sparse recovery)

satisfies the error bound

‖x̂− x∗‖2 ≤ 2
δ‖A‖2

σT (x∗)(A)
, (77)

where the tangent cone is defined as

T (x) = cone{z : ‖x+ z‖ ≤ ‖x‖}, (78)

and robust recovery of s-sparse signals is therefore controlled by

µs(A) = inf
P∈P : η(P )≤s

inf
x∈E :Px=x

min
z∈T (x)
‖z‖2=1

‖Az‖2. (79)

The key point is then to characterize the tangent cones of s-sparse signals. First, this will allow statistical

estimations of µs(A). Second, it will enable us to estimate the constant (GNSP), hence sharpness of the

exact recovery problem and computational complexity of associated restart schemes. This is the aim of the

following lemma.

Lemma 3.4. For a given sparsity s, write

E =
⋃

P∈P : η(P )≤s

{z ∈ E : z = Pz + P̄ z, ‖P̄ z‖ ≤ ‖Pz‖} (80)

and

F =
⋃

P∈P : η(P )≤s

⋃

x∈E :x=Px

T (x). (81)

Then E = F .

Proof. Let z ∈ E and P ∈ P such that z = Pz + P̄ z. Taking x = −Pz we get

‖x+ z‖ = ‖P̄ z‖ ≤ ‖Pz‖ = ‖x‖. (82)

Therefore z ∈ T (x) ⊂ F . Conversely, if z ∈ F , denote x ∈ E and P ∈ P such that x = Px, z ∈ T (x)
and η(P ) ≤ s. If P̄ = I− P , by decomposability (ii),

‖x+ z‖ = ‖Px+ Pz‖+ ‖P̄ z‖ ≥ ‖x‖ − ‖Pz‖+ ‖P̄ z‖. (83)

Since z ∈ T (x), we have ‖x+ z‖ ≤ ‖x‖; combined with the previous statement, this implies that z ∈ {z ∈
E : z = Pz+P̄ z, ‖P̄ z‖ ≤ ‖Pz‖} ⊂ E . Now, if ‖.‖ is the nuclear norm, as in the proof of Proposition (3.3),

we have

‖x+ z‖ ≥ ‖x‖ − ‖Qz‖ + ‖Q̄z‖, (84)

where Q is the projector on the s largest singular directions of z given by the singular value decomposition

of z, so that z = Qz+ Q̄z. Therefore, z ∈ T (x) implies z ∈ {z ∈ E : z = Qz+ Q̄z, ‖Q̄z‖ ≤ ‖Qz‖} ⊂ E .

In all cases we have therefore proven E = F .
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Using the previous lemma, the minimal cone restricted singular value reads:

µs(A) = inf
P∈P, η(P )≤s

min
z∈E, ‖z‖2=1

z=Pz+P̄ z, ‖P̄ z‖≤‖Pz‖

‖Az‖2. (85)

This quantity can then be linked to the (GNSP) constant, as shown in the following lemma.

Lemma 3.5. Given a linear operator A on E, If the minimal cone restricted singular value µs(A), defined

in (79) and reformulated in (85), is positive, then A satisfies (GNSP) at order s for any constant

α ≤
(

1− µs(A)

‖A‖2

)−1

. (86)

Proof. For a given P ∈ P, denote CP = {z ∈ Im(P ) + Im(P̄ ) : ‖P̄ z‖ ≤ ‖Pz‖} and define for α ≥ 1
the conic linear system

find z ∈ Im(P ) + Im(P̄ )
s.t. A(z) = 0

‖P̄ z‖ ≤ α‖Pz‖, z 6= 0.
(87)

Infeasibility of this system for all P ∈ P such that η(P ) ≤ s is then equivalent to (GNSP) at order s with

constant α. Denote H = I− (1− α−1)P such that

{z ∈ Im(P ) + Im(P̄ ) : ‖P̄ z‖ ≤ α‖Pz‖} = HCP . (88)

Since H is invertible, we observe as in Lemma 2.5 that the conic linear system (87) is equivalent to

find z ∈ Im(P ) + Im(P̄ )
s.t. A− (1− α−1)APz = 0

z ∈ CP , z 6= 0.
(89)

If this problem is infeasible for α = 1, i.e., its distance to feasibility µCP
(A) defined in (37) is positive, then

(89) is infeasible for any α ≥ 1 such that

(1− α−1)‖AP‖ ≤ µCP
(A). (90)

Now, if µs(A) > 0 the conic linear system (87) will still be infeasible for any

α ≤
(

1− µs(A)

‖A‖2

)−1

. (91)

Thus, A satisfies (GNSP) at order s with α as above.

3.3.2. Renegar’s condition number. On the computational side, denote RT (x)(A) the Renegar condition

number of the conic linear system

find z
s.t. A(z) = 0

z ∈ T (x), z 6= 0,
(92)

and the worst-case Renegar condition number on s-sparse signals

Rs(A) , sup
P∈P : η(P )≤s

sup
x∈E :Px=x

RT (x)(A) = ‖A‖2/µs(A). (93)

First, Renegar’s condition number plays the same role as before in computing optimality certificates for the

exact recovery problems. Then, combining Lemma 3.5 and Proposition 3.3 shows that the sharpness bound

for exact recovery reads

‖x‖ − ‖x∗‖ >
1

2Rs(A)− 1
‖x− x∗‖. (94)

This sharpness will then control linearly convergent restart schemes for the exact recovery problem.
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Overall then, as established earlier in this paper, a single geometric quantity—namely, the minimal cone

restricted singular value—appears to control both computational and statistical aspects. We now illustrate

this statement on numerical experiments.

4. NUMERICAL RESULTS

In this section, we first test the empirical performance of restart schemes and its link with recovery

performance. We then perform similar experiments on Renegar’s condition number.

4.1. Sharpness & restart for exact recovery. We test the (Restart) scheme on ℓ1-recovery problems with

random design matrices. Throughout the experiments, we use the NESTA code described in [Becker, Bobin

and Candès, 2011] as the subroutine in the restart strategy. We generate a random design matrix A ∈ R
n×p

with i.i.d. Gaussian coefficients. We then normalize A so that AAT = I (to fit NESTA’s format) and

generate observations b = Ax∗ where x∗ ∈ R
p is an s-sparse vector whose nonzero coefficients are all

ones. We denote x̂ the solution given by a common solver run at machine precision and plot convergence

f(xt)− f∗ = ‖xt‖1 − ‖x̂‖1 (scaled such that f(x0)− f(x̂) = 1).

4.1.1. Restart scheme performance. First we compare in Figure 1 the practical scheme presented in Sec-

tion 1.2.2 with a plain implementation of NESTA without restart or continuation steps. Dimensions of the

problem are p = 300, n = 200 and s = 10. Starting from x0 = AT b, we use ǫ0 = ‖x0‖1 as a first initial

guess on the gap and perform a grid search of step size h = 4 for a budget of N = 500 iterations. The

first and last schemes of the grid search were not run as they are unlikely to produce a nearly optimal restart

scheme. The grid search can be parallelized and the best scheme found is plotted with a solid red line. The

dashed red line represents the convergence rate accounting for the cost of the grid search. For the plain

implementation of NESTA, we used different target precisions. These control indeed the smoothness of the

surrogate function fǫ which itself controls the step size of Nesterov’s algorithm. Therefore a high precision

slows down the algorithm. However for low precision NESTA can be faster but will not approximate well

the original signal. Also, the theoretical bound (14) might be very pessimistic, as the surrogate function fǫ
may approximate the ℓ1 norm for the points of interest at a much better accuracy than ǫ.
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10 -5

10 0

Plain NESTA low
Plain NESTA high
Restart
Fair restartPSfrag replacements
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(x

t)
−

f
∗

Inner iterations

FIGURE 1. Best restarted NESTA (solid red line) and overall cost of the practical restart

schemes (dashed red line) versus plain NESTA implementation with low accuracy ǫ = 10−1

(dotted black line) and higher accuracy ǫ = 10−3 (dash-dotted black line) for a budget of

500 iterations.
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Overall, we observe a clear linear convergence of the restart scheme that outperforms the plain implemen-

tation. This was already observed by Becker, Bobin and Candès [2011] who developed their continuation

steps against which we compare in Figure 2. We used default options for NESTA, namely 5 continuation

steps with a stopping criterion based on the relative objective change in the surrogate function (specifi-

cally, the algorithm stops when these changes are lower than the target accuracy, set to 10−6). We compare

continuations steps and best restart found by grid search for different dimensions of the problem, we fix

p = 300, s = 10 and vary the number of samples n = {120, 200}. Continuation steps converge faster with

better conditioned problems, i.e., more samples. Overall the heuristic of continuation steps offer similar

or better linear convergence than the restart scheme found by grid-search. Notice that a lot of parameters

are involved for both algorithms, in particular the target precision may play an important role, so that more

extensive experiments may be needed to refine these statements.

Our goal here is to provide a simple but strong baseline with theoretical guarantees for recovery. Improv-

ing on it, as Fercoq and Qu [2016] did for LASSO, is an appealing research direction. Sharpness may be

used for example to refine the heuristic strategy of the continuations steps.
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FIGURE 2. Best restarted NESTA (solid red line) and overall cost of the practical restart

schemes (dashed red line) versus NESTA with 5 continuation steps (dotted blue line) for a

budget of 500 iterations. Crosses represent the restart occurrences. Left: n = 120. Right:

n = 200.

4.1.2. Convergence rate and oversampling ratio. We now illustrate the theoretical results of Section 1.3

by running the practical scheme presented in Section 1.2.2 for increasing values of the oversampling ratio

τ = n/s. In Figure 3, we plot the best scheme found by the grid search, that approximates the optimal

scheme, for a budget of N = 500 iterations. We use a non-logarithmic grid to find the best restart scheme.

Other algorithmic parameters remain unchanged: x0 = AT b and ǫ0 = ‖x0‖1. We fix the dimension

p = 1000 and either make n vary for a fixed sparsity s = 17 or make s vary for a fixed number of samples

n = 200. These values ensure that we stay in the recovery regime as analyzed in [Juditsky and Nemirovski,

2011]. In both cases we do observe an improved convergence for increasing oversampling ratio τ .
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FIGURE 3. Best restart scheme found by grid search for increasing values of the oversam-

pling ratio τ = n/s with p = 1000. Left: sparsity s = 17 fixed. Right: number of samples

n = 200 fixed.

4.2. Renegar’s condition number and compressed sensing performance. Our theoretical results showed

that Renegar’s condition number measures the complexity for the exact recovery problem (1). However it

does not a priori control convergence of the robust recovery problems defined in the introduction. This

numerical section aims therefore at analyzing the relevance of this condition number for general recovery

problems in the ℓ1 case, assuming that their complexity corresponds roughly to that of checking optimality

of a given point at each iteration, as mentioned in Section 2.3. We first describe how we approximate the

value of RT (x∗)(A) as defined in (59) for a given original signal x∗ and matrix A ∈ R
n×p. We then detail

numerical experiments on synthetic data sets.

4.2.1. Computing RT (x∗)(A). The condition number RT (x∗)(A) appears here in upper bounds on compu-

tational complexities and statistical performances. In order to test numerically whether this quantity truly

explains those features (as opposed to merely appearing in a wildly pessimistic bound), we explicitly com-

pute it in numerical experiments.

To compute RT (x∗)(A), we propose a heuristic which computes σT (x∗)(A) in (37) and (38), the value of

a nonconvex minimization problem over the cone of descent directions T (x∗). The closure of the latter is

the polar of the cone generated by the subdifferential to the ℓ1-norm ball at x∗ [Chandrasekaran et al., 2012,

§2.3]. Let S ⊂ J1, pK denote the support of x∗ and s = Card(S). Then, with u = sign(x∗),

T (x∗) = cone
{

z ∈ R
p : zS = uS , zSc ∈ [−1, 1]p−s)

}◦
=
{

z ∈ R
p : ‖zSc‖1 ≤ −uTSzS = −uT z

}

.

Thus, σT (x∗)(A) is the square root of

min
z∈Rp

zTATAz s.t. ‖z‖2 = 1 and ‖zSc‖1 ≤ −uT z. (95)

Let λ denote the largest eigenvalue of ATA. If it were not for the cone constraint, solutions of this problem

would be the dominant eigenvectors of λI − ATA, which suggests a projected power method [Deshpande

et al., 2014] as follows. Given an initial guess z0 ∈ R
p, ‖z0‖2 = 1, iterate

ẑk+1 = ProjT (x∗)

(

(λI −ATA)zk
)

, zk+1 = ẑk+1/‖ẑk+1‖2, (96)

where we used the orthogonal projector to T (x∗),

ProjT (x∗)(z̃) = arg min
z∈Rp

‖z − z̃‖22 s.t. ‖zSc‖1 ≤ −uT z. (97)
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This convex, linearly constrained quadratic program is easily solved with CVX [Grant et al., 2001]. As

can be seen from KKT conditions, this iteration is a generalized power iteration [Luss and Teboulle, 2013;

Journée et al., 2008]

zk+1 ∈ argmax
z∈Rp

zT (λI−ATA)zk s.t. ‖z‖2 ≤ 1 and ‖zSc‖1 ≤ −uT z. (98)

From the latter, it follows that ‖Azk‖2 decreases monotonically with k. Indeed, owing to convexity of

f(z) = 1
2z

T (λI − ATA)z, we have f(z) − f(zk) ≥ (z − zk)
T (λI − ATA)zk . The next iterate z =

zk+1 maximizes this lower bound on the improvement. Since z = zk is admissible, the improvement is

nonnegative and f(zk) increases monotonically.

Thus, the sequence ‖Azk‖2 converges, but it may do so slowly, and the value it converges to may depend

on the initial iterate z0. On both accounts, it helps greatly to choose z0 well. To obtain one, we modify (95)

by smoothly penalizing the inequality constraint in the cost function, which results in a smooth optimization

problem on the ℓ2 sphere. Specifically, for small ε1, ε2 > 0, we use smooth proxies h(x) =
√

x2 + ε21 −
ε1 ≈ |x| and q(x) = ε2 log(1 + exp(x/ε2)) ≈ max(0, x). Then, with γ > 0 as Lagrange multiplier, we

consider

min
‖z‖2=1

‖Az‖22 + γ · q
(

uT z +
∑

i∈Sc
h(zi)

)

. (99)

We solve the latter locally with Manopt [Boumal et al., 2014], itself with a uniformly random initial guess

on the sphere, to obtain z0. Then, we iterate the projected power method. The value ‖Az‖2 is an upper

bound on σT (x∗)(A), so that we obtain a lower bound on RT (x∗)(A). Empirically, this procedure, which is

random only through the initial guess on the sphere, consistently returns the same value, up to five digits of

accuracy, which suggests the proposed heuristic computes a good approximation of the condition number.

Similarly positive results have been reported on other cones by Deshpande et al. [2014], where the special

structure of the cone even made it possible to certify that this procedure indeed attains a global optimum

in proposed experiments. Similarly, a generalized power method was recently shown to converge to global

optimizers for the phase synchronization problem (in a certain noise regime) [Boumal, 2016; Zhong and

Boumal, 2017]. This gives us confidence in the estimates produced here.

4.2.2. Sparse recovery performance. We conduct numerical experiments in the ℓ1 case to illustrate the con-

nection between the condition number RT (x∗)(A), the computational complexity of solving (ℓ1 recovery),

and the statistical efficiency of the estimator (Robust ℓ1 recovery). Importantly, throughout the experiments,

the classical condition number of A will remain essentially constant, so that the main variations cannot be

attributed to the latter.

We follow a standard setup, similar to some of the experiments by Donoho and Tsaig [2008]. Fixing the

ambient dimension p = 300 and sparsity s = ‖x∗‖0 = 15, we let the number of linear measurements n
vary from 1 to 150. For each value of n, we generate a random signal x∗ ∈ R

p (uniformly random support,

i.i.d. Gaussian entries, unit ℓ2-norm) and a random sensing matrix A ∈ R
n×p with i.i.d. standard Gaussian

entries. Furthermore, for a fixed value δ = 10−2, we generate a random noise vector w ∈ R
n with i.i.d.

standard Gaussian entries, normalized such that ‖w‖2 = δ‖A‖2, and we let b = Ax∗ + w. This is repeated

100 times for each value of n.

For each triplet (A, x∗, b), we first solve the noisy problem (Robust ℓ1 recovery) with the L1-Homotopy

algorithm (τ = 10−7) [Asif and Romberg, 2014], and report the estimation error ‖x̂−x∗‖2. Then, we solve

the noiseless problem (1) with L1-Homotopy and the TFOCS routine for basis pursuit (µ = 1) [Becker,

Candès and Grant, 2011]. Exact recovery is declared when the error is less than 10−5, and we report

the empirical probability of exact recovery, together with the number of iterations required by each of the

solvers. The number of iterations of LARS [Efron et al., 2004] is also reported, for comparison. For

L1-Homotopy, we report the computation time, normalized by the computation time required for one least-

squares solve in A, as in [Donoho and Tsaig, 2008, Fig. 3], which accounts for the growth in n. Finally,

we compute the classical condition number of A, κ(A), as well as (a lower bound on) the cone-restricted
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condition number RT (x∗)(A), as per the previous section. As it is the computational bottleneck of the

experiment, it is only computed for 20 of the 100 repetitions.

The results of Figure 4 show that the cone-restricted condition number explains both the computational

complexity of (ℓ1 recovery) and the statistical complexity of (Robust ℓ1 recovery): fewer samples mean

bad conditioning which in turn implies high computational complexity. We caution that our estimate of

RT (x∗)(A) is only a lower bound. Indeed, for small n, the third plot on the left shows that, even in the ab-

sence of noise, recovery of x∗ is not achieved by (Robust ℓ1 recovery). Lemma 2.3 then requires RT (x∗)(A)
to be infinite. But the computational complexity of solving (ℓ1 recovery) is visibly favorable for small n,

where far from the phase transition, problem (PA,T (x)) is far from infeasibility, which is just as easy to verify

as it is to certify that (PA,T (x)) is infeasible when n is comfortably larger than needed. This phenomenon

is best explained using a symmetric version of the condition number [Amelunxen and Lotz, 2014] (omitted

here to simplify computations).

We also solved problem (ℓ1 recovery) with interior point methods (IPM) via CVX. The number of iter-

ations appeared mostly constant throughout the experiments, suggesting that the practical implementation

of such solvers renders their complexity mostly data agnostic in the present setting. Likewise, the compu-

tation time required by L1-Homotopy on the noisy problem (Robust ℓ1 recovery), normalized by the time

of a least-squares solve, is mostly constant (at about 150). This hints that the link between computational

complexity of (ℓ1 recovery) and (Robust ℓ1 recovery) remains to be fully explained.
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APPENDIX A. PRACTICAL OPTIMAL RESTART SCHEME

In Section 1.2 we quickly give optimal restart schemes in terms of a potentially non-integer clock. Following

corollary details optimal scheme for an integer optimal clock.

Corollary A.1. Given a coding matrix A ∈ R
n×p and an original signal x∗ ∈ R

p such that sharpness bound (Sharp)

is satisfied with γ > 0, running Algorithm Restart with ρ∗ and t = ⌈t∗⌉ where ρ∗ and t∗ are defined in (17) ensures

that after K ≥ 1 restarts, i.e. N = K⌈t∗⌉ total number of iterations,

‖ŷ‖1 − ‖x∗‖1 ≤ exp

(

− Nγ

2e
√
p+ γ

)

ǫ0. (100)

Proof. Denote δ = ⌈t∗⌉ − t∗ ∈ [0, 1[. As ⌈t∗⌉ ≥ t∗ (16) is ensured for ρ∗. At the K th restart, N = K(t∗ + δ), and

‖ŷ‖1 − ‖x∗‖1 ≤ e−Kǫ0 = exp(−N/(t∗ + δ)) ≤ exp(−N/(t∗ + 1)). (101)

Replacing t∗ by its value gives the result.

APPENDIX B. REMARK ON SPARSITY INDUCING NORMS

We quickly discuss the framework of Juditsky et al. [2014] for sparsity inducing norms and show that it can be

simplified. We first recall the definition.

Definition B.1. (Sparsity structure [Juditsky et al., 2014]) A sparsity structure on a Euclidean space E is defined

as a norm ‖ · ‖ on E, together with a family P of linear maps of E into itself, satisfying three assumptions:

(1) Every P ∈ P is a projector, P 2 = P ,

(2) Every P ∈ P is assigned a weight ν(P ) ≥ 0 and a linear map P̄ on E such that PP̄ = 0,

(3) For any P ∈ P and u, v ∈ E, one has

‖P ∗u+ P̄ ∗v‖∗ ≤ max(‖u‖∗, ‖v‖∗),
where ‖ · ‖∗ is the dual norm of ‖ · ‖ and P ∗ is the conjugate mapping of the linear map P .

The last condition in Definition B.1 is arguably the least intuitive and following Lemma connects it with the more

intuitive notion of decomposable norm.

Lemma B.2. Condition (3) above, which reads

‖P ∗u+ P̄ ∗v‖∗ ≤ max(‖u‖∗, ‖v‖∗), (102)

for any u, v ∈ E, is equivalent to

‖w‖ ≥ ‖Pw‖+ ‖P̄w‖, (103)

for any w ∈ E.

Proof. Denote f : (u, v) → ‖P ∗u + P̄ ∗v‖∗ and g : (u, v) → max(‖u‖∗, ‖v‖∗). Since f and g are non-negative,

continuous convex functions, f2/2 and g2/2 are also convex continuous and following equivalences hold

f ≤ g ⇔ f2

2
≤ g2

2
⇔

(

f2

2

)∗

≥
(

g2

2

)∗

, (104)

using that for a convex continuous function h, h∗∗ = h. Now combining the conjugacy result for squared norm

[Boyd and Vandenberghe, 2004, Example 3.27] showing that the conjugate of a squared norm ‖x‖2/2 is the squared

conjugate norm ‖x‖2
∗
/2, with the result in [Rockafellar, 1970, Th. 16.3], we get

(

f2

2

)∗

(s, t) = inf
w
{‖w‖2/2 : Pw = s, P̄w = t}, (105)

where the infimum is +∞ if the constraints are infeasible. Then the dual of the norm g is (s, t) → ‖s‖+ ‖t‖ therefore

condition (3) is equivalent to

inf
w
{‖w‖ : Pw = s, P̄w = t} ≥ ‖s‖+ ‖t‖, (106)

for any s, t ∈ E, which reads

‖w‖ ≥ ‖Pw‖+ ‖P̄w‖, (107)
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for any w ∈ E.
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FIGURE 4. We plot the cone-restricted condition number of A (upper left), explaining both

the computational complexity of problem (ℓ1 recovery) (right column) and the statistical

complexity of problem (Robust ℓ1 recovery) (second on the left). Central curves represent

the mean (geometric mean in log-scale plots), red curves correspond to 10th and 90th per-

centile. We observe that high computing times (peaks in the right column) are directly

aligned with instances where sparse recovery barely holds/fails (left), i.e. near the phase

transition around n = 70, where the distance to feasibility for problem (PA,T (x)) also fol-

lows a phase transition.

28


	Introduction
	Notations

	1. Sharpness, Restart and Sparse Recovery Performance
	1.1. Null space property & sharpness for exact recovery
	1.2. Restarting first-order methods
	1.3. Recovery threshold

	2. Renegar's condition number and restricted singular values
	2.1. Conic linear systems
	2.2. Recovery performance of robust recovery
	2.3. Computational complexity of recovery problems
	2.4. Computational complexity for inexact recovery
	2.5. Other algorithms

	3. Generalization to Common Sparsity Inducing Norms
	3.1. Decomposable norms
	3.2. Sharpness and generalized null space property
	3.3. Robust recovery performance and computational complexity

	4. Numerical Results
	4.1. Sharpness & restart for exact recovery
	4.2. Renegar's condition number and compressed sensing performance
	Acknowledgements

	References
	Appendix A. Practical optimal restart scheme
	Appendix B. Remark on sparsity inducing norms

